2011山东数学圆锥曲线
2011年高考理科数学试题及详细答案(山东卷)
考点:指数函数的图像与性质。 专题:计算题。 分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进 行解答. 解答:解:将(a,9)代入到y=3x中,得3a=9, 解得a=2. ∴ = .
故选D. 点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现. 在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究, 一般的问题往往都可以迎刃而解. 4.(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是( ) A.[﹣5,7] B.[﹣4,6] C.(﹣∞,﹣ 5]∪[7,+∞) D.(﹣∞,﹣4]∪[6,+∞) 考点:绝对值不等式的解法。 专题:计算题。 分析:解法一:利用特值法我们可以用排除法解答本题,分别取x=0, x=﹣4根据满足条件的答案可能正确,不满足条件的答案一定错误,易 得到答案. 解法二:我们利用零点分段法,我们分类讨论三种情况下不等式的解, 最后将三种情况下x的取值范围并起来,即可得到答案. 解答:解:法一:当x=0时,|x﹣5|+|x+3|=8≥10不成立 可排除A,B 当x=﹣4时,|x﹣5|+|x+3|=12≥12成立 可排除C 故选D 法二:当x<﹣3时 不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)﹣(x+3)≥10 解得:x≤﹣4 当﹣3≤x≤5时 不等式|x﹣5|+|x+3|≥10可化为:﹣(x﹣5)+(x+3)=8≥10恒不成立 当x>5时 不等式|x﹣5|+|x+3|≥10可化为:(x﹣5)+(x+3)≥10 解得:x≥6 故不等式|x﹣5|+|x+3|≥10解集为:(﹣∞,﹣4]∪[6,+∞) 故选D 点评:本题考查的知识点是绝对值不等式的解法,其中利用零点分段法 进行分类讨论,将绝对值不等式转化为整式不等式是解答本题的关键. 5.(2011•山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴 对称”是“y=f(x)是奇函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条 件 D.既不充分也不必要条件
高考数学中的圆锥曲线基本概念及相关性质
高考数学中的圆锥曲线基本概念及相关性质圆锥曲线是高中数学中非常重要的一个概念,与其相关的知识点在高考中也是经常出现的考点。
本文将介绍圆锥曲线的基本概念以及其相关性质,希望能对正在备考高考数学的同学有所帮助。
一、圆锥曲线的基本概念圆锥曲线是由圆锥面和一个平面相交而形成的曲线。
根据平面与圆锥面相交的位置和方向不同,可以分为四种圆锥曲线,分别是椭圆、抛物线、双曲线和圆。
1. 椭圆椭圆是圆锥曲线中比较常见的一种曲线。
它可以由一个平面沿着圆锥面的两个平行直母线截取而成。
椭圆有两个焦点和一条长轴和短轴,其特点是离焦点的距离之和等于常数,即椭圆的离心率小于1。
2. 抛物线抛物线是另一种常见的圆锥曲线。
它可以由一个平面沿着圆锥面的一条直母线截取而成。
抛物线有一个焦点和一条准轴,其特点是离焦点的距离等于离准轴的距离。
3. 双曲线双曲线和椭圆和抛物线不同,它可以由一个平面沿着圆锥面的两个非平行直母线截取而成。
双曲线有两个焦点和两条渐近线,其特点是离焦点的距离之差等于常数,即双曲线的离心率大于1。
4. 圆圆是圆锥曲线中最简单的一种曲线,它可以由一个平面与圆锥面的一个直母线相交而得到。
圆是只有一个焦点的特殊情况,它的离心率等于0。
二、圆锥曲线的相关性质除了基本概念之外,圆锥曲线还有一些重要的性质,在高考中也是需要掌握的知识点。
1. 椭圆的性质(1)椭圆的两个焦点与中心三点共线;(2)椭圆的长轴与短轴的长度之比等于焦距之和与焦距之差的比;(3)椭圆的离心率等于焦距之长除以长轴的长度。
2. 抛物线的性质(1)抛物线的对称轴垂直于准轴;(2)抛物线的焦点在准轴上的中点。
3. 双曲线的性质(1)双曲线的两条渐近线一定是不相交的;(2)双曲线的离心率等于距离两个焦点最远的点与焦点之间的距离之比。
4. 圆的性质(1)圆的任何直径经过圆心;(2)圆的内切和外切线垂直于半径并且相切于切点。
总结圆锥曲线作为高中数学中的一个重要概念,其基本概念和相关性质都需要仔细掌握。
解读数学中的圆锥曲线与双曲线
解读数学中的圆锥曲线与双曲线圆锥曲线和双曲线是数学中重要的概念和研究对象。
它们在几何学、物理学、工程学等领域中有着广泛的应用。
本文将对圆锥曲线和双曲线进行解读,并介绍它们的定义、性质以及应用。
一、圆锥曲线的定义与性质圆锥曲线是由一个平面与一个圆锥相交所得到的曲线。
根据平面与圆锥的位置关系,圆锥曲线分为三种类型:椭圆、抛物线和双曲线。
1. 椭圆:当平面与圆锥的切线小于圆锥的斜边时,所得到的曲线称为椭圆。
椭圆具有以下性质:a. 椭圆的离心率小于1,且离心率越小,椭圆越接近于圆形;b. 椭圆的焦点是椭圆的特殊点,椭圆上任意一点到两个焦点的距离之和是常数;c. 椭圆的长轴、短轴及焦点之间存在一定的关系,可以通过这些参数来确定椭圆的形状和大小。
2. 抛物线:当平面与圆锥的切线等于圆锥的斜边时,所得到的曲线称为抛物线。
抛物线具有以下性质:a. 抛物线具有对称性,焦点是抛物线的特殊点,抛物线上任意一点到焦点的距离等于该点到准线的距离;b. 抛物线的形状由焦点和准线的位置决定,焦点越靠近准线,抛物线越扁平。
3. 双曲线:当平面与圆锥的切线大于圆锥的斜边时,所得到的曲线称为双曲线。
双曲线具有以下性质:a. 双曲线的离心率大于1,且离心率越大,双曲线的形状越扁平;b. 双曲线的焦点是双曲线的特殊点,双曲线上任意一点到两个焦点的距离之差是常数;c. 双曲线的长轴、短轴及焦点之间存在一定的关系,可以通过这些参数来确定双曲线的形状和大小。
二、双曲线的应用双曲线在数学和物理学中有着广泛的应用。
以下是几个常见的应用领域:1. 光学:双曲线是抛物面镜和双曲面镜的截面曲线,这些曲线具有聚焦和发散光线的特性,被广泛应用于光学系统中,如望远镜、显微镜等。
2. 电磁场:在电磁学中,双曲线是电场和磁场的等势线,它们的分布和形状对电磁场的性质和行为有着重要的影响。
3. 天体力学:在天体力学中,双曲线被用来描述天体的轨道形状,如彗星的轨道就是一个双曲线。
掌握数学中的圆锥曲线与双曲线
掌握数学中的圆锥曲线与双曲线圆锥曲线与双曲线是数学中重要的概念,它们在几何学、物理学、工程学以及其他应用领域中都有广泛的应用。
掌握圆锥曲线与双曲线的性质和特征对于解决实际问题、推导数学公式以及拓展数学知识都非常重要。
本文将详细介绍圆锥曲线与双曲线的定义、性质以及一些重要的应用。
1. 圆锥曲线的定义圆锥曲线是在平面上由一个动点P和一个固定点F(焦点)确定的几何图形。
当动点P满足定点到动点的距离和定点到直线的距离之比为定值(离心率)时,所生成的曲线就是圆锥曲线。
根据离心率的不同取值,圆锥曲线可以分为四种:椭圆、双曲线、抛物线和直线。
2. 圆锥曲线的性质(1)椭圆:椭圆是圆锥曲线中离心率小于1的情况。
椭圆具有两个焦点,并且动点P到两个焦点的距离之和是一个定值。
(2)双曲线:双曲线是圆锥曲线中离心率大于1的情况。
双曲线同样具有两个焦点,但动点P到两个焦点的距离之差是一个定值。
(3)抛物线:抛物线是圆锥曲线中离心率等于1的情况。
抛物线具有一个焦点,并且动点P到焦点的距离等于焦点到直线的距离。
(4)直线:当离心率趋于无穷大时,圆锥曲线变成一条直线。
3. 双曲线的定义双曲线是一个平面上的点P到两个不相交的固定点F1和F2的距离之差等于一个常量的轨迹。
双曲线的形状可以用以下方程表示:x^2/a^2 - y^2/b^2 = 1,其中a和b分别表示双曲线的横轴和纵轴的长度。
4. 双曲线的性质(1)双曲线具有两条渐近线,与双曲线趋近于无穷远处且永不相交。
(2)双曲线的对称轴是横轴和纵轴的平分线,同时也是双曲线的渐近线。
(3)双曲线的顶点是在横轴和纵轴的交点处,顶点之间的距离等于2a。
(4)双曲线有两个分支,分别位于两个焦点的两侧。
5. 圆锥曲线与双曲线的应用(1)在物理学中,圆锥曲线和双曲线广泛用于描述物体的运动轨迹,如行星绕太阳的轨道等。
(2)在工程学中,圆锥曲线和双曲线可以用于设计道路、桥梁和建筑物等的弧度和曲线形状。
2011山东数学圆锥曲线
2011山东数学圆锥曲线摘要:一、引言二、2011 年山东数学高考圆锥曲线试题概述1.题目背景2.题目类型3.难度及考查知识点三、解题思路及步骤1.分析题目2.提取关键信息3.运用相关知识点解题四、答案解析1.答案2.解析五、总结正文:一、引言随着高考制度的不断改革,数学圆锥曲线题目在高考中的地位日益显著。
本文将以2011 年山东数学高考圆锥曲线试题为例,为大家详细解析该题的解题思路及步骤。
二、2011 年山东数学高考圆锥曲线试题概述1.题目背景在2011 年山东数学高考中,圆锥曲线题目作为压轴题出现,分值高达12 分。
该题以实际问题为背景,考查了学生对圆锥曲线知识的掌握程度和解题能力。
2.题目类型该题为综合题,考查了椭圆、双曲线及抛物线的性质及其应用。
题目难度适中,需要考生具备一定的分析问题和解决问题的能力。
3.难度及考查知识点该题综合考查了圆锥曲线的基本性质、几何意义、方程求解等知识点,需要考生对这些知识点有较为全面的了解和掌握。
三、解题思路及步骤1.分析题目首先,考生要仔细阅读题目,理解题意,明确考查的知识点和要求。
2.提取关键信息通过阅读题目,提取关键信息,如曲线类型、已知条件、要求等。
3.运用相关知识点解题根据提取的关键信息,运用圆锥曲线相关知识点进行解答。
需要注意的是,解题过程中要注重逻辑性和条理性,步骤要清晰。
四、答案解析1.答案根据解题过程,得出最终答案。
2.解析对答案进行详细的解释和说明,包括答案的求解过程、原理及意义等。
五、总结通过对2011 年山东数学高考圆锥曲线试题的解析,希望考生能够掌握解题思路和方法,进一步提高解题能力。
高中数学第八章圆锥曲线知识点
高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学中的一个重要章节,涵盖了圆锥曲线的基本概念、性质以及相关应用等内容。
圆锥曲线是一类特殊的曲线,由一个固定点(称为焦点)和到该点距离与到一条固定直线(称为准线)距离的比值为常数定义。
本文将从椭圆、双曲线和抛物线这三种常见的圆锥曲线开始,介绍它们的定义、性质和公式,并探讨它们在几何和实际问题中的应用。
一、椭圆椭圆是圆锥曲线中最基本的一种情形。
它的定义是,对于一个固定点F(焦点)和一条固定直线l(准线),所有到F和l的距离之比等于一个常数e(离心率)的点的轨迹。
椭圆具有很多重要的性质,如焦点的性质、离心率的性质、对称性和切线的性质等,这些性质对于解题和应用非常重要。
二、双曲线双曲线是圆锥曲线中另一种重要的类型。
与椭圆相比,双曲线的定义稍微有些不同。
它的定义是,对于一个固定点F(焦点)和一条固定直线l(准线),所有到F和l的距离之差等于一个常数e (离心率)的点的轨迹。
双曲线的性质也非常丰富,包括焦点和准线的性质、离心率的性质、渐近线、对称性以及切线的性质等。
三、抛物线抛物线是圆锥曲线中最后一种常见的类型。
它的定义是,对于一个固定点F(焦点)和一条固定直线l(准线),所有到F和l的距离相等的点的轨迹。
抛物线也具有许多独特的性质,如焦点和准线的性质、对称性、切线的性质、曲率和渐近线等。
这三种圆锥曲线在几何中起到了重要的作用,但在实际问题中的应用更为广泛。
例如,在天文学中,行星运动的轨迹可以用椭圆来描述;在通信中,天线的波束方向可以通过双曲线来确定;在物理学中,抛物线的形状可以用来描述抛射体的运动轨迹等等。
总之,高中数学第八章圆锥曲线是一个非常重要的知识点,涉及到椭圆、双曲线和抛物线三种常见情形的定义、性质和应用。
掌握圆锥曲线的相关知识,不仅对于解决几何问题有很大的帮助,还。
山东省2011-2022年普通高校招生(春季)数学试题专题之圆锥曲线(椭圆、双曲线、抛物线)
山东省2011-2022年普通高校招生(春季)数学专题圆锥曲线(椭圆、双曲线、抛物线)一、选择题(11-25)若中心在坐标原点,焦点在x轴上的双曲线,虚轴长是实轴长的2倍,则其渐近线方程为A.y=±14xB.y=±4xC.y=±12xD.y=±2x(11-29)已知抛物线y2=4x,过其焦点且斜率为1的直线交抛物线于A,B两点,则|AB|等于A.6B.8C.10D.12(12-10)已知以坐标原点为顶点的抛物线,其焦点在x轴正半轴上,且焦点到准线的距离是3,则抛物线的标准方程是()A.y2=6xB.y2=−6xC.y2=3xD.y2=−3x(12-13)椭圆x 29+y28=1的离心率是()A.13B.√173C. √24D.2√23(12-24)已知椭圆x 225+y220=1= 1 的左焦点是F1,右焦点是F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|:|PF2|等于()A.3:2B.2:3C.9:1D.1:9(13-14)已知抛物线的准线方程为x=2,则抛物线的标准方程为()A. y2=8xB. y2=−8xC. y2=4xD. y2=−4x(13-25)点p是等轴双曲线上除顶点外的任意一点,A1,A2是双曲线的顶点,则直线pA1与pA2的斜率之积为()A. 1B. −1C. 2D.−2(14-15)第一象限内的点P在抛物线y2=−12x上,它到准线的距离为7,则点P的坐标为A.(4,4√3)B.(3,6)C.(2,2√6)D.(1,2√3)(14-19)双曲线4x2-9y2=1的渐近线方程为A.y=±32xB.y=±23xC.y=±94xD.y=±49x(15-14)关x,y的方程x2+my2=1,给出下列命题:②当m<0时,方程表示双曲线;②当m=0时,方程表示抛物线;③当0<m<1时,方程表示椭圆;④当m=1时,方程表示等轴双曲线;⑤当m>1时,方程表示椭圆。
圆锥曲线的基本性质与应用
圆锥曲线的基本性质与应用圆锥曲线是平面上一类重要的几何图形,具有许多重要的性质和应用。
在本文中,我们将介绍圆锥曲线的基本性质、如何描述圆锥曲线、圆锥曲线在数学和自然科学中的应用等方面。
一、圆锥曲线的基本性质圆锥曲线是由一个可旋转的直角三角形通过旋转而产生的。
这个过程形成了三种类型的圆锥曲线:椭圆、双曲线和抛物线。
椭圆是一种具有中心对称性的圆锥曲线,它的两个焦点之间的距离是一定的,被称为椭圆的长轴。
椭圆的轴比是轴的长度之比,通常用e表示,并且e总是小于1。
椭圆在数学、物理和天文学中都有着广泛的应用,如描述行星轨道和电子轨道等。
双曲线也是一种具有中心对称性的圆锥曲线,但是它的两个焦点之间的距离却是一定的,被称为双曲线的轴。
双曲线的轴比是轴的长度之比,它总是大于1。
双曲线在数学、物理和天文学等领域中也有很多应用,如描述分子结构和测量天体距离等。
抛物线是一种只有一个焦点的圆锥曲线,它的轴是与曲线平行的直线。
抛物线在物理学中也有广泛的应用,如描述空气力学中的运动情况和设计天文望远镜等。
二、描述圆锥曲线的方式描述圆锥曲线的方式有很多种,其中最常见的是使用方程或参数来描述。
方程描述圆锥曲线通常用矩阵和向量的形式表示,而参数描述则需要指定曲线上的点的位置。
参数的方式是使用一个参数方程来描述曲线,其中曲线上的点可通过参数t计算得到。
例如,椭圆的参数方程可以表示为:x = acos(t)y = bsin(t)其中a、b分别是椭圆长轴和短轴的长度,t是椭圆上的点的参数。
三、圆锥曲线在数学和自然科学中的应用圆锥曲线在数学和自然科学中有许多应用。
在数学领域,椭圆曲线通常用于数论、代数几何和密码学等领域,而双曲线曲线则常用于微积分、微分几何和流体力学等领域。
抛物线曲线也经常用于机械学和空气力学等领域。
在自然科学领域,圆锥曲线同样有着广泛的应用。
例如,椭圆曲线可用于描述行星轨道、电子轨道和分子结构等,在物理学和化学中具有重要作用。
高考数学试题解析分项版 专题10 圆锥曲线 理
2011年高考试题解析数学(理科)分项版10 圆锥曲线一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=3. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。
4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则(A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y =⎧⇒=⎨+⎩,x ∴=y =52(,)a在椭圆上,2222)15151a b ∴+=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. 6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 18.(2011年高考陕西卷理科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C )24y x =- (D )24y x = 【答案】B【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒= 9. (2011年高考四川卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-10. (2011年高考全国卷理科10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-【答案】D 【解析】:24(1,0)y x F =得,准线方程为1x =-,由24(1,2),(4,4)24y x A B y x ⎧=-⎨=-⎩得则AB ==2,5AF BF ==由余弦定理得4cos 5AFB ∠==- 故选D 11.(2011年高考福建卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2 D .2332或 【答案】A二、填空题:1.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C的焦距为4,则它的离心率为_____________.3. (2011年高考江西卷理科14)若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y += 【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P (1,12),连结OP,则OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 xl 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。
十年(2011-2020)高考真题数学分项详解(全国版)专题29圆锥曲线的综合问题(原卷版)
专题29圆锥曲线的综合问题25线与椭圆直线与椭圆考点出现频率2021年预测考点98曲线与方程37次考1次命题角度:(1)定点、定值问题;(2)最值、范围问题;(3)证明、探究性问题.核心素养:数学运算、逻辑推理、直观想象考点99定点与定值问题37次考6次考点100最值与范围问题37次考5次考点101探索型与存在性问题37次考3次考点98曲线与方程1.(2020山东)已知曲线22:1C mx ny +=.()A .若m>n>0,则C 是椭圆,其焦点在y 轴上B .若m=n>0,则CC .若mn<0,则C 是双曲线,其渐近线方程为y =D .若m=0,n>0,则C 是两条直线2.(2020天津)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为()A .22144x y -=B .2214y x -=C .2214x y -=D .221x y -=3.【2019北京理】数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③4.(2020全国Ⅱ文19)已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴垂直的直线交1C 于,A B 两点,交2C 于,C D 两点,且43CD AB =.(1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程.5.(2020全国Ⅱ理19)已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴垂直的直线交1C 于,A B 两点,交2C 于,C D 两点,且43CD AB =.(1)求1C 的离心率;(2)设M 是1C 与2C 的公共点,若5=MF ,求1C 与2C 的标准方程.6.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点12,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为7,求直线l 的方程.7.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .8.(2016全国Ⅲ文理)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B,两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.9.(2015江苏理)如图,在平面直角坐标系xoy 中,已知椭圆()222210x y a b a b +=>>的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于,A B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点,P C ,若2PC AB =,求直线AB 的方程.10.(2014广东理)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.11.(2014辽宁理)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P .(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.12.(2013四川理)已知椭圆C :)0(12222>>=+b a by a x 的两个焦点分别为1(10)F -,,210F (,),且椭圆C 经过点),3134(P .(Ⅰ)求椭圆C 的离心率(Ⅱ)设过点),(20A 的直线l 与椭圆C 交于M ,N 两点,点Q 是MN 上的点,且222112ANAMAQ+=,求点Q 的轨迹方程.13.(2011天津理)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.考点99定点与定值问题14.【2020全国Ⅰ文21理20】已知,A B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为,C PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.15.【2020山东】已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且过点()2,1A .(1)求C 的方程;(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.16.【2019全国Ⅲ理】已知曲线C:y=22x,D为直线y=12-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.17.【2019北京理】已知抛物线C:x2=−2py经过点(2,−1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.18.【2019全国Ⅲ文】已知曲线C:y=22x,D为直线y=12-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.19.【2019北京文】已知椭圆2222:1x yCa b+=的右焦点为(1,0),且经过点(0,1)A.(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM|·|ON|=2,求证:直线l 经过定点.20.【2018北京文20】(本小题14分)已知椭圆M :22221x y a b+=(0)a b >>的离心率为3,焦距为k 的直线l 与椭圆M 有两个不同的焦点,A B (I )求椭圆M 的方程;(II )若1k =,求AB 的最大值;(III )设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若,C D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .21.【2018北京理19】(本小题14分)已知抛物线2:2C y px =经过点()1,2P ,过点()0,1Q 的直线l 与抛物线C 有两个不同的交点,A B ,且直线PA 交于y 轴与M ,直线PB 交y 轴与N .(I )求直线l 的斜率的取值范围.(II )设O 为原点,,QM QO QN QO λμ== ,求证:11λμ+为定值.22.(2017新课标Ⅰ理)已知椭圆C :22221(0)x y a b a b +=>>,四点1(1,1)P ,2(0,1)P ,33(1,2P =-,43(1,2P =中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.23.(2017新课标Ⅱ文理)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .24.(2017北京文)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心率为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.25.(2016年全国I 理)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.26.(2016年北京文)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.27.(2016年北京理)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.28.(2016年山东文)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2 .(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x 轴与点N ,交C 于点A ,P(P 在第一象限),且M 是线段PN的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值;(ii)求直线AB 的斜率的最小值.29.(2015新课标2文)已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.30.(2015新课标2理)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015陕西文)如图,椭圆E :22221x y a b+=(a >b >0)经过点(0,1)A -,且离心率为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP与AQ 的斜率之和为2.32.(2014江西文理)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C 的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF恒为定值,并求此定值.33.(2013山东文理)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l .(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.34.(2012湖南理)在直角坐标系xoy 中,曲线1C 的点均在2C :22(5)9x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设00(,)P x y (3y ≠±)为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A ,B 和C ,D .证明:当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.考点100最值与范围问题35.【2020年江苏18】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为1F 、2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B .(1)求12AF F ∆的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB ∆与MAB ∆的面积分别为12,S S ,若213S S =,求点M 的坐标.36.【2020浙江21】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.37.【2019全国Ⅱ理】已知点A(−2,0),B(2,0),动点M(x ,y)满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形;(ii )求PQG △面积的最大值.38.【2019浙江】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G的坐标.39.(2018浙江21)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上.(I )设AB 中点为M ,证明:PM 垂直于y 轴;(II )若P 是半椭圆221(0)4y x x +=<上的动点,求PAB △面积的取值范围.40.(2017浙江文理)如图,已知抛物线2x y =.点11(,24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PA PQ ⋅的最大值.41.(2017山东文)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为22,椭圆C 截直线1y =所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO .设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.42.(2017山东理)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =-E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且124k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.43.(2016全国II 理)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.44.(2016天津理)设椭圆13222=+y a x (3)a >的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF⊥,且MOA MAO ∠∠≤,求直线l 的斜率的取值范围.45.(2016浙江文)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -.(I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.45.(2015重庆文)如图,椭圆22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,且过2F 的直线交椭圆于,P Q 两点,且PQ ⊥1PF .(Ⅰ)若12PF =+,22PF =-|,求椭圆的标准方程;(Ⅱ)若|1PQ PF λ=,且3443λ≤≤,试确定椭圆离心率e 的取值范围.46.(2014新课标1文理)已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.47.(2014浙江文理)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.48.(2015山东理)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,左、右焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求△ABQ 面积的最大值.49.(2014山东文理)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形.(Ⅰ)求C 的方程;(Ⅱ)若直线l l //1,且1l 和C 有且只有一个公共点E ,(ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.50.(2014山东理)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率为2,直线y x=被椭圆C 截得的线段长为5.(I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.51.(2014四川文理)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点);(ii )当||||TF PQ 最小时,求点T 的坐标.52.(2013广东文理)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ)求抛物线C 的方程;(Ⅱ)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(Ⅲ)当点P 在直线l 上移动时,求AF BF ⋅的最小值.53.(2011新课标文理)在平面直角坐标系xoy 中,已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.54.(2011广东文理)设圆C 与两圆2222(4,(4x y x y ++=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点M (,55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.考点101探索型与存在性问题55.【2018上海20】(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数2t >,在平面直角坐标系xOy 中,已知点()20F ,,直线:l x t =,曲线()2:800y x x t y Γ=≤≤≥,.l 与x 轴交于点A ,与Γ交于点B P Q ,,分别是曲线Γ与线段AB 上的动点.(1)用t 为表示点B 到点F 的距离;(2)设,23t FQ ==,线段OQ 的中点在直线FP 上,求AQP △的面积;(3)设8t =,是否存在以FP FQ ,为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.56.(2016全国I 文)在直角坐标系xOy 中,直线l :(0)y t t =≠交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(I )求||||OH ON ;(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.57.(2015新课标1理)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.58.(2015北京理)已知椭圆C :()222210x y a b a b+=>>的离心率为22,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.59.(2015湖北理)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.60.(2015四川理)如图,椭圆E:2222+1(0)x y a ba b=>>的离心率是22,过点(0,1)P的动直线l与椭圆相交于,A B两点,当直线l平行与x轴时,直线l被椭圆E截得的线段长为.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得QA PAQB PB=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.61.(2015浙江理)已知椭圆2212x y+=上两个不同的点,A B关于直线12y mx=+对称.(Ⅰ)求实数m的取值范围;(Ⅱ)求AOB∆面积的最大值(O为坐标原点).62.(2014湖南文理)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.63.(2013安徽文理)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .64.(2013湖北文理)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=并说明理由.65.(2012广东文理)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =,且椭圆C 上的点到(0,2)Q 的距离的最大值为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.66.(2011山东文理)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线3x=-于点(3,)D m-.(Ⅰ)求22m k+的最小值;(Ⅱ)若2OG OD=∙OE,(i)求证:直线l过定点;(ii)试问点B,G能否关于x轴对称?若能,求出此时ABG的外接圆方程;若不能,请说明理由.。
2011年山东省高考数学试卷及解析
2011年山东省高考数学试卷及解析一、选择题(共12小题,每小题5分,满分60分)1、(2011•山东)设集合M={x|(x+3)(x﹣2)<0},N={x|1≤x≤3},则M∩N=()A、[1,2)B、[1,2]C、(2,3]D、[2,3]考点:交集及其运算。
专题:计算题。
分析:根据已知条件我们分别计算出集合M,N,并写出其区间表示的形式,然后根据交集运算的定义易得到A∩B的值.解答:解:∵M={x|(x+3)(x﹣2)<0}=(﹣3,2)N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)故选A点评:本题考查的知识点是交集及其运算,其中根据已知条件求出集合M,N,并用区间表示是解答本题的关键.2、(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为()A、第一象限B、第二象限C、第三象限D、第四象限考点:复数代数形式的乘除运算;复数的基本概念。
专题:数形结合。
分析:把所给的复数先进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理后得到最简形式,写出复数在复平面上对应的点的坐标,根据坐标的正负得到所在的象限.解答:解:∵z==﹣i,∴复数在复平面对应的点的坐标是()∴它对应的点在第四象限,故选D点评:判断复数对应的点所在的位置,只要看出实部和虚部与零的关系即可,把所给的式子展开变为复数的代数形式,得到实部和虚部的取值范围,得到结果.3、(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A、0B、C、1D、考点:指数函数的图像与性质。
专题:计算题。
分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.4、(2011•山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A、﹣9B、﹣3C、9D、15考点:利用导数研究曲线上某点切线方程。
2011年高考试题数学汇编--圆锥曲线
2011年高考试题数学汇编――圆锥曲线一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -= 【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,2=,即32b c =,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A. 2. (2011年高考辽宁卷理科3)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为A .34B .1C .54D .74答案:C解析:设A ,B 的横坐标分别是,m n ,由抛物线定义,得111=+3442AF BF m n m n +++=++=,故52m n +=,524m n +=,故线段AB 的中点到轴的距离为543. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。
4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b+=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则(A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由2225A y x x x y=⎧⇒=⎨+⎩,x ∴=y=) 在椭圆上,2222)15151a b ∴+=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. 6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 1 答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。
山东省高考数学文科汇总--圆锥曲线资料
近年山东文科高考分类汇编---圆锥曲线部分【2016山东(文)】21.已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k,k′,证明为定值;(ⅱ)求直线AB的斜率的最小值.【解析】解:(Ⅰ)椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.可得a=2,c=,b=,可得椭圆C的方程:;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),设N(﹣t,0)t>0,M是线段PN的中点,则P(t,2m),过点P作x轴的垂线交C于另一点Q,Q(t,﹣2m),(ⅰ)证明:设直线PM,QM的斜率分别为k,k′,k==,k′==﹣,==﹣3.为定值;(ⅱ)由题意可得,m2=4﹣t2,QM的方程为:y=﹣3kx+m,PN的方程为:y=kx+m,联立,可得:x2+2(kx+m)2=4,即:(1+2k2)x2+4mkx+2m2﹣4=0可得x B=,y B=+m,同理解得x A=,y A=,x B﹣x A=﹣=,y B﹣y A=+m﹣()=,k AB===,由m>0,x0>0,可知k>0,所以6k+,当且仅当k=时取等号.此时,即m=,符合题意.所以,直线AB的斜率的最小值为:.【2014山东(文)】(21)(本小题满分14分)在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>,直线y x =被椭圆C截得的线段长为5. (I)求椭圆C 的方程;(II )过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i )设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求OMN ∆面积的最大值.【解析】(1)2222222333=,444c c a b e a b a a a -=∴==∴=即 设直线与椭圆交于,p q 两点。
2011年高考真题解析数学(文科)10圆锥曲线
2011年高考试题解析数学(文科)10 圆锥曲线一、选择题: 1. (2011年高考山东卷文科9)设M(0x ,0y )为抛物线C :28x y =上一点,上一点,F F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是的取值范围是 (A)(0 (A)(0,,2) (B)[02) (B)[0,,2] (C)(22] (C)(2,+∞) (D)[2,+∞),+∞) (D)[2,+∞),+∞) (D)[2,+∞) 【答案】C3.3. (2011年高考海南卷文科9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A,B 两点,|AB|=12,P 为C 的准线上一点,则ABP D 的面积为( ) A.18 B.24 C.36 D.48 【答案】C【解析】因为AB 过抛物线的焦点且与对称轴垂直,所以线段AB 是抛物线的通径,长为212p =,所以6p =,又点P 到AB 的距离为焦参数p ,所以ABP D 的面积为212362p p p ´==,故选C.4. (2011年高考安徽卷文科3) 双曲线x y 222-=8的实轴长是的实轴长是(A )2 (B)22 (C) 4 (D) 42【答案】C 【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题. 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. 5.(2011年高考广东卷文科8)设圆C 与圆 外切,与直线0y =相切.则C 的圆心轨迹为( )A . 抛物线B . 双曲线C . 椭圆D .圆6.(2011年高考浙江卷文科9)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与1C 2C 的长度为直径的圆相交于,A B 两点两点..若1C 恰好将线段AB 三等分,则三等分,则(A )2132a = ((B )213a = ((C )212b = (D) 22b =【答案】 C 【解析】:由1c 恰好将线段AB 三等分得133A A x x x x =Þ=由2225,5A y x x a x y =ìÞ=í+î 525,1515x a y a\==222222525()()5251515(,)1111515a a a a a b a b \+=Þ=在椭圆上在椭圆上,, 又22215,2a b b -=\=,故选C.7. (2011年高考天津卷文科6)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A.23B.25C.43D. 45 【答案】B【解析】由题意知,抛物线的准线方程为2x =-,所以4p =,又42p a+=,所以2a =,又因为双曲线的一条渐近线过点(-2,-1),所以双曲线的渐近线方程为12y x =±,即12b a =,所以1b =,即25c =,225c =,选B.8. (2011年高考福建卷文科11)设圆锥曲线I’的两个焦点分别为F 1,F 2,若曲线I’上存在点P 满足1PF :12F F :2PF = 4:3:2,则曲线I’的离心率等于的离心率等于A. 1322或B. 223或 C. 122或 D. 2332或【答案】A 【解析】由1PF :12F F :2PF = 4:3:2,可设14PF k =,123F F k =,22PF k =,若圆锥曲线为椭圆,则26a k =,23c k =,12e =;若圆锥曲线为双曲线,则22a k =,23c k =,32e =,故选A. 9. (2011年高考四川卷文科11)在抛物线y=x 2+ax-5(a +ax-5(a≠≠0)0)上取横坐标为上取横坐标为x 1=-4,x 2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆225536x y +=相切,则抛物线的顶点坐标是(则抛物线的顶点坐标是( ))(A ) (-2,-9) (-2,-9) ((B )(0,-5) (C) (2,-9) (C) (2,-9) ((D )(1,6)aa解析:设满足条件的正三角形的三顶点为A 、B 、F (,0)2P ,依题意可知,A 、B 必关于x轴对称,故设200(,)2y A y P 0(0)y >,则200(,)2y B y P -,则0||2AB y =,故由抛物线定义可得20||22y P AF P =+,则由||||AB AF =,解得220040y Py P -+=,由判别式计算得△>0,故有两个正三角形,可知选C.13.(2011年高考辽宁卷文科7)已知已知 F F F 是抛物线是抛物线2y x = 的焦点,的焦点,A A .B 是该抛物线上的两点,|AF|+|BF|=3,,|AF|+|BF|=3,则线段则线段AB 的中点到y 轴的距离为 (A)34 (B)1 (C) 54 (D) 74答案: C 解析:设A 、B 的横坐标分别是m 、n ,由抛物线定义,得AF BF 3+==m+14+n+14= m+n+12=3,故m+n=52,524m n +=,故线段AB 的中点到y 轴的距离为54。
高等数学教材圆锥曲线
高等数学教材圆锥曲线圆锥曲线是高等数学中重要的概念之一,它在数学和物理学等领域中发挥着重要的作用。
本文将对圆锥曲线的定义、性质以及常见类型进行探讨。
一、定义圆锥曲线是二维平面上由一个定点和一个到该定点不同的定直线上的所有点构成的曲线。
这个定点称为焦点,定直线称为准线。
焦点和准线之间的距离称为焦距。
根据焦距与准线的相对位置,圆锥曲线可以分为三种类型:椭圆、双曲线和抛物线。
二、椭圆椭圆是指焦距小于准线长度的圆锥曲线。
它的定义可以通过以下几何性质描述:1. 椭圆上的任意一点到焦点和准线的距离之和等于常数,这个常数称为椭圆的长轴;2. 椭圆的准线是它的对称轴,椭圆的焦点在对称轴上;3. 椭圆是一个闭合曲线,且是有界的。
三、双曲线双曲线是指焦距大于准线长度的圆锥曲线。
它的定义可以通过以下几何性质描述:1. 双曲线上的任意一点到焦点和准线的距离之差等于常数,这个常数称为双曲线的离心率;2. 双曲线的准线是它的对称轴,双曲线的焦点在对称轴上;3. 双曲线是一个开放曲线,无界。
四、抛物线抛物线是指焦距等于准线长度的圆锥曲线。
它的定义可以通过以下几何性质描述:1. 抛物线上的任意一点到焦点和准线的距离相等;2. 抛物线的焦点位于曲线上方,并且与曲线的对称轴的距离等于离心率。
五、其他类型的圆锥曲线除了椭圆、双曲线和抛物线外,还存在一些特殊的圆锥曲线,如直线、圆以及各种退化的情况,如焦点和准线重合的情况等。
六、应用领域圆锥曲线在众多学科中都有广泛的应用。
在几何学中,圆锥曲线可以用于描述光学器件的曲面形状;在物理学中,圆锥曲线可以用于描述天体运动的轨迹;在工程学中,圆锥曲线可以用于建模和设计弧线造型等。
总结:圆锥曲线是高等数学中重要的内容,它包括椭圆、双曲线和抛物线等多个类型。
通过对圆锥曲线的定义和性质的研究,我们能够更深入地了解其形状特征和应用场景。
在实际问题中,合理运用圆锥曲线的知识,可以帮助我们解决各种复杂的数学和物理问题。
山东省高考数学 权威预测 圆锥曲线方程及性质 新人教版
2011届山东新课标高考数学权威预测:圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用; 2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质 二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测2011年:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-;②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b=±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
35658_2011届山东新课标高考数学权威预测:圆锥曲线的定义、性质和方程
2011届山东新课标高考数学权威预测:圆锥曲线的定义、性质和方程(二)【例5】已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,向量与OM 是共线向量。
(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 1、F 2分别是左、右焦点,求∠F 1QF 2的取值范围;解:(1)∵a b y c x c F M M 21,),0,(=-=-则,∴acb k OM 2-=。
∵AB OM a b k AB 与,-=是共线向量,∴ab ac b -=-2,∴b=c,故22=e 。
(2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c θ==∠=∴+==当且仅当21r r =时,cos θ=0,∴θ]2,0[π∈。
【例6】设P 是双曲线116422=-y x 右支上任一点. (1)过点P 分别作两渐近线的垂线,垂足分别为E ,F ,求||||⋅的值;(2)过点P 的直线与两渐近线分别交于A 、B 两点,且AOB ∆=求,2的面积.解:(I )设16414),,(20202000=-⇒=y x x y x P 则 ∵两渐近线方程为02=±y x由点到直线的距离公式得(II )设两渐近线的夹角为α,【例7】如图,已知梯形ABCD 中|AB |=2|CD |,点E 分有向线段AC 所成的比为118,双曲线过C 、D 、E 三点,且以A 、B 为焦点.求双曲线的离心率.解:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴. 因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称. 依题意,记A (-c ,0),C (2c ,h ),B (c ,0),其中c 为双曲线的半焦距,c =21|AB |,h 是梯形的高.由定比分点坐标公式,得点E 的坐标为c c c x E 19711812118-=+⨯+-=,h hy E19811811180=+⨯+=. 设双曲线的方程为12222=-b y a x ,则离心率ace =.由点C 、E 在双曲线上,得⎪⎪⎩⎪⎪⎨⎧=⋅-⋅=-⋅.136********,14122222222b h a c b h a c 由①式得1412222-⋅=a c b h 代入②式得922=ac 所以,离心率322==ac e 【例8】已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线l :y=kx+m 与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以AB 为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.解:(I )由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:3a c +=,1a c -=,2a ∴=,1c =,2223b a c ∴=-= ∴椭圆的标准方程为22143x y += (Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y=+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+,因为以AB 为直径的圆过椭圆的右顶点(20)D ,, 1AD BD k k ∴=-,即1212122y yx x ∙=---,1212122()40y y x x x x ∴+-++=,① ②2222223(4)4(3)1640343434m k m mk k k k--∴+++=+++,2271640m mk k ∴++= 解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭, ★★★自我提升1.已知△ABC 的顶点B 、C 在椭圆23x +y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是(C)(A )2(B )6(C )4(D )122.如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F ,一条渐近线方程为x y 2=,那么它的两条准线间的距离是(C )A .36B .4C .2D .13.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(B) (A)1617(B)1615(C)87(D)0 4.双曲线的虚轴长为4,离心率26=e ,F 1、F 2分别是它的左,右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB |是|AF 2|与|BF 2|的等差中项,则|AB|为(A ).A 、28B 、24C 、22D 、85.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是221164+=y x . 6.过椭圆左焦点F ,倾斜角为60?的直线交椭圆于A 、B 两点,若|FA |=2|FB |,则椭圆的离心率为(B)(B)23(C)127.椭圆+=1的离心率e=,则m=___________m=8或2。
山东省高考数学 权威预测 圆锥曲线方程及性质 新人教版
2011届山东新课标高考数学权威预测:圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用; 2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质 二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测2011年:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-;②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b=±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011山东数学圆锥曲线
(实用版)
目录
一、2011 年山东高考数学圆锥曲线题目概述
二、圆锥曲线的基本概念和性质
1.圆锥曲线的定义
2.圆锥曲线的分类
3.圆锥曲线的性质
三、2011 年山东高考数学圆锥曲线题目解析
1.题目描述
2.解题思路
3.题目答案
四、圆锥曲线在高考数学中的重要性
五、总结
正文
【一、2011 年山东高考数学圆锥曲线题目概述】
2011 年山东高考数学题目中,圆锥曲线题型成为了一大亮点。
圆锥曲线作为高中数学的一个重要知识点,一直以来都是高考数学的热点。
在2011 年的山东高考数学试题中,圆锥曲线题型的出现,充分体现了高考对数学基础知识的考察,以及对学生综合运用数学知识的能力的考查。
【二、圆锥曲线的基本概念和性质】
【1.圆锥曲线的定义】
圆锥曲线是一个广泛的曲线类别,它包括椭圆、双曲线、抛物线和它
们的简化形式:圆和直线。
这些曲线都可以通过一个圆锥与一个平面相交得到,因此得名圆锥曲线。
【2.圆锥曲线的分类】
圆锥曲线主要分为两类:一类是椭圆、双曲线和抛物线,它们是圆锥曲线的基本形式;另一类是圆和直线,它们是圆锥曲线的特殊形式。
【3.圆锥曲线的性质】
圆锥曲线具有很多重要的性质,这些性质对于理解和解决圆锥曲线题型非常重要。
例如,椭圆的离心率、双曲线的渐近线、抛物线的焦点等,都是圆锥曲线的重要性质。
【三、2011 年山东高考数学圆锥曲线题目解析】
【1.题目描述】
在 2011 年的山东高考数学试题中,圆锥曲线题型主要涉及到了椭圆、双曲线和抛物线的相关知识。
题目要求考生根据所给条件,判断圆锥曲线的类型,并求解相关问题。
【2.解题思路】
针对这类题目,首先要对圆锥曲线的基本概念和性质有深入了解,然后根据题目所给条件,判断出圆锥曲线的类型。
接着,利用圆锥曲线的性质和公式,解决相关问题。
【3.题目答案】
由于题目的具体答案需要根据题目的具体内容来求解,这里无法给出具体的答案。
但是,通过对圆锥曲线题型的练习和掌握,相信考生可以轻松应对这类题目。
【四、圆锥曲线在高考数学中的重要性】
圆锥曲线作为高考数学的一个重要知识点,一直以来都受到高考命题组的重视。
掌握好圆锥曲线的知识,不仅可以提高考生的数学素养,还能
帮助考生在高考中取得好成绩。
【五、总结】
总的来说,2011 年山东高考数学圆锥曲线题型的出现,充分体现了高考对基础知识的考察,以及对学生综合运用数学知识的能力的考查。