钦州市第二中学2018-2019学年高二9月月考数学试题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钦州市第二中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x B x x R =≤∈,则集合U A C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力. 2. 设为全集,
是集合,则“存在集合使得是“”的( )
A 充分而不必要条件
B 必要而不充分条件
C 充要条件
D 既不充分也不必要条件
3. ()()
2
2f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )
A .0a >
B .0a <<
C .02a <<
D .以上都不对
4. 下列哪组中的两个函数是相等函数( )
A .()()4
f x x =
g B .()()24
=
,22
x f x g x x x -=-+
C .()()1,01,1,0
x f x g x x >⎧==⎨
<⎩ D .()()=f x x x =,g 5. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x x y a =的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 6. 已知的终边过点()2,3,则7tan 4πθ⎛⎫
+
⎪⎝⎭
等于( )
A .15-
B .1
5
C .-5
D .5 7. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自
然数为( )
A .11
B .12
C .13
D .14 8. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D6
9. 已知一个算法的程序框图如图所示,当输出的结果为
2
1
时,则输入的值为( )
A .2
B .1-
C .1-或2
D .1-或10
10.记集合{}
2
2
(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3
?表示的平面区域分别为Ω1,Ω2,
若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .
12p B .1p C .2
p
D .13p
【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 11.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若
1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 12.下列四组函数中表示同一函数的是( ) A .()f x x =,2()()g x x = B .2()f x x =,2()(1)g x x =+ C .2()f x x =
,()||g x x = D .()0f x =,()11g x x x =
-+-1111]
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集 是 ▲ .
14.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=
,则sin (α+
)= .
15.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力. 16.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若
28
108
10=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*
n N ∈,p ,为常数),且145x x x ,,成等差数列,求:
(1)p q ,的值;
(2)数列{}n x 前项和n S 的公式.
18.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
19.(本题满分15分)
设点P 是椭圆14
:2
21=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.
(1)求证:PB PA =;
(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
20.(本小题满分10分)
已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θ
θ
=⎧⎨
=⎩,(α为参数),经过伸缩变
换32x x
y y
'=⎧⎨
'=⎩后得到曲线2C .
(1)求曲线2C 的参数方程;
(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.
21.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以 在1,2,3,4,5,6点中任选一个,并押上赌注m 元,然后掷1颗骰子,连续掷3次,若你所押的点数 在3次掷骰子过程中出现1次, 2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的 1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
22.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;
(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]
钦州市第二中学2018-2019学年高二9月月考数学试题解析(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
2. 【答案】C
【解析】由题意A ⊆C ,则∁U C ⊆∁U A ,当B ⊆∁U C ,可得“A ∩B=∅”;若“A ∩B=∅”能推出存在集合C 使得A ⊆C ,B ⊆∁U C ,
∴U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B=∅”的充分必要的条件。
3. 【答案】C 【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数()()
2
2f x a x a =-+在区间[]0,1上恒正,则
(0)0
(1)0f f >⎧⎨>⎩,即2
020
a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 4. 【答案】D111] 【解析】
考
点:相等函数的概念. 5. 【答案】C
【解析】由|
|)(x a x f =始终满足1)(≥x f 可知1>a .由函数3
|
|log x
x y a =
是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0|
|log 3
<=
x x y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 6. 【答案】B 【
解
析
】
考点:三角恒等变换. 7. 【答案】A 【解析】
考
点:得出数列的性质及前项和.
【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a >,0d <”判断前项和的符号问题是解答的关键.
8. 【答案】B
【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B 9. 【答案】D 【解析】
试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 0
0>≤x x ,当0≤x 时,212=x
,解得1-=x ,当0>x 时,21lg =x ,
解得10=x ,所以输入的是1-或10,故选D.
考点:1.分段函数;2.程序框图.11111] 10.【答案】A
【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D
及其内部,由几何概型得点M 落在区域Ω2内的概率为1
1
2P ==p 2p
,故选A.
x
y
A
B
1
1O
11.【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 12.【答案】C 【解析】
试题分析:A 定义域值域均不相同,B 对应法则不相同,D 定义域不相同,故选C. 考点:定义域与值域.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】[]2,4-
考
点:利用函数性质解不等式1111] 14.【答案】:.
【解析】解:∵•=cos α﹣sin α=,
∴1﹣sin2α=,得sin2α=, ∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值, ∴cos2α=
=
,
∵α为锐角,sin (α+
)>0,
∴sin (α+)
=
===
.
故答案为:
.
15.【答案】(1,2)-,(,5)-∞.
【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 16.【答案】2016-
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】(1)1,1==q p ;(2)2
)1(221
++-=-n n S n n .
考
点:等差,等比数列通项公式,数列求和.
18.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【
解
析
】
试
题解析:
(1)设()(0)f x kx b k =+>,111]
由题意有:32,27,k b k b -+=⎧⎨
+=⎩解得1,5,k b =⎧⎨=⎩ ∴()5f x x =+,[]3,2x ∈-.
(2)(())(5)10f f x f x x =+=+,{}3x ∈-.
考点:待定系数法. 19.【答案】(1)详见解析;(2)详见解析.
∴点P 为线段AB 中点,PB PA =;…………7分 (2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212+-+=-+=k t k x x k AB ,…………11分 点O 到直线AB 的距离2221141k k k m d ++=+=
,…………13分 ∴122
12-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 20.【答案】(1)3cos 2sin x y θθ
=⎧⎨=⎩(为参数);(2
【解析】
试
题解析:
(1)将曲线1cos :sin x C y αα=⎧⎨=⎩
(α为参数),化为 221x y +=,由伸缩变换32x x y y '=⎧⎨'=⎩化为1312
x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩, 代入圆的方程211132x y ⎛⎫⎛⎫''+= ⎪ ⎪⎝⎭⎝⎭
,得到()()22
2:194x y C ''+=, 可得参数方程为3cos 2sin x y αα=⎧⎨=⎩;
考点:坐标系与参数方程.
21.【答案】 【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.
22.【答案】(1)13|{<<-x x 或}3>x ;(2).
【解析】
试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分)
综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)
(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|,
分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m
∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1。