政和县高中2018-2019学年高二上学期第三次月考试卷物理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
政和县高中2018-2019学年高二上学期第三次月考试卷物理
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.库仑定律是电磁学的基本定律。
1766年英国的普里斯特利通过实验证实了带电金属空腔不仅对位于空腔内部的电荷没有静电力的作用,而且空腔内部也不带电。
他受到万有引力定律的启发,猜想两个点电荷(电荷量保持不变)之间的静电力与它们的距离的平方成反比.1785年法国的库仑通过实验证实了两个点电荷之间的静电力与它们的电荷量的乘积成正比,与它们的距离的平方成反比。
下列说法正确的是()
A.普里斯特利的实验表明,处于静电平衡状态的带电金属空腔内部的电势为零
B.普里斯特利的猜想运用了“对比”的思维方法
C.为了验证两个点电荷之间的静电力与它们的距离的平方成反比,库仑制作了库仑扭秤装置
D.为了验证两个点电荷之间的静电力与它们的电荷量的乘积成正比,库仑精确测定了两个点电荷的电荷量【答案】C
2.以下各选项中属于交流电的是
【答案】C
【解析】
试题分析:交流电是指电流的方向发生变化的电流,电流的大小是否变化对其没有影响,电流的方向变化的是C,故C是交流电,ABD是直流电。
考点:考查了对交流电的理解
3.下面哪个符号是电容的单位
A. J
B. C
C. A
D. F
【答案】D
【解析】电容的单位是法拉,用F表示,故选D.
4.(2016·河北省保定高三月考)2014年10月24日,“嫦娥五号”飞行试验器在西昌卫星发射中心发射升空,并在8天后以“跳跃式再入”方式成功返回地面。
“跳跃式再入”指航天器在关闭发动机后进入大气层,依靠大气升力再次冲出大气层,降低速度后再进入大气层,如图所示,虚线为大气层的边界。
已知地球半径为R,地心到d点距离为r,地球表面重力加速度为g。
下列说法正确的是()
A .飞行试验器在b 点处于完全失重状态
B .飞行试验器在d 点的加速度小于gR 2
r 2
C .飞行试验器在a 点速率大于在c 点的速率
D .飞行试验器在c 点速率大于在e 点的速率
【答案】C
【解析】飞行试验器沿ab 轨迹做曲线运动,曲线运动的合力指向曲线弯曲的内侧,所以在b 点合力方向即加
速度方向向上,因此飞行试验器在b 点处于超重状态,故A 错误;在d 点,飞行试验器的加速度a =,又
GM
r
2因为GM =gR 2,解得a =g ,故B 错误;飞行试验器从a 点到c 点,万有引力做功为零,阻力做负功,速度
R
2r
2减小,从c 点到e 点,没有空气阻力,机械能守恒,则c 点速率和e 点速率相等,故C 正确,D 错误。
5. 如图所示,竖直平行线MN 、PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场(含边界PQ ),磁感应强度为B ,MN 上O 处的粒子源能沿不同方向释放比荷为q /m 的带负电粒子,速度大小相等、方向均垂直磁场。
粒子间的相互作用及重力不计。
设粒子速度方向与射线OM 夹角为θ,当粒子沿θ=60°射入时,恰好垂直PQ 射出。
则
A .从PQ 边界射出的粒子在磁场中运动的最短时间为
B.沿θ=120°射入的粒子,在磁场中运动的时间最长
C.粒子的速率为x-kw
D.PQ边界上有粒子射出的长度为
【答案】BD
【解析】粒子在磁场中运动过程中,洛伦兹力充当向心力,运动半径因为所有粒子和速度都相同,故所有粒子的运动半径都一样,当粒子沿θ=60°射入时,恰好垂直PQ射出,可得,故,解得,当粒子轨迹与PQ边界相切时,轨迹最长,运动时间最长,此时根据几何知识可得θ=120°,
此时是粒子打在PQ边界上的最低的点,故相对Q的竖直位移为,B正确,C错误;由于v一定,则弧长最短时,时间最短,根据分析可知当粒子沿着边界MN方向向上射入时最短,此时圆心在MN
上,θ=30°,所以,此时是粒子打在边界PQ的最上端,根据几何知识可得该点相对O
点竖直位移为,故PQ边界上有粒子射出的长度为,A错误,D正确。
6.如图所示,一根质量为m的金属棒AC,用软线悬挂在磁感强度为B的匀强磁场中,通入A→C方向的电流时,悬线张力不为零,欲使悬线张力为零,可以采用的办法是
A.不改变电流和磁场方向,适当减小电流
B.不改变磁场和电流方向,适当增大磁感强度
C.只改变电流方向,并适当增加电流
D.只改变电流方向,并适当减小电流
【答案】B 【
解
析
】
7. 远距离输电中,发电厂输送的电功率相同,如果分别采用输电电压为和输电电压为
输电。
则两种情况中,输电线上通过的电流之比I 1∶I 2等于( )
A .1∶1
B .3∶1
C .1∶3
D .9∶1
【答案】B 【解析】由公式
可知B 对;1
2
2121I I U U n n ==8. 如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。
若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )
A.所受重力与电场力平衡
B.电势能逐渐增加
C.动能逐渐增加
D.做匀变速直线运动【答案】BD
9. 关于电场强度和静电力,以下说法正确的是( )
A. 电荷所受静电力很大,该点的电场强度一定很大
B. 以点电荷为圆心、r 为半径的球面上各点的电场强度相同
C. 若空间某点的电场强度为零,则试探电荷在该点受到的静电力也为零
D. 在电场中某点放入试探电荷q ,该点的电场强度E=,取走q 后,该点电场强度为0【答案】C
【解析】A.电场强度是矢量,其性质由场源电荷决定,与试探电荷无关;而静电力则与电场强度和试探电荷都有关系,电荷所受静电力很大,未必是该点的电场强度一定大,还与电荷量q 有关,选项A 错误;B.以点电荷为圆心,r 为半径的球面上各点的电场强度大小相同,而方向各不相同,选项B 错误;C.在空间某点的电场强度为零,则试探电荷在该点受到的静电力也为零,选项C 正确;
D.在电场中某点放入试探电荷q ,该点的电场强度E= ,取走q 后,该点电场强度不变,与是否放入试探电荷
无关,选项D错误。
故选:C。
10.(多选)如图所示,一个圆形框架以竖直的直径为转轴匀速转动,
在框架上套着两个质量相等的小球A、B,小球A、B到竖直转轴的距离相等,它们与圆形框架保持相对静止,则下列说法正确的是:
A.小球A的合力小于小球B的合力
B.小球A与框架可能没有摩擦力
C.小球B与框架可能没有摩擦力
D.增大圆形框架的角速度,小球B受到的摩擦力可能增大
【答案】CD
【解析】
11.如图所示,一辆小车静止在水平地面上,bc是固定在小车上的水平横杆,物块M穿在杆上,M通过细线悬吊着小物体m,m在小车的水平底板上,小车未动时细线恰好在竖直方向上.现使小车向右运动,全过程中M始终未相对杆bc移动,M、m与小车保持相对静止,已知a1∶a2∶a3∶a4=1∶2∶3∶4,M受到的摩擦力大小依次为Ff1、Ff2、Ff3、Ff4,则以下结论正确的是().
A.Ff1∶Ff2=1∶2
B.Ff2∶Ff3=1∶2
C.Ff3∶Ff4=1∶2
D .tan α=tan θ
【答案】AD
12.如图所示,回旋加速器D 形盒的半径为R ,所加磁场的磁感应强度为B ,用来加速
质量为m 、电荷量为q 的质子(),质子从下半盒的质子源由静止出发,
H 1
1加速到最大
能量E 后,由A 孔射出.则下列说法正确的是( )
A .回旋加速器加速完质子在不改变所加交变电压和磁场情况下,可以直接对()粒子进行加速
αHe 2
4B .只增大交变电压U ,则质子在加速器中获得的最大能量将变大C .回旋加速器所加交变电压的频率为2mE
2πmR D .加速器可以对质子进行无限加速【答案】C
13.如图所示,初速度不计的电子从电子枪中射出,在加速电场中加速,从正对P 板的小孔射出,设加速电压为U 1,又垂直偏转电场方向射入板间并射出,设偏转电压为U 2。
则:
A. U 1变大,则电子进入偏转电场的速度变大
B. U 1变大,则电子在偏转电场中运动的时间变短
C. U 2变大,则电子在偏转电场中运动的加速度变小
D. 若要电子离开偏转电场时偏移量变小,仅使U 1变大,其它条件不变即可【答案】ABD 【解析】A 项:由可知,电子受力变大,加速度变大,其他条件不变时,当U 1变大,则电子进入偏Uq
F d
=
转电场的速度变大,故A 正确;B 项:由可知,电子受力变大,加速度变大,其他条件不变时,当U 1变大,则电子进入偏转电场的Uq
F d
=
水平速度变大,运动时间变短,故B 正确;
C 项:由可知,U 2变大,电子受力变大,加速度变大,电子在偏转电场中运动的加速度变大,故C Uq
F d
=错误;
D 项:由可知,若要电子离开偏转电场时偏移量变小,仅使U 1变大,其它条件不变即可,故D 正
2
21
4U L y dU =确。
点晴:本题考查了带电粒子在电场中的运动,可以根据动能定理和牛顿第二定律、运动学公式结合推导出。
221
4U L y dU =14.(2018广州一模)如图,在匀强电场中,质量为m 、电荷量为+q 的小球由静止释放沿斜向下做直线运动,轨迹与竖直方向的夹角为θ,则
A .场强最小值为
q
mg B .电场方向可能水平向左C .电场力对小球可能不做功D .小球的电势能可能增加【答案】CD
【解析】本题考查物体做直线运动的条件,受力分析,电场力,极值问题,电场力做功和电势能变化及其相关的知识点。
15.如图所示,直角三角形ABC的边长AB长为L,为30°,三角形所围区域内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场。
一质量为m、带电荷量为q的带电粒子(不计重力)从A点沿AB方向射入磁场,在磁场中运动一段时间后,从AC边穿出磁场,则粒子射入磁场时的最大速度v m是
A.B.
C.D.
【答案】C
【解析】经分析随着粒子速度的增大,粒子做圆周运动的半径也变大,当速度增大到某一值v m时,粒子运动的圆弧将恰好与BC边相切,此时v m为粒子从AC边穿出磁场的最大速度,如果粒子速度大于v m粒子将从BC 边穿出磁场,故粒子运动的最大半径为L,由,得到,故选项C正确。
二、填空题
16. 如图(1)所示的电路,金属丝固定在两接线柱a 、b 上,锷鱼夹c 与金属丝接触良好.现用多用表测量保护电阻R 0的阻值,请完成相关的内容:
(1)A .将转换开关转到“Ω×100”挡,红、黑表笔短接,调节 ,使指针恰好停在欧姆刻度线的 处.
B .先 ,将红、黑表笔分别接在R 0的两端,发现指针的偏转角度太大,这时他应将选择开关换成欧姆挡的“_____ ___”挡位(填“×1K ”或“×10”)
C .换挡后再次进行欧姆调零后,将红、黑表笔分别接在R 0的两端,测量结果如右图(2)所示,则R 0的阻值为
.
(2) 现要进一步精确测量额定电压为3V 的R 0阻值,实验室提供了下列可选用的器材:
A .电流表(量程300 mA ,内阻约1 Ω)
B .电流表A 2(量程0.6 A ,内阻约0.3 Ω)
C .电压表V 1(量程3.0 V ,内阻约3 k Ω)
D .电压表V 2(量程15.0 V ,内阻约5 k Ω)
E .滑动变阻器R 1(最大阻值为5 Ω)
F .滑动变阻器R 2(最大阻值为200 Ω)
G .电源E (电动势为4 V ,内阻可忽略)
H .开关、导线若
干.①为了取得较多的测量数据,尽可能提高测量准确度,某同学采用如图一所示
电路,应选择的器材为(只需填器材前面的字母)
电流表___ __ ___.电压表____ ____.滑动变阻器__ ______.②请根据电路图在图二所给的实物图连线。
③通过实验,电阻R 0的测量值_______(填“大于”“小于”或“等
于”)真实值。
【答案】 (1)A 调零旋钮(欧姆调零);零刻度 B 断开开关S,(或取下R 0);×10C 20Ω
图一
(2)①A C E
②略
③小于
17.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小铁球,在电梯运行时,乘客发现弹簧的伸长量比电梯静止时的伸长量小,这一现象表明电梯的加速度方向一定___________(填“向下”或“向上”),乘客一定处在________(填“失重”或“超重”)状态,人对电梯的压力比自身重力_______(填“大”或“小”)。
【答案】向下失重小(每空2分)
【解析】弹簧伸长量减小,说明弹力减小,则物体受到的合力向下,故小铁球的加速度向下,故乘客一定处于失重状态,根据N=mg–ma可知人对电梯的压力比自身重力小。
三、解答题
18.如图所示,两平行金属导轨位于同一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下。
一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v 匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略。
求
(1)电阻R消耗的功率:
(2)水平外力的大小。
【答案】见解析
【解析】
解法二 (1)导体棒切割磁感线产生的电动势
E = Blv
由于导轨与导体棒的电阻均可忽略,则R 两端电压等于电动势:
U =E
则电阻R 消耗的功率
P R =U 2R
综合以上三式可得
P R = B 2l 2v 2R
(2)设水平外力大小为F ,由能量守恒有
Fv =P R +μmgv
故得F =+μmg =+μmg 。
P R v B 2l 2v R
19.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m 。
已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=。
重力加速度g 取10 m/s 2。
33
(1)求物块加速度的大小及到达B 点时速度的大小;
(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?
【审题探究】
①从A 到B ,做什么运动?满足什么规律?②拉力F 的大小与F 和斜面夹角α的关系式是怎样的?
【答案】(1)3 m/s 2 8 m/s (2)30° N 1335
【解析】
(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示
由牛顿第二定律得
F cos α-mg sin θ-F f =ma ⑤F sin α+F N -mg cos θ=0⑥又F f =μF N
⑦ 联立⑤⑥⑦式得
F =⑧mg (sin θ+μcos θ)+ma cos α+μsin α
由数学知识得
cos α+sin α=sin (60°+α)⑨33233
由⑧⑨式可知对应F 最小时与斜面间的夹角α=30°⑩
联立③⑧⑩式,代入数据得F 的最小值为F min = N 。
1335。