最新安徽省优质名校下学期八年级数学期末试卷及答案(沪科版)
沪科版八年级数学下册《期末测试卷》(附答案)
沪科版八年级数学下册《期末测试卷》(附答案)选择题1.下列根式中一定有意义的是()A。
$a$B。
$-a^2$C。
$a+1/2$D。
$a-1/2$2.下列式子中$y$是$x$的正比例函数的是()A。
$y=3x-5$B。
$y=2/x$___D。
$y=2x$3.直线$y=x-2$与$x$轴的交点坐标是()A。
$(2,0)$B。
$(-2,0)$C。
$(0,-2)$D。
$(0,2)$4.无理数$5+\sqrt{1}$在两个整数之间,下列结论正确的是()A。
$2<5+\sqrt{1}<3$B。
$3<5+\sqrt{1}<4$___<5+\sqrt{1}<5$D。
$5<5+\sqrt{1}<6$5.某校排球队21名同学身高的众数和中位数分别是(单位:cm)()A。
185,178B。
178,175C。
175,178D。
175,1756.若$a b>c$,$a c<b$,则一次函数$y=-\frac{ac}{x-b}$的图像不经过下列哪个象限()A。
第一象限B。
第二象限C。
第三象限D。
第四象限7.如图,在正方形$ABCD$中,$BD=2$,$\angle DCE$是正方形$ABCD$的外角,$P$是$\angle DCE$的角平分线$CF$上任意一点,则$\triangle PBD$的面积等于()A。
1B。
1.5C。
2D。
2.58.如图,在直角三角形$ABC$中,$\angle ACB=90°$,$AC=BC$,边$AC$落在数轴上,点$A$表示的数是1,点$C$表示的数是3,负半轴上有一点$B_1$,且$AB_1=AB$,点$B_1$所表示的数是()A。
$-2$B。
$-\sqrt{2}$C。
$\sqrt{2}-1$D。
$1-\sqrt{2}$9.如图,函数$y=kx$和$y=-\frac{11}{x+4}$的图像相交于点$A(3,m)$,则不等式$kx\geq-x+4$的解集为A。
(安徽专版)八年级数学下学期期末测试卷沪科版
第二学期期末测试卷一、选择题(每题4分,共40分)1.要使式子aa-2有意义,则a的取值范围是( )A.a≠2 B.a≥0 C.a>0且a≠2 D.a≥0且a≠2 2.已知2是关于x的方程x2-2ax+4=0的一个解,则a的值是( )A.1 B.2 C.3 D.43.下列说法中不正确的是( )A.三个内角度数之比为3∶4∶5的三角形是直角三角形B.三边长之比为3∶4∶5的三角形是直角三角形C.三个内角度数之比为1∶2∶3的三角形是直角三角形D.三边长之比为1∶2∶3的三角形是直角三角形4.一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A.9 B.8 C.7 D.65.某班级采用小组学习制,在一次数学单元测试中,第一组成员的测试成绩(单位:分)分别为95,90,100,85,95,其中成绩为85分的同学有一道题目被老师误判,其实际成绩应为90分,那么该小组的实际成绩与之前的成绩相比,下列说法正确的是( )A.数据的中位数不变B.数据的平均数不变C.数据的众数不变D.数据的方差不变6.下列计算,正确的是( )A.(-2)2=-2B.(-2)×(-2)=2C.3 2-2=3 D.8+2=107.若关于x的一元二次方程x2-4x+m+2=0有两个不相等的实数根,且m为正整数,则此方程的解为( )A.x1=-1,x2=3 B.x1=-1,x2=-3C.x1=1,x2=3 D.x1=1,x2=-38.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE =5,则CD=( )A.2 B.3 C.4 D.2 3(第8题) (第9题)9.《九章算术》中的“方田章”论述了三角形面积的求法:“圭田术曰:半广以乘正从”,就是说:“三角形的面积=底×高÷2”,我国著名的数学家秦九韶在《数书九章》中也提出了“三斜求积术”,即利用三角形的三条边长来求三角形的面积,用式子可表示为S =14⎣⎢⎡⎦⎥⎤a 2b 2-⎝ ⎛⎭⎪⎫a 2+b 2-c 222(其中a ,b ,c 为三角形的三条边长,S 为三角形的面积).如图,在平行四边形ABCD 中,已知AB =6,AD =3,对角线BD =5,则平行四边形ABCD 的面积为( ) A.11B.14C.142D.7210.如图,在正方形ABCD 的对角线BD 上截取BE =BC ,连接CE 并延长交AD 于点F ,连接AE ,过点B 作BH ⊥AE 于点G ,交AD 于点H ,则下列结论错误的是( ) A .AH =DF B .S 四边形EFHG =S △DEF +S △AGH C .∠AEF =45°D .△ABH ≌△DCF(第10题) (第13题) 二、填空题(每题5分,共20分)11.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =________. 12.关于x 的一元二次方程(m -5)x 2+2x +2=0有实根,则m 的最大整数值是________. 13.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,点E 在AB 上且AE ∶EB =1∶2,点F 是BC 中点,过点D 作DP ⊥AF 于点P ,DQ ⊥CE 于点Q ,则DP ∶DQ =______________. 14.边长为2的正方形ABCD 中,点E 是BD 上一点,过点E 作EF ⊥AE 交射线CB 于点F ,且BC=2BF ,则线段DE 的长为______________. 三、(每题8分,共16分)15.计算:2 13×9-12+54-1.16.解方程:x2+4x-3=0.四、(每题8分,共16分)17.如图,在由边长为1的小正方形组成的5×6的网格中,△ABC的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断△ABC的形状;(2)在图中确定一个格点D,连接AD,CD,使四边形ABCD为平行四边形,并求出▱ABCD的面积.(第17题)18.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,该企业投入科研经费5 000万元,投入科研经费7 200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2022年该企业投入科研经费多少万元.五、(每题10分,共20分)19.如图,把一个等腰直角三角形零件(△ABC,其中∠ACB=90°)放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠D=∠E=90°,测得AD=5 cm,BE=7 cm,求该三角形零件的面积.(第19题)20.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,建造花圃时,在BC上用其他材料做了宽为1米的两扇小门.(1)设花圃的一边AB长为x米,则另一边AD的长为________米(用含x的代数式表示);(2)若花圃的面积刚好为45平方米,求此时花圃的长与宽.(第20题)六、(12分)21.某校要从王同学和李同学中挑选一人参加县知识竞赛,在五次选拔测试中他们的成绩(单位:分)如下表.第1次第2次第3次第4次第5次王同学60 75 100 90 75李同学70 90 100 80 80根据上表解答下列问题:(1)完成下表.平均成绩/分中位数/分众数/分方差王同学80 75 75 190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?请说明理由.七、(12分)22.如图,已知点D是△ABC的边BC的中点,直线AE∥BC,过点D作DE∥AB,分别交AE,AC 于点E,F.(1)求证:四边形ADCE是平行四边形;(2)如果四边形ADCE是矩形,△ABC应满足什么条件?并说明理由;(3)如果四边形ADCE是菱形,直接写出△ABC应满足的条件:__________________.(第22题)八、(14分)23.对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图①,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:如图②,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图③,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE.已知AC=4,AB=5,求GE的长.(第23题)答案一、1.D 2.B 3.A 4.B 5.A 6.B 7.C8.C 点拨:在Rt △ABC 中,CE 为AB 边上的中线,所以CE =12AB =AE .因为CE =5,AD =2,所以DE =3.因为CD 为AB 边上的高,所以在Rt △CDE 中,由勾股定理可求得CD =4,故选C. 9.B10.B 点拨:∵四边形ABCD 是正方形,∴∠ABE =∠ADE =∠CDE =45°,AD =CD =AB =BC .∵BE =BC ,∴AB =BE . 又∵BG ⊥AE ,∴BH 是线段AE 的垂直平分线,∠ABH =∠DBH =22.5°. 在Rt △ABH 中,∠AHB =90°-∠ABH =67.5°. 又∵∠AGH =90°, ∴∠DAE =∠ABH =22.5°.在△ADE 和△CDE 中,DE =DE ,∠ADE =∠CDE =45°,AD =CD , ∴△ADE ≌△CDE , ∴∠DAE =∠DCE =22.5°, ∴∠ABH =∠DCF .在△ABH 和△DCF 中,∠BAH =∠CDF ,AB =DC ,∠ABH =∠DCF , ∴△ABH ≌△DCF ,∴AH =DF ,∠CFD =∠AHB =67.5°. ∵∠CFD =∠EAF +∠AEF , ∴67.5°=22.5°+∠AEF , ∴∠AEF =45°,故A ,C ,D 正确; 连接HE .∵BH 是AE 的垂直平分线, ∴AG =EG ,AH =HE , ∴S △AGH =S △HEG ,∠AHG =∠EHG =67.5°,∴∠DHE =45°. ∵∠ADE =45°,∴∠DEH =90°,∠DHE =∠HDE , ∴EH =ED ,∴△DEH 是等腰直角三角形. ∵EF 不垂直于DH ,∴FH ≠FD , ∴S △EFH ≠S △EFD ,∴S 四边形EFHG =S △HEG +S △EFH =S △AGH +S △EFH ≠S △AGH +S △DEF , 故B 错误,故选B. 二、11.-212.4 点拨:∵关于x 的一元二次方程(m -5)x 2+2x +2=0有实根,∴Δ=4-8(m -5)≥0,且m -5≠0, 解得m ≤5.5,且m ≠5, 则m 的最大整数值是4.13.2 3∶13 点拨:如图,连接DE ,DF ,过点F 作FN ⊥AB 交AB 延长线于点N ,过点C作CM ⊥AB 交AB 延长线于点M ,根据三角形的面积和平行四边形的面积公式得S △DEC =S △DFA =12S 平行四边形ABCD ,即12AF ×DP =12CE ×DQ , ∴AF ×DP =CE ×DQ .∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵∠DAB =60°, ∴∠CBN =∠DAB =60°, ∴∠BFN =∠MCB =30°. ∵AB ∶BC =3∶2, ∴设AB =3a ,则BC =2a .∵F 是BC 的中点,AE ∶EB =1∶2, ∴BF =a ,BE =2a ,∴BN =12a ,易知BM =a ,由勾股定理得FN =32a ,CM =3a , AF =⎝ ⎛⎭⎪⎫3a +12a 2+⎝ ⎛⎭⎪⎫32a 2=13a , CE =(3a )2+(3a )2=2 3a ,∴13a ·DP =2 3a ·DQ , ∴DP ∶DQ =2 3∶13.(第13题)14.22或3 22 点拨:如图①,过点E 作MN ⊥BC ,垂足为N ,交AD 于M ,连接CE . ∵正方形ABCD 关于BD 对称, ∴△ABE ≌△CBE , ∴∠BAE =∠BCE .由∠ABC =∠AEF =90°易得∠BAE =∠EFC ,∴∠BCE =∠EFC , ∴CE =EF ,∴N 是CF 的中点. ∵BC =2BF ,∴CN =14BC =12.易得四边形CDMN 是矩形,△DME 为等腰直角三角形, ∴CN =DM =ME =12,∴ED =22. 如图②所示,过点E 作MN ⊥BC ,垂足为N ,交AD 于M ,连接CE . ∵正方形ABCD 关于BD 对称, ∴△ABE ≌△CBE , ∴∠BAE =∠BCE .由∠ABF =∠AEF =90°易得∠BAE =∠EFC , ∴∠BCE =∠EFC , ∴CE =EF ,∴FN =CN .∵BC =2BF ,∴FC =3,∴CN =32,∴BN =12. 易得△BNE 为等腰直角三角形,∴EN =BN =12,∴BE =22. 又∵BD =BC 2+CD 2=2 2, ∴DE =3 22. 综上所述,DE 的长为22或3 22.(第14题)三、15.解:2 13×9-12+54-1=2 13×9-2 3+14=2 3-2 3+12=12. 16.解:原方程可化为x 2+4x +4-7=0,即(x +2)2=7,开平方,得x +2=±7, 解得x 1=-2+7,x 2=-2-7.四、17.解:(1)由题意可得, AB =12+22=5,AC =22+42=2 5,BC =32+42=5.∵(5)2+(2 5)2=25=52,即AB 2+AC 2=BC 2,∴△ABC 是直角三角形.(2)如图所示.(第17题)▱ABCD 的面积为AB ·AC =5×2 5=10.18.解:(1)设这两年该企业投入科研经费的年平均增长率为x ,根据题意得5 000(1+x )2=7 200,解得x 1=0.2=20%,x 2=-2.2(舍去).答:这两年该企业投入科研经费的年平均增长率为20%.(2)7 200×(1+20%)2=10 368(万元).答:预算2022年该企业投入科研经费10 368万元.五、19.解:∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠ACD +∠BCE =90°.∵∠D =90°,∴∠ACD +∠DAC =90°,∴∠DAC =∠BCE .在△ADC 和△CEB 中,⎩⎪⎨⎪⎧∠D =∠E ,∠DAC =∠ECB ,AC =BC ,∴△ADC ≌△CEB (AAS),∴DC =BE =7 cm ,∴AC =52+72=25+49=74(cm),∴BC =AC =74 cm ,∴该三角形零件的面积为12×74×74=37(cm 2). 20.解:(1)(24-3x )(2)由题意可得(24-3x )x =45,解得x 1=3,x 2=5,当AB =3米时,AD =15米>14米,不符合题意,舍去,当AB =5米时,AD =9米,符合题意.答:花圃的长为9米,宽为5米.六、21.解:(1)84;80;80;104(2)在这五次测试中,成绩比较稳定的是李同学.王同学的优秀率为25×100%=40%, 李同学的优秀率为45×100%=80%. (3)选李同学参加比赛比较合适,因为李同学的优秀率高,成绩比较稳定,获奖机会大. 七、22.(1)证明:∵AE ∥BC ,DE ∥AB ,∴四边形ABDE 是平行四边形,∴AE =BD .∵点D 是△ABC 的边BC 的中点,∴BD =CD ,∴AE =CD .又∵AE ∥CD ,∴四边形ADCE 是平行四边形.(2)解:△ABC 是等腰三角形,且AB =AC .理由如下:∵四边形ADCE 是矩形,∴AD ⊥BC .∵点D 是△ABC 的边BC 的中点,∴AB =AC ,即△ABC 是等腰三角形.(3)△ABC 是直角三角形,且∠BAC =90°八、23.解:(1)四边形ABCD 是垂美四边形,理由如下:如图①,连接AC ,BD ,∵AB =AD ,∴点A 在线段BD 的垂直平分线上,∵CB =CD ,∴点C 在线段BD 的垂直平分线上,∴直线AC 是线段BD 的垂直平分线,即AC ⊥BD ,∴四边形ABCD 是垂美四边形.①(第23题)(2)AB 2+CD 2=AD 2+BC 2,证明如下:∵四边形ABCD 是垂美四边形,∴AC ⊥BD ,∴∠AOD =∠AOB =∠BOC =∠COD =90°,由勾股定理得AD 2+BC 2=OA 2+OD 2+OB 2+OC 2, AB 2+CD 2=OA 2+OB 2+OC 2+OD 2,∴AB 2+CD 2=AD 2+BC 2.(3)如图②,设CE 交AB 于点M ,交BG 于点N ,连接BE ,CG , ∵四边形ACFG 和四边形ABDE 都是正方形,∴∠CAG =∠BAE =90°, AG =AC =4,AE =AB =5,∴∠CAG +∠BAC =∠BAE +∠BAC ,即∠GAB =∠CAE .在△GAB 和△CAE 中,⎩⎪⎨⎪⎧AG =AC ,∠GAB =∠CAE ,AB =AE ,∴△GAB ≌△CAE (SAS),∴∠ABG =∠AEC ,易知∠AEC +∠AME =90°,又∵∠AME=∠BMN,∴∠ABG+∠BMN=90°,∴∠BNM=90°,即CE⊥BG,∴四边形CGEB是垂美四边形.由(2)可得CG2+BE2=CB2+GE2,在Rt△ACB中,AC=4,AB=5,∴BC2=AB2-AC2=9,在Rt△ACG中,CG2=AC2+AG2=32,在Rt△ABE中,BE2=AB2+AE2=50,∴9+GE2=32+50,解得GE=73或GE=-73(不合题意,舍去),∴GE的长为73.。
沪科版八年级数学下册《期末试卷》(附答案)
学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题:(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列式子中,属于最简二次根式的是()A .B .C .D .2.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.53.一次函数y=﹣2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数B.中位数C.众数D.方差5.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A .﹣B .﹣C.﹣3 D.﹣26.下列等式成立的是()A .•=B .=2C .﹣=D .=﹣37.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣2 8.如图,在R△ABC中,CD、CE分别是斜边AB上的中线和高,CD=8,CE=5,则Rt△ABC的面积是()A.80 B.60 C.40 D.209.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是()A.k≤2 B.k≥C.0<k<D.≤k≤210.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为()A.4cm B.5cm C.5cm或8cm D.5cm或cm二、填空题:(本大题共4小题,每小题5分,满分20分)11.若二次根式有意义,则x的取值范围是.12.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.13.如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为.14.如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM ⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(2﹣1)2+(+4)().16.《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,本次上学途中,小明一共行驶了米;(2)小明在书店停留了分钟,本次上学,小明一共用了分钟;(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?18.如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F 求证:四边形ABEF是正方形.五、(本大题共2小题,每小题10分,满分20分)19.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.20.如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.六、(本题满分12分)21.某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.第1次第2次第3次第4次第5次王同学60 75 100 90 75李同学70 90 100 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差王同学80 75 75 190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由. 七、(本题满分12分)22.某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲乙购树苗数量 销售单价 购树苗数量 销售单价 不超过500棵时 800元/棵 不超过1000棵时 800元/棵 超过500棵的部分700元/棵超过1000棵的部分600元/棵设购买银杏树苗x 棵,到两家购买所需费用分别为y 甲元、y 乙元(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;(2)当x >1000时,分别求出y 甲、y 乙与x 之间的函数关系式; (3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么? 八、(本题满分14分)23.已知,▱ABCD 中,∠ABC =90°,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止,在运动过程中,点P 的速度为每秒1cm ,点Q 的速度为每秒0.8cm ,设运动时间为t 秒,若当以A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.解:A、=2,故此选项错误;B、=,故此选项错误;C、=,故此选项错误;D、是最简二次根式,故此选项正确.故选:D.2.解:A、72+62≠82,故此选项错误;B、不是整数,故此选项错误;C、32+42=52,故此选项正确;D、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.3.解:∵y=﹣2x﹣3∴k<0,b<0∴y=﹣2x﹣3的图象经过第二、三、四象限,不经过第一象限故选:A.4.解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.5.解:∵在Rt△AOB中,OA=2,AB=1,∴OB==.∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,∴OC=OB=,∴点C表示的实数是﹣.故选:B.6.解:A、原式==,所以A选项错误;B、原式=2,所以B选项正确;C、原式=2﹣,所以C选项错误;D、原式=3,所以D选项错误.故选:B.7.解:由“左加右减”的原则可知,将直线y=2x向左平移1个单位所得的直线的解析式是y=2(x+1)=2x+2.即y=2x+2,故选:C.8.解:∵在R△ABC中,CD是斜边AB上的中线,CD=8,∴AB=2CD=16,∵CE=5,∴△ACB的面积S===40,故选:C.9.解:∵直线y=kx与正方形ABCD有公共点,∴直线y=kx在过点A和点C两直线之间之间,如图,可知A(2,1),C(1,2),当直线y=kx过A点时,代入可得1=2k,解得k=,当直线y=kx过C点时,代入可得2=k,解得k=2,∴k的取值范围为:≤k≤2,故选:D.10.解:∵AC=6cm,BD=4cm,∴AO=AC=×6=3cm,BO=BD=×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF=cm,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF==5cm,综上所述,BF长为5cm或cm.故选:D.二、填空题:(本大题共4小题,每小题5分,满分20分)11.解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.12.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.13.解:把A(a,3)代入y=3x得3a=3,解得a=1,则A(1,3),根据图象得,当x≤1时,3x≤kx+6.故答案为:x≤114.解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB==5,∵PM⊥AC,PN⊥BC,∠C=90°,∴四边形CNPM是矩形,∴MN=CP,由垂线段最短可得CP⊥AB时,线段MN的值最小,此时,S=BC•AC=AB•CP,△ABC即×4×3=×5•CP,解得CP=2.4.故答案为:2.4.三、(本大题共2小题,每小题8分,满分16分)15.解:原式=12﹣4+1+3﹣16=﹣4.16.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.(2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了14分钟;(3)折回之前的速度=1200÷6=200(米/分),折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分),经过比较可知:小明在从书店到学校的时候速度最快,即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分.故答案是:(1)1500,2700;(2)4,14.18.证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形.五、(本大题共2小题,每小题10分,满分20分)19.(1)证明:∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE BC,∵EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=,∴四边形CDEF的周长=2(1+)=2+2.20.解:(1)∵D在直线l1y=﹣3x+3的图象上,∴当y=0时,0=﹣3x+3,解得:x=1,∴D(1,0),(2)设直线l2的解析表达式为y=kx+b,∵过(3,﹣),(4,0),∴,解得,∴直线l2的解析表达式为y=x﹣6;(3)∵,解得:,∴C(2,﹣3),∴△ADC的面积为:×AD×3=×3×3=.六、(本题满分12分)21.解:(1)将李同学的成绩从小到大排列为:70、80、80、90、100,所以李同学的平均成绩为×(70+80+80+90+100)=84,中位数为80、众数为80,方差为×[(70﹣84)2+(80﹣84)2+(80﹣84)2+(90﹣84)2+(100﹣84)2]=104,补全表格如下:姓名平均成绩(分)中位数(分)众数(分)方差王同学80 75 75 190李同学84 80 80 104(2)在这五次考试中,成绩比较稳定的是小李,小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;(3)我选李同学去参加比赛,因为李同学的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.七、(本题满分12分)22.解:(1)甲家购买所要费用=500×800+300×700=400000+210000=610000;都在乙家购买所需费用=800×800=640000.故答案为:610000;640000.(2)当x>1000时,y甲=800×500+700(x﹣500)=700x+50000,y乙=800×1000+600(x﹣1000)=600x+200000,x为正整数,(3)当0≤x≤500时,到两家购买所需费用一样;‚当500≤x≤1000时,甲家有优惠而乙家无优惠,所以到甲家购买合算;又y甲﹣y乙=100x﹣150000.当y甲=y乙时,100x﹣150000=0,解得x=1500,当x=1500时,到两家购买所需费用一样;当y甲<y乙时,100x﹣150000<0,解得x<1500,∴当500<x<1500时,到甲家购买合算;当y甲>y乙时,100x﹣150000>0,解得x>1500,∴当x>1500时,到乙家购买合算.综上所述,当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.八、(本题满分14分)23.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE为菱形.(2)设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5.(3)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒1cm,点Q的速度为每秒0.8cm,运动时间为t秒,∴PC=t,QA=12﹣0.8t,∴t=12﹣0.8t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。
沪科版八年级下册数学期末考试卷及答案
沪科版八年级下册数学期末考试卷及答案(共22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--沪科版八年级下册数学期末考试试题一、选择题:每小题3分,共30分.1.(3分)化简:得()A.2 B.﹣2 C.±2 D.42.(3分)八(1)班和八(2)班学生的平均身高分别是和,则下列判断正确的是()A.八(1)班学生身高数据的中位数是 mB.八(1)班学生身高前10名数据可能比八(2)班的都大C.八(1)班学生身高数据的方差比八(2)班的小D.八(2)班学生身高数据的众数是 m3.(3分)已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.24.(3分)下列化简结果正确的是()A.+=B.a=﹣C.()3=9D.2+=75.(3分)下列条件中,不能判定一个四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行且相等C.一组对边相等且一组对角相等D.两组对角分别相等6.(3分)下列方程中有实数根的是()A.x2+4=0 B.|x|+1=0 C.=D.x2﹣x﹣=07.(3分)下列条件中,不能判定一个平行四边形是正方形的是()A.对角线相等且互相垂直B.一组邻边相等且有一个角是直角C.对角线相等且一组邻边相等D.对角线互相平分且有一个角是直角8.(3分)如图,在△ABC中,∠ACB=90°,CD为高,AC=4,则下列计算结果错误的是()A.若BC=3,则CD= B.若∠A=30°,则BD=C.若∠A=45°,则AD=2D.若BC=2,则S△ADC=9.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=4,若点P是对角线BD 上的一个动点,E为CD的中点,则PC+PE的最小值等于()A.2 B.2C.4 D.410.(3分)若x1,x2是方程2x2﹣4x﹣1=0的两个根,则x12﹣3x1﹣x2+x1x2=()A.﹣2 B.﹣C.﹣3 D.﹣二、填空题:每小题4分,共32分.11.(4分)使二次根式有意义的x的取值范围是.12.(4分)写一个关于x的一元二次方程,使其两个根互为相反数.13.(4分)计算:()2﹣+()0+()﹣2=.14.(4分)一组数据1,2,3,x,5的平均数是3,则该组数据的方差是.15.(4分)顺次连接四边形ABCD各边的中点,得到四边形EFGH,若四边形EFGH是矩形,则对角线AC、BD满足的条件是.16.(4分)某商品经过连续两次降价,现在的价格比原来低36%,则平均每次降价的百分比是.17.(4分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数是.18.(4分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D是斜边AB上任意一点,DE⊥AC,DF⊥BC,垂足分别是点E、F,点Q是EF的中点,则线段DQ长的最小值等于.三、解答题:第19-20题,每题6分;第21-23题,每题8分;第24题,10分,第25题,12分,共58分。
安徽省优质名校下学期八年级数学期末试卷
S2S 1安徽省优质名校下学期八年级 数学期末试卷(沪科版)(满分150分,时间:120分钟)一、选择题(每小题4分,共40分)在每小题给出的四个选项中,只有一项是符合题意的,把所选项前的代号填在题后的括号内.1. 二次根式2221,12,30,2,40,2x x x y ++中,最简二次根式有( )个A 、1B 、2C 、3D 、42. 若,x y 为实数,且|2|20x y ++-=,则2009x y ⎛⎫⎪⎝⎭的值为( )A 、1B 、1-C 、2009D 、2009-3.若()()822222=-++b aba ,则=+22b a ( )A .-2 B. 4 C.4或-2 D .-4或2 4.一个样本的各数据都减少9,则该组数据的A .平均数减少9,方差不变B .平均数减少9,方差减少3C .平均数与极差都不变D .平均数减少9,方差减少9 5.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为21,S S ,则21S S +的值为 ( ) A .16 B .17 C .18 D .196.如图,直角△ABC 的周长为24,且AB:AC =5:3,则BC=( ) A .6 B .8 C .10 D .12 7.三角形两边的长分别是8和6,第三边的长是方程x ²-12x +20=0的一个实数根,则三角形的周长是( )A . 24B . 24或16C . 26D . 16 8.若n (n≠0)是关于x 的方程x 2+mx +2n=0的根,则m+n 的值为( )A .1B .2C .一lD .一29.已知下列命题:①若a>0,b>0,则a+b>0;②若2a ≠2b ,则a≠b;③角平分钱上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半,其中原命题与逆命题均为真命题的是 ( ) A .①③④ B. ①②④ C. ③④⑤ D. ②③⑤10. 如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A. 3 :4B. 5 :8C. 9 :16D. 1 :2二、填空题(每题5分,计20分)11.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =b a b a -+,如3※2=52323=-+.那么12※4= 。
沪科版八年级数学下册期末考试试卷(含答案)
沪科版八年级数学下册期末考试试卷(含答案)沪科版八年级数学下册期末考试试卷一.选择题(本大题共6题,满分18分)1.下列函数中,一次函数是()A.y=xB.y=kx+bC.y=x^2-2x+1D.y=(x+3)/(x+2)2.下列判断中,错误的是()A.方程x(x-1)=0是一元二次方程B.方程xy+5x=0是二元二次方程C.方程(x+3)/(x+2)=2是分式方程D.方程2x^2-x=0是无理方程3.已知一元二次方程x^2-2x-m=0有两个实数根,那么m 的取值范围是()A.m≤-1B.m≥-1C.m>-1D.m<-14.下列事件中,必然事件是()A.“奉贤人都爱吃___”B.“2018年上海中考,___数学考试成绩是满分150分” C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只” D.“在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分 D.梯形的对角线互相垂直6.等腰梯形ABCD中,AD//BC。
E、F、G、H分别是AB、BC、CD、AD的中点,那么四边形EFGH一定是()A.矩形B.菱形C.正方形D.等腰梯形二.填空题。
(本大题共12题,每小题2分,共24分)7.一次函数y=2x-1的图像在y轴上的截距为-18.方程(1/4)x-8=0的根是89.方程2x+10-x=1的根是310.一次函数y=kx+3的图像不经过第3象限,那么k的取值范围是k>=-3/411.用换元法解方程2y^2-2y-1=0,如果设x=y-1/2,那么原方程化成以“x”为元的方程是4x^2-3=012.化简:(AB-CD)(-AC-BD)=AD^2-BC^213.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:(1+x)^2=179/10014.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=1215.既是轴对称图形有事中心对称图形的四边形为平行四边形16.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8.S四边形ABCD=16,那么对角线BD=419.给定方程19.x=-1.20.给定方程组:y=4,y=-2或者x=8,x=2.21.给定方程组:1) y=14-x2) 1/222.给定几何图形:1) OD,BO2) AC23.解:假设和谐号速度为x km/h,则复兴号列车速度为(x+70) km/h。
沪科版八年级下册数学期末考试试题含答案
沪科版八年级下册数学期末考试试卷一、单选题1x 的取值范围是A .5x ≤B .5x <C .5x ≥D .5x > 2.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 A .5 B .4 C .7 D .6 3.下列计算正确的是A= B C .= D 3- 4.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,若再添加﹣个条件使▱ABCD 成为矩形,则该条件不可以是A .AC =BDB .AO =BOC .▱BAD =90° D .▱AOB =90° 5.为执行“均衡教育”政策,某县2019年投入教育经费2650万元,预计到2021年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长率为x ,则下列方程正确的是A .()26501212000x +=B .()22650112000x +=C .()()26502650126501212000x x ++++=D .()()22650265012650112000x x ++++=6.若关于x 的一元二次方程mx 2+2mx+4=0有两个相等的实数根,则m 的值为 A .0 B .4 C .0或4 D .0或﹣47.在ABC 中,三边长分别为a ,b ,c ,且2a c b +=,12c a b -=,则ABC 是 A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 8.如图,在Rt ABC 中,90CAB ∠=︒,16AB =,6AC =,两顶点A ,B 分别在平面直角坐标系的y 轴,x 轴的正半轴上滑动,点C 在第一象限内,连接OC ,则OC 的长的最大值为A.16 B .18 C .8+ D .8+9.如图,在Rt ABC 中,90C ∠=︒,3AC =,4BC =,点P 为AB 边上任意一点过点P 分别作PE AC ⊥于点E ,PF BC ⊥于点F ,则线段EF 的最小值是A .2B .2.4C .3D .410,那么能与它们组成直角三角形的第三条线段是A .1cmcm B .1cm C D .5cm 11.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是 A .0m ≠ B .14m ≤ C .14m < D .14m > 12.一个多边形所有内角与外角的和为1260°,则这个多边形的边数是 A .5 B .7 C .8 D .9 二、填空题13x 的值为___________ 14.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x 与方差S 2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .15.若a 是方程2210x x --=的解,则代数式2242019a a -+的值为____________. 16.已知正方形ABCD 中,AB =3,P 为边CD 上一点,DP =1,Q 为边BC 上一点,若▱APQ 为等腰三角形,则CQ 的长为 ____.三、解答题1722) 18.解方程:2x 2﹣3x =5.19.如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1AB .(2)在图(23的等腰DEF ∆ 20.已知关于x 的一元二次方程x 2﹣mx ﹣2=0.(1)求证:无论m 取何实数,该方程总有两个不相等的实数根; (2)若方程的一个根为2,求m 的值及另一个根.21.如图,在ABC中,D,E,F分别是AB,BC,AC的中点,连接DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若90AFB∠=︒,8AB=,求四边形BEFD的周长22.中华文明,源远流长;中华汉字,寓意深广,某校举办了以“感悟汉字深厚底蕴,弘扬中华传统文化”为主题的汉字听写大赛,全校3600名学生都参加了此次大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(1)m= ;n= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,估计该校参加这次比赛的3600名学生中成绩“优”等约有多少人?23.如图,平行四边形ABCD中,AE=CE.(1)用尺规或只用无刻度的直尺作出AEC∠的角平分线,保留作图痕迹,不需要写作法.(2)设AEC∠的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.24.某公司设计了一款工艺品,每件的成本是40元,为了合力定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?25.如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF DE⊥于点F,交CD于点G.(1)求证:CG CE=.(2)如图2,连接FC、AC.若BF平分DBE∠.∠,求证:CF平分ACE(3)如图3,若G为DC中点,2AB=,求EF的长.参考答案1.C【详解】解:▱50x-≥,▱5x≥,故选:C.2.D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D.【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.3.B【解析】【分析】根据二次根式的乘法法则对A、B、C进行判断,再根据二次根式的性质对D进行判断.【详解】解:A=,故A选项错误;B,故B选项正确;C、=C选项错误;D3=,故D选项错误;【点睛】本题主要考查了二次根式的计算:先把各二次根式化为最简二次根式,再进二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【解析】【分析】由矩形的判定定理和菱形的判定定理分别对各个选项进行判断即可.【详解】解:A、▱四边形ABCD是平行四边形,AC=BD,▱平行四边形ABCD是矩形,故选项A不符合题意;B、▱四边形ABCD是平行四边形,▱AO=CO,BO=DO,▱AO=BO,▱AC=BD,▱平行四边形ABCD是矩形,故选项B不符合题意;C、▱四边形ABCD是平行四边形,▱BAD=90°,▱平行四边形ABCD是矩形,故选项C不符合题意;D、▱▱AOB=90°,▱AC▱BD,▱四边形ABCD是平行四边形,▱平行四边形ABCD是菱形,故选项D不符合题意;故选:D.【点睛】此题主要考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟记矩形的判定定理是解题的关键.5.D【解析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2014年投入教育经费+2014年投入教育经费×(1+增长率)+2014年投入教育经费×(1+增长率)²=1.2亿元,据此列方程.【详解】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)²=12000.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.6.B【解析】【分析】由已知先确定m≠0,再由方程根的情况,利用判别式Δ=4m2﹣16m=0,求解m 即可.【详解】解:▱mx2+2mx+4=0是一元二次方程,▱m≠0,▱方程有两个相等的实数根,▱Δ=4m2﹣16m=0,▱m=0或m=4,▱m=4,故选:B.【点睛】本题考查了根的判别式,解题的关键是根据根的个数结合根的判别式得出关于m 的一元二次方程.7.A【解析】根据平方差公式,可得222c a b -= ,即可求解. 【详解】解:▱2a c b +=,12c a b -=, ▱()()122a c c ab b +-=⋅ , 即222c a b -= , ▱222+=a b c ,▱ABC 是直角三角形. 故选: A . 【点睛】本题主要考查了勾股定理的逆定理,平方差公式,熟练掌握若一个三角形的两边的平方和等于第三边的平方是解题的关键. 8.B 【解析】 【分析】取AB 的中点P ,连接OP 、CP ,利用直角三角形斜边中线等于斜边的一半,可得182OP AP AB ===,再由勾股定理,可得CP=10,再由三角形的三边关系,即可求解. 【详解】解:如图,取AB 的中点P ,连接OP 、CP ,▱16AB =,▱182OP AP AB === , 在Rt ACP 中,6AC =,由勾股定理得:10CP == ,▱18OC OP CP ≤+= ,▱当O 、P 、C 三点共线时,OC 最大,最大值为18. 故选:B . 【点睛】本题主要考查了直角三角形的性质,勾股定理,三角形的三边关系,熟练掌握相关知识是解题的关键. 9.B 【解析】 【分析】求出四边形PECF 是矩形,根据矩形的性质得出EF=CP ,根据垂线段最短得出CP▱AB 时,CP 最短,根据三角形的面积公式求出此时CP 值即可. 【详解】 解:连接CP ,▱PE▱AC ,PF▱BC ,▱ACB=90°, ▱▱PEC=▱ACB=▱PFC=90°, ▱四边形PECF 是矩形, ▱EF=CP ,当CP▱AB 时,CP 最小,即EF 最小,在Rt▱ABC 中,▱C=90°,AC=3,BC=4,由勾股定理得:AB=5, 由三角形面积公式得:AC×BC=AB×CP , CP=125, 即EF 的最小值是125=2.4, 故选:B .【点睛】本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键.10.A【解析】【分析】根据勾股定理的逆定理列出方程解即可,有第三边是斜边或者是直角边两种情况.【详解】当第三边是斜边时,第三边2=(cm),当第三边是直角边时,第三边1(cm).故选A.11.B【解析】【分析】判断一元二次方程根的情况通过判别式判断即可,有实数根即判别式大于等于0.【详解】解:▱关于x的一元二次方程22(21)0x m x m--+=有实数根▱()22=-2m141m0∆--⨯⨯≥⎡⎤⎣⎦解得:14m≤.故选:B.【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程的性质,运用判别式判断方程根的情况是解题的关键.12.B【解析】【分析】根据多边形内角和及外角和直接列式计算即可.【详解】解:多边形的内角和:(n -2)×180°;多边形的外角和是360°,根据题意可知: (n -2)×180°+360°=1260°,解得n=7.故选B .【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和公式及外角和始终为360°是解题的关键.13.3【解析】【分析】根据同类二次根式的概念及一元二次方程的解法进行求解即可.【详解】解:▱▱2221x x -=+,解得1231x x ==-,(舍去).故答案:3.【点睛】本题主要考查同类二次根式及一元二次方程的解法,熟练掌握同类二次根式的概念是解题的关键.14.甲【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】 ▱x 甲=x 丙>x 丁>x 乙,▱从甲和丙中选择一人参加比赛,▱22S S甲乙<,▱选择甲参赛,故答案为甲.15.2021【解析】【分析】根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.【详解】解:▱a是方程x2-2x-1=0的一个解,▱a2-2a=1,则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=2021;故答案为2021.【点睛】本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.16.2或73【解析】【分析】分三种情况求CQ:当AP=AQ时,CQ=2;当AP=PQ时,CQ;当AQ=PQ时,设CQ=x,则BQ=3﹣x,由9+(3﹣x)2=4+x2,即可求CQ=73.【详解】解:▱AB=3,DP=1,▱CP=2,▱AP如图1,当AP=AQ时,AQ在Rt▱ABQ中,BQ=1,▱CQ=2;如图2,当AP=PQ时,PQ,在Rt▱CPQ中,CQ如图3,当AQ=PQ时,设CQ=x,则BQ=3﹣x,在Rt▱ABQ中,AQ2=9+(3﹣x)2,在Rt▱PCQ中,PQ2=4+x2,▱9+(3﹣x)2=4+x2,▱x=73,▱CQ=73.故答案为:2或7 3【点睛】本题考查正方形的性质,等腰三角形的性质,能够作出满足条件的图形,并用勾股定理解题是关键.17.7﹣【解析】【分析】分别化简二次根式,然后先算乘方,再算乘法,最后合并同类二次根式.【详解】334--+7-=7﹣【点睛】本题考查二次根式的混合运算,掌握利用二次根式的性质进行化简及二次根式混合运算的计算法则是解题关键.18.x1=5,x2=﹣12【解析】【分析】化等号右边为0,左边因式分解得(2x﹣5)(x+1)=0,令两个一次因式等于0即可求出方程的解.【详解】解:2x2﹣3x=5.移项,得:2x2﹣3x﹣5=0,因式分解,得:(2x﹣5)(x+1)=0,2x﹣5=0或x+1=0,,x2=﹣1.解得:x1=52【点睛】本题主要考查了一元二次方程的解法——因式分解法,熟练掌握因式分解法的步骤是解决问题的关键.19.(1)见解析;(2)见解析.【解析】【分析】(1)根据勾股定理可得直角边长为2和1(2)根据勾股定理可得直角边长为3和1面积为3确定▱DEF.【详解】解如图所示图(1) 图(2)【点睛】此题主要考查了勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.(1)见解析;(2)x =﹣1【解析】【分析】(1)求判别式()2420m ∆-⨯-=>即可证明;(2)将x =2代入一元二次方程x 2﹣mx ﹣2=0,即可求m ,由此确定一元二次方程为x 2﹣x ﹣2=0,再求方程的解即可.【详解】解:(1)()224280m m ∆=-⨯-=+>,▱无论m 取何实数,该方程总有两个不相等的实数根;(2)▱方程的一个根为2,将x =2代入一元二次方程x 2﹣mx ﹣2=0,得4﹣2m ﹣2=0,解得m =1,▱一元二次方程为x 2﹣x ﹣2=0,解得x =﹣1或x =2,▱方程的另一个解是x =﹣1.【点睛】本题考查了根的判别式及解一元二次方程,掌握判别式的值与方程的解法是解答此题的关键.21.(1)见解析;(2)16【解析】【分析】(1)利用中位线可证//DF BC ,//EF AB ,根据两组对边分别平行的四边形是平行四边形来证明即可;(2)由▱AFB =90°,得DF =DB =DA =12AB =4,再根据菱形的判定定理证得四边形BEFD 是菱形,进而求得答案.【详解】(1)证明:▱D ,E ,F 分别是AB ,BC ,AC 的中点,▱DF ,EF 是▱ABC 的中位线,▱//DF BC ,//EF AB ,▱四边形BEFD 是平行四边形;(2)解:▱D ,E ,F 分别是AB ,BC ,AC 的中点,8AB =, ▱142EF AB ==,又▱90AFB ∠=︒,142DF AB ==,▱EF DF =,由(1)得:四边形BEFD 是平行四边形,▱四边形BEFD 是菱形,▱4BE EF DF BD ====,▱四边形BEFD 的周长16=.【点睛】本题考查了平行四边形的判定定理、直角三角形斜边上的中线等于斜边的一半、菱形的判定和性质等,利用直角三角形斜边上的中线等于斜边的一半证明四边形的边相等是解题的关键.22.(1)0.2,70;(2)见解析;(3)80≤x <90;(4)900【解析】【分析】(1)根据频数、频率总数的关系进行计算即可,(2)在频数分布直方图中画出80-90组的频数直方图即可;(3)根据中位数的意义,找出处在第100、101位的两个数,落在哪个组即可;(4)样本估计总体,样本中优秀的占25%,因此估计总体3600人的25%是优秀的人数.【详解】解:(1)n=40÷200=0.20;m=200×0.35=70,故答案为:0.20,70;(2)补全频数分布直方图如图所示:(3)将200个数据从小到大排列后,处在第100、101位的两个数落在80≤x<90,故答案为:80≤x<90,(4)3600×0.25=900答:这次比赛的3600名学生中成绩“优”等约有900人.【点睛】本题考查了频数分布直方图,理解统计图中的数量和数量关系是正确解答前提.23.(1)见详解;(2)见解析.【解析】【分析】(1)只用无刻度直尺作图过程如下:▱连接AC、BD交于点O,▱连接EO,EO 为▱AEC的角平分线;(2)先根据AF=EC,AF▱CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.【详解】解:(1)如图所示,EO为▱AEC的角平分线;(2)▱四边形ABCD是平行四边形,▱AD▱BC,▱▱AFE=▱FEC,又▱▱AEF=▱CEF,▱▱AEF=▱AFE,▱AE=AF,▱AF=EC,▱四边形AECF是平行四边形,又▱AE=EC,▱平行四边形AECF是菱形.【点睛】本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.24.(1)1600元;(2)55元【解析】【分析】(1)根据每天的销售利润=每件的利润×每天的销售量,即可求出结论;(2)设每件工艺品售价为x元,则每天的销售量是[100-2(x-50)]件,根据每天的销售利润=每件的利润×每天的销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)(60-40)×[100-(60-50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100-2(x-50)]件,依题意,得:(x-40)[100-2(x-50)]=1350,整理,得:x2-140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(1)见解析;(2)见解析;(3)EF【解析】【分析】(1)只需要证明BCG▱DCE即可得到答案;(2)先证明BEF▱BDF得到=EF FD,然后根据直角三角形斜边上的中线等于斜边的一半得到1=2CF EF DE=,FCE E∠=∠,然后根据正方形的性质与角平分线的定义进行求解即可;(3)先求出BG BD=GF x=,则=BF BG GF x+=在Rt BDF和Rt DFG中,由勾股定理222DF BD BF=-,222DF GD GF=-,求出x,由此即可得到答案.【详解】解:(1)▱四边形ABCD是正方形,▱BC=DC,▱BCD=90°,▱▱DCE=90°,▱CBG+▱BGC=90°,▱BF▱DE,▱▱BFE=90°,▱▱CBG+▱E=90°,▱▱BGC=▱E▱BCG ▱DCE (AAS ),▱CG CE =;(2)▱BF 平分DBE ∠,▱EBF DBF ∠=∠,又▱▱BFD=▱BFE=90°,BF=BF▱BEF ▱BDF (ASA ),▱=EF FD ,▱F 是DE 的中点 ▱1=2CF EF DE =,▱FCE E ∠=∠,▱四边形ABCD 是正方形,▱▱DBE=▱ACB=45°▱BF 平分DBE ∠,▱22.5EBF ∠=,▱67.5E ∠=,▱67.5FCE E ∠=∠=▱1804567.567.5ACF ∠=--=.即ACF FCE ∠=∠,▱CF 平分ACE ∠.(3)▱G 为DC 中点,==2AB CD ,▱1CG GD ==,由勾股定理:BG BD =设GF x =,则=BF BG GF x +=在Rt BDF 和Rt DFG 中,由勾股定理:222DF BD BF =- , 222DF GD GF =- ▱()22221x x -=-,解得x =再由勾股定理:DF ==由(1)知:BG DE =,▱=EF DE DF BG DF -=-=.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,角平分线的定义与判定,解题的关键在于能够熟练掌握相关知识进行求解。
安徽省优质名校下学期八年级数学期末试卷
S2S 1安徽省优质名校下学期八年级 数学期末试卷(沪科版)(满分150分,时间:120分钟)一、选择题(每小题4分,共40分)在每小题给出的四个选项中,只有一项是符合题意的,把所选项前的代号填在题后的括号内.1. 二次根式2221,12,30,2,40,2x x x y ++中,最简二次根式有( )个A 、1B 、2C 、3D 、42. 若,x y 为实数,且|2|20x y ++-=,则2009x y ⎛⎫⎪⎝⎭的值为( )A 、1B 、1-C 、2009D 、2009-3.若()()822222=-++b aba ,则=+22b a ( )A .-2 B. 4 C.4或-2 D .-4或2 4.一个样本的各数据都减少9,则该组数据的A .平均数减少9,方差不变B .平均数减少9,方差减少3C .平均数与极差都不变D .平均数减少9,方差减少9 5.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为21,S S ,则21S S +的值为 ( ) A .16 B .17 C .18 D .196.如图,直角△ABC 的周长为24,且AB:AC =5:3,则BC=( ) A .6 B .8 C .10 D .12 7.三角形两边的长分别是8和6,第三边的长是方程x ²-12x +20=0的一个实数根,则三角形的周长是( )A . 24B . 24或16C . 26D . 16 8.若n (n≠0)是关于x 的方程x 2+mx +2n=0的根,则m+n 的值为( )A .1B .2C .一lD .一29.已知下列命题:①若a>0,b>0,则a+b>0;②若2a ≠2b ,则a≠b;③角平分钱上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半,其中原命题与逆命题均为真命题的是 ( ) A .①③④ B. ①②④ C. ③④⑤ D. ②③⑤10. 如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A. 3 :4B. 5 :8C. 9 :16D. 1 :2二、填空题(每题5分,计20分)11.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =b a b a -+,如3※2=52323=-+.那么12※4= 。
【新】沪科版八年级下册数学期末测试卷及含答案
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h 5 6 7 8人数 2 6 5 2则这 15 名学生一周在校参加体育锻炼时间的中位数和众数分别为()A.6 h, 6 hB.7 h, 7 hC.7 h, 6 hD.6 h, 7 h2、方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2 C.x1=1,x2=﹣2 D.x1=﹣1,x2=23、一个多边形的每个外角都是45°,则这个多边形的内角和为()A.360°B.140°C.1080°D.720°4、用配方法解方程时,配方结果正确的是().A. B. C. D.5、下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.一个角为 90°且一组邻边相等的四边形是正方形D.对角线相等的平行四边形是矩形6、在Rt△ABC中,∠C=90°,BC=1,AB=2,则tanA等于()A. B. C. D.7、四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()甲乙丙丁7 8 8 7S2 1 1 1.2 1.8A.甲B.乙C.丙D.丁8、如图,在△ABC中,AC=6,BC=8,AB=10,D,E分别是AC,BC的中点,则以DE为直径的圆与AB的位置关系是( )A.相切B.相交C.相离D.无法确定9、若a为实数,则化简的结果是()A.﹣aB.aC.±aD.|a|10、如图,在梯形中,,已知是上的一个动点,如果为顶点构成的三角形是直角三角形,则DE长为()①;②;③;④A.①②B.①③C.①③④D.①②③11、如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.112、如图,在四边形ABCD中,AB=4,CD=13,DE=12,∠DAB=∠DEC=90°,∠ABE=135°, 四边形ABCD的面积是 ( )A.94B.90C.84D.7813、某篮球运动员在连续7场比赛中的得分(单位:分)依次为21,16,17,23,20,20,23,则这组数据的平均数与中位数分别是( )A.20分,17分B.20分,22分C.20分,19分D.20分,20分14、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cmB.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm15、方程x(x+1)=5(x+1)的根是()A.﹣1B.5C.1或5D.﹣1或5二、填空题(共10题,共计30分)16、若y=++2,则x y=________ .17、若直角三角形的两直角边长为a、b,且,则该直角三角形斜边上的高为________.18、数据101,98,102,100,99的方差是________.19、如图所示,在中,,以BC为斜边向外侧做等腰直角,过点D做于点E,若线段,,则________.20、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________个.21、已知:x= ,则可用含x的有理系数三次多项式来表示为:=________22、计算:________.23、计算的结果等于________.24、在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为________.25、如图,在△ABC中,∠B=90°,AB=9,AC=15,线段AC的垂直平分线DE 交AC于D,交BC于E,则△ABE的周长为________.三、解答题(共5题,共计25分)26、解方程:x2-4x-5=0.27、若x,y为实数,且,化简:.28、如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.29、计算:(1)|﹣4|﹣(﹣3)2﹣20100(2)(2cos45°﹣sin60°)+.30、一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、A6、C7、B8、B9、D10、C11、B12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
完整版沪科版八年级下册数学期末测试卷及含答案A4版打印
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、)已知α,β是方程x2+2013x+1=0的两个根,则(1+2015α+α2)(1+2015β+β2)的值为()A.1B.2C.3D.42、如图,在平行四边形ABCD和平行四边形AECF的顶点,D,E,F,B在一条直线上,则下列等式成立的是()A.AE=CEB.CE=CFC.DE=BFD.DE=EF=BF3、如图,圆柱形容器的底面周长是24cm,高为17cm,在外侧底面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A.20cmB.8 cmC. cmD.24cm4、若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4B.m>﹣4C.m<4D.m>45、方程x2-2(3x-2)+(x+1)=0的一般形式是()A.x 2-5x+5=0B.x 2+5x+5=0C.x 2+5x-5=0D.x 2+5=06、如图,在四边形中,,,,若,则的长等于()A. B. C. D.7、如图,在△ABC中,AB=AC,点D、E分别是边AB,AC的中点,点G,F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cmB.2 cmC.8cmD.4 cm8、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22B.24C.48D.449、如图,在中,,于点,是的外角的平分线,交于点,则四边形的形状是()A.平行四边形B.矩形C.菱形D.正方形10、一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定11、如果a是一元二次方程的一个根,是一元二次方程的一个根,那么a的值等于()A.1或2B.0或3C.-1或-2D.012、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.013、如图,点A所表示的数是()A.1.5B.C.2D.14、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A. B. C. D.15、如图,在楼顶点A处观察旗杆CD测得旗杆顶部C的仰角为30°,旗杆底部D的俯角为45°.已知楼高AB=9m,则旗杆CD的高度为()A. mB. mC.9 mD.12 m二、填空题(共10题,共计30分)16、已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为________.17、已知三角形三边的长分别为15、20、25,则这个三角形的形状是________.18、如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=________ 度.19、用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=62°,则∠2的度数是________20、如图,把一张长方形纸片ABCD沿EF折叠后,点A、B分别落在A1、B2的位置上,A1E与BC交于点O,若∠EFO=60°,则∠AEA1=________.21、已知方程 x2﹣4x+3=0 的两根分别为 x1、x2,则 x1+x2=________.22、方程x2-5x+2=0的解是________.23、若n边形内角和为1260°,则这个n边形的对角线共有________.24、在中,若,,,则的面积是________.25、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG = S△FGH;④AG+DF=FG.其中正确的是________.(把所有正确结论的序号都选上)三、解答题(共5题,共计25分)26、试确定一元二次方程式x2﹣x﹣=0的解的取值范围(精确到0.1).27、如图,点O在的边AN上,以O为圆心的圆交AM于B,C两点,交AN于D,E两点,若,,,求的半径r.28、如图,AB是⊙O的一条弦,且AB=,点C,E分别在⊙O上,且OC⊥AB于点D,∠AEC=30°,连接OA.求⊙O的半径R.29、下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:成绩(分)60 70 80 90 100人数(人)1 5 x y 2(1)若这20名学生的平均分是84分,求x和y的值;(2)这20名学生的本次测验成绩的众数和中位数分别是多少?30、甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行.2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距40海里,问乙船的速度是每小时多少海里?参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、D5、A6、D7、D9、B10、A11、B12、B13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
沪科版八年级下册数学期末测试卷及含答案(完美版)(综合考察)
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD﹣DF2、若是一元二次方程,则的值为()A. B.2 C.-2 D.以上都不对3、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形.再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”.在“生长”了2012次后形成的图形中所有正方形的面积和是()A.2009B.2010C.2011D.20134、对于一元二次方程2x2+1=3x,下列说法错误的是()A.二次项系数是2B.一次项系数是3C.常数项是1D.x=1是它的一个根5、如图,矩形的两条对角线相交于点,则的长是()A. B. C. D.6、下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是( )A. B. C. D.7、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I 都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.90B.100C.110D.1218、浙江广厦篮球队5名场上队员的身高(单位:cm)是:184,188,190,192,194.现用一名身高为170cm的队员换下场上身高为190cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大9、如图,正方形ABCD的边长为12,E,F分别为BC,AD边上的点,且BE=DF =5,M,N分别为AB,CD边上的点,且MN⊥AE交AE,CF于点G,H,则GH的长为()A.6B.C.D.10、在下列方程中,一元二次方程是()A.x 2﹣2xy+y 2=0B.x(x+3)=x 2﹣1C.x 2﹣2x=3D.x+ =011、下列结论中,正确的有()①△ABC的三边长分别为a,b,c,若b2+c2=a2,则△ABC是直角三角形;②在Rt△ABC中,已知两边长分别为6和8,则第三边的长为10;③在△ABC 中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为1:2:,则该三角形是直角三角形.A.3个B.2个C.1个D.0个12、三角形两边的长是4和9,第三边满足方程x2﹣24x+140=0,则三角形周长为()A.27B.23C.23或27D.以上都不对13、某养鸭场有若干只鸭,某天捉到30只全部做上标记,又过了一段时间,捉到50只,其中有2只有标记,那么估计该养鸭场有鸭子()A.500只B.650只C.750只D.900只14、下列关于的一元二次方程中,有两个相等的实数根的方程是()A. B. C. D.15、某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200 D.300,300,300二、填空题(共10题,共计30分)16、如图,点在正方形的边上,连接,设点关于直线的对称点为点,且点在正方形内部,连接并延长交边于点,过点作交射线于点,连接.若,则的长为________.17、计算:3 +2 =________.18、若________.19、如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于________.20、如图,+∠G=________.21、菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.AD=10,EF=4,则BG的长________.22、某区10名学生参加实际汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么10名学生所得分数的中位数是________.23、若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是________.24、如图,直线AB的解析式为y= x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为________.25、一组数据﹣1,3,7,4的极差是________.三、解答题(共5题,共计25分)26、计算:27、已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求:代数式x4+x3y+x2y2+xy3+y4的值.28、已知:如图,在△ABC中,AB=AC,M是BC的中点,MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为点D、E、F、G,DF、EG相交于点P.判断四边形MDPE 的形状,并说明理由.29、如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,求△BOC的周长为多大?30、如图,车高4m(AC=4m),货车卸货时后面支架AB弯折落在地面A处,1 C=2m,求弯折点B与地面的距离.经过测量A1参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、B5、C6、D7、C8、B9、C11、A12、B13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。
数学八年级下期末试卷及答案(沪科版)
初二数学期末试卷一、选择(每小题3分共10小题)1.下列说法不正确的是( )A .三角形的内心是三角形三条角平分线的交点.B .与三角形三个顶点距离相等的点是三条边的垂直平分线的交点.C .在任何一个三角形的三个内角中,至少有2个锐角.D .有公共斜边的两个直角三角形全等.2.若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是( ) A .7 B .6 C .5 D .43.22592y xy x --因式分解为( )A .)5)(2(y x y x --B .)52)((y x y x -+C .)5)(2(y x y x ++D .)5)(2(y x y x -+4.a 、b 是(a ≠b )的有理数,且0132=+-a a 、0132=+-b b 则221111b a +++的值( )A .21 B .1 C .2 D .4 5.等腰三角形一腰上的高与底边的夹角是45°,则此三角形是( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形6.已知:xx x x -=-22||则x 应满足( ) A .x <2 B .x ≤0 C .x >2 D .x ≥0且x ≠27.如图已知:△ABC 中AB =AC ,DE 是AB 边的垂直平分线,△BEC 的周长是14cm ,且BC =5cm ,则AB 的长为( )A .14cmB .9cmC .19cmD .11cm8.下列计算正确的是( )A .632)(a a =- B .236a a a =÷ C .1-=--+b a b a D .aa a 31211=+9.已知2)2(--=a .3)3(--=b .)4(2--=c .则)]([c b a ----的值是( )A .15B .7C .-39D .4710.现有四个命题,其中正确的是( )(1)有一角是100°的等腰三角形全等(2)连接两点的线中,直线最短(3)有两角相等的三角形是等腰三角形(4)在△ABC 中,若∠A -∠B =90°,那么△ABC 是钝角三角形A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4)二、填空(每小题2分共10小题)1.已知21=+x x 则=+221xx __________________ 2.分解因式=--a a a 223____________________________3.当x =__________________时分式)1)(3(1||+--x x x 值为零. 4.若03441022422=-++-x x x x ,那么x =____________________________ 5.计算=-+-+⋅x y y yx x y x 2222)(________________________________ 6.等腰三角形的两边a 、b 满足0)1132(|2|2=-+++-b a b a 则此等腰三角形的周长=_____________________________7.等腰三角形顶角的外角比底角的外角小30°,则这个三角形各内角为___________ _____________________8.如图在△ABC 中,AD ⊥BC 于D ,∠B =30°,∠C =45°,CD =1则AB =____________9.如图在△ABC 中,BD 平分∠ABC 且BD ⊥AC 于D ,DE ∥BC 与AB 相交于E .AB =5cm 、AC =2cm ,则△ADE 的周长=______________________10.在△ABC 中,∠C =117°,AB 边上的垂直平分线交BC 于D ,AD 分∠CAB 为两部分.∠CAD ∶∠DAB =3∶2,则∠B =__________三、计算题(共5小题)1.分解16824-+-x x x (5分)2.计算329122---m m (5分)3.化简再求值13112-+-+x x x 其中x =-2(5分)4.解方程24422223x x x x +-=-+-(5分)5.为了缓解交通堵塞现象,决定修一条从市中心到飞机场的轻轨铁路.为了使工程提前3个月完成,需将原计划的工作效率提高12%,问原计划此工程需要多少个月?(6分)四、证明计算及作图(共4小题)1.如图已知:在△ABC 中,AB =AC ,∠A =120°,DF 垂直平分AB 交AB 于F 交BC 于D ,求证:DC BD 21=(5分)2.如图C 为AB 上一点,且△AMC 、△CNB 为等边三角形,求证AN =BM (6分)3.求作一点P ,使PC =PD 且使点P 到∠AOB 两边的距离相等.(不写作法)(5分)4.如图点E 、F 在线段BD 上,AB =CD ,∠B =∠D ,BF =DE .(8分)求证(1)AE =CF(2)AE ∥CF (3)∠AFE =∠CEF参考答案一、选择(每小题3分共10小题)1.D 2.C 3.D 4.B 5.D 6.B 7.B 8.C 9.B 10.C二、填空(每小题2分共10小题)1.2 2.)2)(1(-+a a a 3.1 4.5 5.y x +6.7 7.80° 50° 50° 8.2 9.7cm 10.18°三、计算题(共5小题)1.解:16824-+-x x x22)4(-=x x)4)(4(22-++-=x x x x2.解:39122-2--m m9)3(2122-+-=m m9)3(22--=m m32+-=m .3.解:13112-+-+x x x1312----=x x x142--=x当2-=x 时 原式的值34-=. 4.解:24422223xx x x +-=-+-44222)2(32+-=---x x x x2)2(221-=-x x22=-x4=x .检验:x =4是原方程之根. 5.设原计划此工程需要x 月31%)121(1-=+x xx x =-36.312.136.312.0=x28=x检验28=x 是原方程的根.答:原计划28个月完成.四、证明计算及作图(共4小题)1.证:连AD .∵ ∠A =120°AB =AC∴ ∠B =∠C =30°∵ FD ⊥平分AB .∴ BD =AD ∠B =∠1=30°∠DAC =90°∵ 在Rt △ADC 中∠C =30°∴ DC AD 21=即DC BD 21=2.证:∵ C 点在AB 上A 、B 、C 在一直线上.∠1+∠3+∠2=180°∵ △AMC 和△CNB 为等边三角形∴ ∠1=∠2=60°即∠3=60°AC =MC ,CN =CB 在△MCB 和△ACN 中∵ ⎪⎩⎪⎨⎧==∠+∠=∠+∠=︒CB CN MC AC 1202331 ∴ △MCB ≌△ACN (SAS ) ∴ AN =MB .3.4.证① 在△ABF 和△DCE 中∵ ⎪⎩⎪⎨⎧=∠=∠=DE BF D B CD AB∴ △ABF ≌△DCE (SAS )∴ AF =CE ,∠1=∠2∵ B 、F 、E 、D 在一直线上∴ ∠3=∠4(同角的补角相等)即∠AFE =∠CEF ② 在△AFE 和△CEF 中∵ ⎪⎩⎪⎨⎧=∠=∠=EF EF CE AF 43∴ △AFE ≌△CEF (SAS )∴ AE =CF ∠5=∠6∵ ∠5=∠6∴ AE ∥CF .③ ∵ ∠3=∠4 即∠AFE =∠CEF .。
沪科版八年级下册数学期末测试卷及含答案(新一套)
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD是正方形,直线l1,l2,l3分别通过A,B,C三点,且l1∥l2∥l 3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD的面积等于( )A.70B.74C.144D.1482、下列计算正确的是()A. ×=B. + =C.D. -=3、如图,已知菱形的顶点且,则菱形两对角线的交点D的坐标为()A. B. C. D.4、将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.lB.2C.D.5、如图,圆柱的底面直径和高均为4,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离是 ( )A. B. C. D.6、下列说法中,错误的是( )A.三角形中至少有一个内角不小于60°B.三角形的角平分线、中线、高均在三角形的内部C.有一个角是60°的等腰三角形是等边三角形 D.多边形的外角和等于360°7、如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A.AB=CD,AD=BC,AC=BDB.AC=BD,∠B=∠C=90°C.AB=CD,∠B=∠C=90°D.AB=CD,AC=BD8、下列计算正确的是A. B. C. D.9、下列数是方程x2-x-6=0的根是()A.-4B.-3C.3D.210、在菱形ABCD中,AC与BD相交于点O ,则下列说法不正确的是().A. AO⊥ BOB.∠ABD=∠CBDC. AO= BOD. AD= CD11、如图,在中,,,,若两阴影部分都是正方形,、、在一条直线上,且它们的面积之比为,则较大的正方形的面积是()A.36B.27C.18D.912、如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为3和4,那么P到矩形两条对角线AC和BD的距离之和是()A. B. C. D.不确定13、下列计算正确的是()A.x 7÷x 4=x 11B.(a 3)2=a 5C.2 +3 =5D.÷=14、某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的的中位数大于乙运动员得分的的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定15、如图,是某校男子足球队的年龄分布条形图,则这些队员年龄的众数为()A.8B.10C.15D.18二、填空题(共10题,共计30分)16、若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是________.17、正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.18、如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为________.19、一组数据1,1,2,4,这组数据的方差是________ .20、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC 边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.21、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=,∠BCD=30°,则⊙O的半径为________.22、化简:=________ 。
(沪科版)数学八年级(下)期末质量测试卷7(附答案)
八年级(下)期末数学试卷一、选择题。
(每小题4分.共40分。
)1.下列计算正确的是()。
A.2×3=6B.3×3=3C.4×2=8D.2×6=122.如图.△ABC中.点P是AB边上的一点.过点P作PD∥BC.PE∥AC.分别交AC.BC于点D.E.连接CP.若四边形CDPE是菱形.则线段CP应满足的条件是()。
A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP3.已知a<b.化简二次根式()。
A.2a B.﹣2a C.2a D.﹣2a4.如图.在平行四边形ABCD中.AB=4.BC=6.分别以A.C为圆心.以大于的长为半径作弧.两弧相交于M.N两点.作直线MN交AD于点E.则△CDE的周长是()。
A.7B.10C.11D.125.已知关于x的一元二次方程x2﹣bx﹣2=0.则下列关于该方程根的判断中正确的是()。
A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关6.若a.b为方程x2﹣5x﹣1=0的两个实数根.则2a2+3ab+8b﹣2a的值为()。
A.﹣41B.﹣35C.39D.457.如图.▱ABCD中.EF∥AB.DE:DA=2:5.EF=4.则CD的长为()。
A.B.8C.10D.168.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根.那么k的取值范围是()。
A.k≥﹣B.k≥﹣且k≠0C.k<﹣D.k>﹣且k≠09.关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正.关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1.其中正确结论的个数是()。
A.0个B.1个C.2个D.3个10.如图.正方形ABCD中.E为BC的中点.CG⊥DE于G.BG延长交CD于点F.CG延长交BD于点H.交AB于N 下列结论:①DE=CN;②=;③S△DEC=3S△BNH;④∠BGN=45°;⑤GN+EG=BG;其中正确结论的个数有()。
沪科版八年级下学期期末数学试卷及答案
A CD第12题图EDC B A初中八年级数学试卷一填空题(每小题3分,共30分)1.等腰三角形底边长为6cm ,腰长为5cm ,它的面积为.2.关于x 的方程2(3)320m x mx +-+=是一元二次方程,则m 的取值范围是.3.当x 时,3x -+在实数范围内有意义.4.计算(223)(322)-+=.5.如图是某广告公司为某种商品设计的商标图案,图中阴影 部分为红色。
若每个小长方形的面积都1,则红色的面积是5.6.如果1x 、2x 是方程0132=+-x x 的两个根,那么代数式12(1)(1)x x ++的值是.7.一组数据5,-2,3,x ,3,-2若每个数据都是这组数据的众数,则这组数据的平均数是.8.在实数范围内分解因式:44x -=.9.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm 2. 10.梯形的上底为3cm ,下底长为7cm ,它的一条对角线把它分成的两部分面积的比是.二选择题(每小题3分,共30分)11.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于()A.18°B.36°C.72°D.108° 12.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是() A.3:4B.1:2 C.9:16D.5:813.一元二次方程2460x x --=经过配方可变性为()题号 一二三总分得分得分 评卷人得分评卷人第11题图校名年级班级姓名密 封 线 内 不 要 答 题第5题图A.2(2)10x -=B.2(2)6x -=C.2(4)6x -=D.2(2)2x -=14.三角形三边长分别为6、8、10,那么它最长边上的高为()A.6B.2.4C.4.8D.815.已知a 、b为实数,4a =,则b a 的值等于()A.8B.4 C.12D.6416.为筹备班级联欢会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,下面的调查数据中最值得关注的是()A.中位数B.平均数C.众数D.加权平均数17.已知一组数据1,2,4,3,5,则关于这组数据的说法中,错误的是()A.平均数是3B.中位数是4C.极差是4D.方差是2 18.合并的是()19.关于x 的一元二次方程240x kx +-=的根的情况是()A.有两个不相等的实数根 C.有两个相等的实数根B.没有实数根 D.无法确定 20.已知0和1-都是某个方程的解,此方程可能是()A.012=-xB.1+=x xC.02=-x xD.0)1(=+x x 三解答题(40分)21.解方程(10分,每题5分) (1)x x 2452-=(2)2670x x --= 22.计算(求值)(10分,每小题5分)-⑵已知方程29(6)10x k x k -+++=有两个相等的实数根,求密 封 线 内 不 要 答 题k 的值.23.已知:如图,等腰梯形ABCD 中,AB ∥DC ,AC ⊥BC ,点E 是AB 的中点,EC ∥AD ,求∠ABC 的度数.(8分)24.(121:表1根据表一中提供的数据填写表二参考答案一填空(每小题3分,共30分) 1.122.3m ≠-3.3x ≥ 4.-15.56.5 7.28.2(2)(x x x ++-9.2010.3:7 二选择三 解答 21.(1)(1)x x 2452-= 解:移项,得25240x x +-=……………………………………………(1分)解得 x =………………………………………………(4分)121155x x -+-==……………………………………………(5分) (2)解:原方程可化为:(7)(1)0x x -+=…………………………………(2分)即70x -=或10x +=…………………………………(3分)所以,127,1x x ==-…………………………………(5分)22.⑴解:………………………………………(3分)………………………………………(4分)……………………………………(5分) 为,方程29(6)10x k x k -+++=有两个相等的实数根 (2)解:因所以⊿=2(6)36(1)k k +-+=0…………………………………(3分) 解得10k =………………………………………………………(4分)224k =………………………………………………………(5分)23.(8分)解:∵四边形ABCD 是等腰梯形,AB ∥DC∴AD=BC ……………………………(1分) 又∵AC ⊥BC ,点E 是AB 的中点∴EC=AE=EB ………………………………………(3分) ∵EC ∥AD∴四边形AECD 是平行四边形………………………………………(4分)∴AD=EC …………………………………………(5分) ∴EC=EB=BC ………………………………………………(6分) ∴△CEB 是等边三角形∴∠ABC=60°…………………………………………………(8分) 24.(12分)(填对一空得3分)-==。
八年级下期末数学试卷含答案解析(沪科版)
八年级(下)期末数学试卷一、选择题(本大题共6题,每题2分,满分12分)【每题只有一个正确选项,在答题纸相应位置填涂】1.函数y=﹣x+1的图象经过的象限是()A.一、二、三B.一、二、四C.一、三、四D.二、三、四2.下列方程中,有实数解的是()A.2x4+1=0 B. +3=0 C.x2﹣x+2=0 D. =3.解方程﹣=2时,如果设=y,则原方程可化为关于y的整式方程是()A.3y2+2y+1=0 B.3y2+2y﹣1=0 C.3y2+y+2=0 D.3y2+y﹣2=04.能判定四边形ABCD是平行四边形的条件是:∠A:∠B:∠C:∠D的值为()A.1:2:3:4 B.1:4:2:3 C.1:2:2:1 D.1:2:1:25.下列事件中,必然事件是()A.y=﹣2x是一次函数B.y=x2﹣2是一次函数C.y=+1是一次函数D.y=kx+b(k、b是常数)是一次函数6.已知:如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,联结ED、EC、AC.添加一个条件,能使四边形ACDE成为矩形的是()A.AC=CD B.AB=AD C.AD=AE D.BC=CE.二、填空题(本大题共12题,每小题3分,满分36分)[请将结果直接填入答题纸的相应位置]7.直线y=3x﹣2的截距是.8.函数f(x)=3x﹣的自变量x的取值范围是.9.已知函数f(x)=﹣2x﹣1,那么f(﹣1)= .10.直线y=﹣3x+2向下平移1个单位后所得直线的表达式是.11.方程(x﹣1)3=﹣8的解为.12.方程的解是.13.如果一个凸多边形的内角和小于1620°,那么这个多边形的边数最多是.14.小明和小杰做“剪刀、石头、布”游戏,在一个回合中两个人能分出胜负的概率是.15.如图,已知梯形ABCD中,AD∥BC,点E在BC边上,AE∥DC,DC=AB.如果图中的线段都是有向线段,则与相等的向量是.16.在△ABC中,D、E分别是AB、AC的中点,F、G分别是DB、EC的中点,如果FG=3,那么BC= .17.如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分∠BAF,且EF⊥AF于点F.若AB=5,AD=4,则EF= .18.如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC= .三、解答题(本大题共7题,第19题-21题每题5分,第22题7分,第23题8分,第24题10分,第25题12分,满分52分)[请将解题过程填入答题纸的相应位置]19.解方程:﹣=1.20.解方程组:.21.如图,平面直角坐标系xOy中,点A(a,1)在双曲线上y=上,函数y=kx+b的图象经过点A,与y轴上交点B(0,﹣2),(1)求直线AB的解析式;(2)设直线AB交x轴于点C,求三角形OAC的面积.22.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.23.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE的面积)24.李老师准备网上在线学习,现有甲、乙两家网站供李老师选择,已知甲网站的收费方式是:月使用费7元,包时上网时间25小时,超时费每分钟0.01元;乙网站的月收费方式如图所示.设李老师每月上网的时间为x小时,甲、乙两家网站的月收费金额分别是y1、y2.(1)请根据图象信息填空:乙网站的月使用费是元,超时费是每分钟元;(2)写出y1与x之间的函数关系;(3)李老师选择哪家网站在线学习比较合算?25.已知,如图,平面直角坐标系xOy中,线段AB∥y轴,点B在x轴正半轴上,点A在第一象限,AB=10.点P是线段AB上的一动点,当点P在线段AB上从点A向点B开始运动时,点B同时在x轴上从点C(4,0)向点O运动,点P、点B运动的速度都是每秒1个单位,设运动的时间为t(0<t<4).(1)用含有t的式子表示点P的坐标;(2)当点P恰好在直线y=3x上时,求线段AP的长;(3)在(2)的条件下,直角坐标平面内是否存在点D,使以O、P、A、D为顶点的四边形是等腰梯形.如果存在,请直接写出点D的坐标;如果不存在,请简单说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)【每题只有一个正确选项,在答题纸相应位置填涂】1.函数y=﹣x+1的图象经过的象限是()A.一、二、三B.一、二、四C.一、三、四D.二、三、四【考点】一次函数的图象.【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限即可.【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,故选B【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.2.下列方程中,有实数解的是()A.2x4+1=0 B. +3=0 C.x2﹣x+2=0 D. =【考点】无理方程;根的判别式.【专题】探究型.【分析】可以分别判断各个选项中的方程是否有实数解,从而可以得到哪个选项是正确的.【解答】解:∵2x4+1=0,∴2x4=﹣1,∵x4≥0,∴2x4+1=0无实数解;∵,∴,∵,∴无实数解;∵x2﹣x+2=0,△=(﹣1)2﹣4×1×2=﹣7<0,∴x2﹣x+2=0无实数解;∵,解得x=,∴有实数解,故选D.【点评】本题考查无理方程、根的判别式,解题的关键是明确方程有实数根需要满足的条件.3.解方程﹣=2时,如果设=y,则原方程可化为关于y的整式方程是()A.3y2+2y+1=0 B.3y2+2y﹣1=0 C.3y2+y+2=0 D.3y2+y﹣2=0【考点】换元法解分式方程.【分析】把看作整体,与互为倒数,再得出方程即可.【解答】解:∵ =y,∴=,则原方程变形为﹣3y=2,整理得3y2+2y﹣1=0,故选B.【点评】本题考查用换元法使分式方程简便.换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程.应注意换元后的字母系数.4.能判定四边形ABCD是平行四边形的条件是:∠A:∠B:∠C:∠D的值为()A.1:2:3:4 B.1:4:2:3 C.1:2:2:1 D.1:2:1:2【考点】平行四边形的判定.【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.只有选项D符合.【解答】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选D.【点评】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.5.下列事件中,必然事件是()A.y=﹣2x是一次函数B.y=x2﹣2是一次函数C.y=+1是一次函数D.y=kx+b(k、b是常数)是一次函数【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:y=﹣2x是一次函数是必然事件;y=x2﹣2是一次函数是不可能事件;y=+1是一次函数是不可能事件;y=kx+b(k、b是常数)是一次函数是随机事件,故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.已知:如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,联结ED、EC、AC.添加一个条件,能使四边形ACDE成为矩形的是()A.AC=CD B.AB=AD C.AD=AE D.BC=CE.【考点】矩形的判定;平行四边形的性质.【分析】直接利用平行四边形的判定与性质得出四边形DEAC是平行四边形,进而利用等腰三角形的性质结合矩形的判定方法得出答案.【解答】解:添加一个条件BC=CE,能使四边形ACDE成为矩形,理由:∵四边形ABCD是平行四边形,∴AB DC,∵AE=AB,∴DC AE,∴四边形DEAC是平行四边形,∵BC=EC,AE=AB,∴∠EAC=90°,∴平行四边形ACDE是矩形.故选:D.【点评】此题主要考查了平行四边形的判定与性质、等腰三角形的性质、矩形的判定等知识,正确得出四边形DEAC是平行四边形是解题关键.二、填空题(本大题共12题,每小题3分,满分36分)[请将结果直接填入答题纸的相应位置]7.直线y=3x﹣2的截距是﹣2 .【考点】一次函数图象上点的坐标特征.【分析】令x=0,求出y的值即可.【解答】解:令x=0,则y=﹣2.故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,能熟练地根据一次函数的性质进行计算是解此题的关键.8.函数f(x)=3x﹣的自变量x的取值范围是全体实数.【考点】函数自变量的取值范围.【分析】根据表达式是整式时,自变量可取全体实数解答.【解答】解:∵x取全体实数函数表达式都有意义,∴自变量x的取值范围是全体实数.故答案为:全体实数.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.已知函数f(x)=﹣2x﹣1,那么f(﹣1)= 1 .【考点】函数值.【分析】将x=﹣1代入,然后依据有理数的运算法则进行计算即可.【解答】解:f(﹣1)=﹣2×(﹣1)﹣1=2﹣1=1.故答案为:1.【点评】本题主要考查的是求函数值,将x=﹣1代入解析式是解题的关键.10.直线y=﹣3x+2向下平移1个单位后所得直线的表达式是y=﹣3x+1 .【考点】一次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,直线y=﹣3x+2沿y轴向下平移1个单位,所得直线的函数关系式为y=﹣3x+2﹣1,即y=﹣3x+1;故答案为y=﹣3x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11.方程(x﹣1)3=﹣8的解为x=﹣1 .【考点】立方根.【分析】把(x﹣1)看作一个整体,利用立方根的定义解答即可.【解答】解:∵(x﹣1)3=﹣8,∴x﹣1=﹣2,∴x=﹣1.故答案为:x=﹣1.【点评】本题考查了利用立方根的定义求未知数的值,熟记概念是解题的关键.12.方程的解是x=﹣1 .【考点】无理方程.【分析】把方程两边平方后求解,注意检验.【解答】解:把方程两边平方得x+2=x2,整理得(x﹣2)(x+1)=0,解得:x=2或﹣1,经检验,x=﹣1是原方程的解.故本题答案为:x=﹣1.【点评】本题考查无理方程的求法,注意无理方程需验根.13.如果一个凸多边形的内角和小于1620°,那么这个多边形的边数最多是10 .【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,已知一个多边形的内角和是1620°,根据题意列方程求解.【解答】解:设一个凸多边形的内角和等于1620°多边形的边数是n,则(n﹣2)•180°=1620°,解得:n=11.∴这个多边形的边数最多是10;故答案为:10.【点评】此题主要考查了多边形内角和定理,结合多边形的内角和公式来寻求等量关系,构建方程求解是解题关键.14.小明和小杰做“剪刀、石头、布”游戏,在一个回合中两个人能分出胜负的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先利用画树状图展示所有9种等可能的结果数,再找出能分出胜负的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中能分出胜负的结果数为6,所以能分出胜负的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.15.如图,已知梯形ABCD中,AD∥BC,点E在BC边上,AE∥DC,DC=AB.如果图中的线段都是有向线段,则与相等的向量是.【考点】*平面向量;梯形.【分析】根据题意判定四边形AECD是平行四边形,则AE∥DC且AE=DC,所以与相等的向量是.【解答】解:∵在梯形ABCD中,AD∥BC,∴AD∥EC,又∵AE∥DC,∴四边形AECD是平行四边形,∴AE∥DC且AE=DC,∴与相等的向量是.故答案是:.【点评】本题考查了平面向量和梯形.注意:向量是有方向的线段,相等的向量是指方向和距离都相等的线段.16.在△ABC中,D、E分别是AB、AC的中点,F、G分别是DB、EC的中点,如果FG=3,那么BC= 4 .【考点】三角形中位线定理.【分析】设BC=2x,根据三角形的中位线平行于第三边并且等于第三边的一半表示出DE,再根据梯形的中位线平行于两底边并且等于两底和的一半列方程求解即可.【解答】解:设BC=2x,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC且DE=BC=x,∴四边形BCED是梯形,∵F、G分别是DB、EC的中点,∴FG是梯形BCED的中位线,∴FG=(DE+BC),∵FG=3,∴(x+2x)=3,解得x=2,2x=2×2=4,即BC=4.故答案为:4.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,梯形的中位线平行于两底边并且等于两底和的一半,熟练掌握两个定理是解题的关键.17.如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分∠BAF,且EF⊥AF于点F.若AB=5,AD=4,则EF= .【考点】矩形的性质;角平分线的性质;勾股定理.【专题】方程思想.【分析】先判定Rt△ABE≌Rt△AFE(HL),再根据勾股定理求得DF的长,最后设EF=EB=x,在Rt△CEF中根据勾股定理列出方程求解即可.【解答】解:∵AE平分∠BAF,且EF⊥AF,∠B=90°∴EF=EB在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AF=AB=5又∵AD=4,∠D=90°∴Rt△ADE中,DF==3∴CF=5﹣3=2设EF=EB=x,则CE=4﹣x在Rt△CEF中,22+(4﹣x)2=x2解得x=即EF=故答案为:【点评】本题主要考查了矩形的性质,解题时注意:矩形的对边相等,四个角都是直角,这是运用勾股定理的前提条件.根据勾股定理列方程求解,是解决问题的关键.18.如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC= 135°.【考点】平行四边形的性质.【分析】延长CD到点F,根据平行四边形的性质可得出BC∥DE,结合∠ABC=90°,即可得出∠ADE=90°,再根据翻折的性质即可得出∠ADF=∠EDF=45°,从而得出∠BDC=45°,由∠ADC、∠BDC互补即可得出结论.【解答】解:延长CD到点F,如图所示.∵四边形BCDE是平行四边形,∴BC∥DE,∵∠ABC=90°,∴∠BDE=90°,∴∠ADE=90°.∵将△ACD沿直线CD翻折后,点A落在点E处,∴∠ADF=∠EDF=∠ADE=45°,∴∠BDC=∠ADF=45°,∴∠ADC=180°﹣∠BDC=135°.故答案为:135°.【点评】本题考查了平行四边形的性质,解题的关键是求出∠BDC=45°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等的角是关键.三、解答题(本大题共7题,第19题-21题每题5分,第22题7分,第23题8分,第24题10分,第25题12分,满分52分)[请将解题过程填入答题纸的相应位置]19.解方程:﹣=1.【考点】解分式方程.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.20.解方程组:.【考点】高次方程.【专题】方程与不等式.【分析】先将原方程组进行变形,利用代入法和换元法可以解答本题.【解答】解:,由①,得③,将①③代入②,得,设x2=t,则,即t2﹣10t+9=0,解得,t=1或t=9,∴x2=1或x2=9,解得x=±1或x=±3,则或或或,即原方程组的解是:或或或.【点评】本题考查高次方程,解题的关键是明确解高次方程的方法,尤其是注意换元法的应用.21.如图,平面直角坐标系xOy 中,点A (a ,1)在双曲线上y=上,函数y=kx+b 的图象经过点A ,与y 轴上交点B (0,﹣2),(1)求直线AB 的解析式;(2)设直线AB 交x 轴于点C ,求三角形OAC 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A 点坐标代入双曲线解析式可求得a 的值,再利用待定系数法可求得直线AB 的解析式;(2)由直线AB 的解析式可求得C 点坐标,从而可求得OC 的长,过A 作AH ⊥x 轴于点H ,则可求得AH 的长,从而可求得△AOC 的面积.【解答】解:(1)将A (a ,1)代入y=,得A (3,1),设直线AB 解析式为y=kx+b ,将A (3,1)B (0,﹣2)代入可得,解得,∴直线AB 解析式为y=x ﹣2;(2)如图,过点A 作AH ⊥OC ,∵A (3,1),∴AH=1,在y=x ﹣2中,令y=0可得x=2,∴C(2,0),∴OC=2,∴S△OAC=OC•AH=×2×1=1.【点评】本题主要考查函数图象的交点,掌握函数图象的交点满足每一个函数解析式是解题的关键.22.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.【考点】正方形的性质;平行四边形的判定与性质.【分析】(1)利用正方形的性质得出AC⊥DB,BC∥AD,再利用平行线的判定与性质结合平行四边形的判定方法得出答案;(2)利用正方形的性质结合直角三角形的性质得出∠OFC=30°,即可得出答案.【解答】(1)证明:∵四边形ABCD是正方形,∴AC⊥DB,BC∥AD,∵CE⊥AC,∴∠AOD=∠ACE=90°,∴BD∥CE,∴四边形BCED是平行四边形;(2)解:连接AF,∵四边形ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC,∴∠OCB=45°,∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°,∴∠BCF=60°﹣45°=15°.【点评】此题主要考查了正方形的性质以及平行四边形的判定和直角三角形的性质,正确应用正方形的性质是解题关键.23.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE的面积)【考点】菱形的判定与性质;平行四边形的判定与性质.【分析】(1)由AE∥BC,DE∥AB,可证得四边形ABDE为平行四边形,又由AD是边BC上的中线,可得AE=CD,即可证得四边形ADCE 是平行四边形,继而证得结论;(2)由BC=2AD,易得四边形ADCE 是菱形,继而求得S四边形ADCE=m2.【解答】证明:(1)∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE 是平行四边形,∴AD=CE;(2)∵BC=2AD,BC=2CD,∴AD=CD,∵四边形ADCE 是平行四边形,∴四边形ADCE 是菱形,∵DE=AB=m,AC=2AO=2m,∴S四边形ADCE=AC•DE=m2.【点评】此题考查了平行四边形的判定与性质以及菱形的判定与性质.注意证得四边形ADCE 是平行四边形是关键.24.李老师准备网上在线学习,现有甲、乙两家网站供李老师选择,已知甲网站的收费方式是:月使用费7元,包时上网时间25小时,超时费每分钟0.01元;乙网站的月收费方式如图所示.设李老师每月上网的时间为x小时,甲、乙两家网站的月收费金额分别是y1、y2.(1)请根据图象信息填空:乙网站的月使用费是10 元,超时费是每分钟0.01 元;(2)写出y1与x之间的函数关系;(3)李老师选择哪家网站在线学习比较合算?【考点】一次函数的应用.【专题】一次函数及其应用.【分析】(1)由图象可知乙超时25小时费用多出15元,可按比例求解.(2)关键题意,甲上网时间与所付费用之间是一次函数关系,且比例系数已知,用待定系数法求解.(3)可用图象法或分析法求解.【解答】解:(1)由图象可知;乙网站的月使用费是10元;当上网时间超过50小时就开始收取超时费:15÷25÷60=0.01 (元)即:超时费每分钟是0.01元.(2)当0≤x≤25时,y1=7.当x>25时,设y1与x之间的关系式:y1=kx+b其中,k=0.6,当x=25时 y1=7即:7=0.6×25+b解之得b=﹣8所以当x>25时,y1=0.6x﹣8.(3)当x=30时,因为y1=0.6×30﹣8=10(元),y2=10,所以,当x=30时,选择哪家都一样当 x<30时,y2=10(元),y1<0.6×30﹣8=10(元),故选择甲网站比较合算当x>30时,选择乙网站比较合算【点评】本题考查了一次函数的图象及其应用,解题的关键是理解函数图象的意义.25.已知,如图,平面直角坐标系xOy中,线段AB∥y轴,点B在x轴正半轴上,点A在第一象限,AB=10.点P是线段AB上的一动点,当点P在线段AB上从点A向点B开始运动时,点B同时在x轴上从点C(4,0)向点O运动,点P、点B运动的速度都是每秒1个单位,设运动的时间为t(0<t<4).(1)用含有t的式子表示点P的坐标;(2)当点P恰好在直线y=3x上时,求线段AP的长;(3)在(2)的条件下,直角坐标平面内是否存在点D,使以O、P、A、D为顶点的四边形是等腰梯形.如果存在,请直接写出点D的坐标;如果不存在,请简单说明理由.【考点】一次函数综合题.【分析】(1)由题意表示出BP,OB即可;(2)由点P在直线y=3x上,建立方程求出t即可;(3)分三种情况讨论计算,①当AP,OD为底时,AP∥OD,AD=OP,AP≠OD,②当OP,AD 为底时,AP=OD,OD不平行AP,OP∥AD③当DP,OA为底时,AP=OD,AP不平行OD,PD∥OA,即可.【解答】解:(1)根据题意得,BP=AB﹣AP=10﹣t,OB=OC﹣BC=4﹣t,∴P(4﹣t,10﹣t),(2)由(1)得,P(4﹣t,10﹣t),∴将P(4﹣t,10﹣t)代入y=3x,得t=1,∴AP=1,(3)∵以O、P、A、D为顶点的四边形是等腰梯形,①如图1,当AP,OD为底时,∴AP∥OD,AD=OP,AP≠OD,∴点D在y轴上,设点D(0,a),由(2)有,t=1,∴A(3,10),P(3,9),∴AD=,OP=∴=,∴a=19或a=1(∵AP=OD=1,∴舍).∴D(0,19),②如图2,当OP,AD为底时,∴AP=OD,OD不平行AP,OP∥AD∵点P在直线y=3x上,且点A(3,10),∴直线AD解析式为y=3x+1,设D(b,3b+1),由(2)有,t=1,∴A(3,10),P(3,9),∴AP=1,OD=,∴1=,∴b=﹣或b=0(∵OD∥AP,∴舍),∴D(﹣,﹣),③如图3,当DP,OA为底时,∴AP=OD,AP不平行OD,PD∥OA,∵A(3,10),∴直线OA解析式为y=x,∵P(3,10),∴直线PD解析式为y=x﹣1,设D(c, c﹣1),由(2)有,t=1,∴A(3,10),P(3,9),∴AP=1,OD=,∴1=,∴c=或c=﹣1(∵AP∥OD,∴舍),∴D(,),∴符合条件的D(0,19)、(﹣,﹣)、(,).【点评】此题是一次函数综合题,主要考查了点在直线上的特点,待定系数法求函数解析式,等腰梯形的性质,解本题的关键是分情况讨论计算,难点是画出满足题意的图形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年安徽省优质名校下学期八年级数学期末试卷(沪科版)(满分150分,时间:120分钟)一、选择题(每小题4分,共40分)1. 二次根式2221,12,30,2,40,2x x x y ++中,最简二次根式有( )个A 、1B 、2C 、3D 、42. 、若,x y 为实数,且|2|20x y ++-=,则2009x y ⎛⎫⎪⎝⎭的值为( )A 、1B 、-1C 、2009D 、2009-3.若()()822222=-++b a b a ,则=+22b a ( )A .-2 B. 4 C.4或-2 D .-4或2 4.一个样本的各数据都减少9,则该组数据的A .平均数减少9,方差不变B .平均数减少9,方差减少3C .平均数与极差都不变D .平均数减少9,方差减少95.如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC 的长为( ) A .3B .6C .33D .366.如图,直角△ABC 的周长为24,且AB:AC =5:3,则BC =( ) A .6 B .8 C .10 D .127.三角形两边的长分别是8和6,第三边的长是方程x ²-12x +20=0的一个实数ABCD根,则三角形的周长是( )A . 24B . 24或16C . 26D . 16 8.若n (n≠0)是关于x 的方程x 2+mx +2n=0的根,则m+n 的值为 A .1B .2C .一lD .一29.已知下列命题:①若a>0,b>0,则a+b>0;②若2a ≠2b ,则a≠b;③角平分钱上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半,其中原命题与逆命题均为真命题的是( )A .①③④ B. ①②④ C. ③④⑤ D. ②③⑤ 10. 如图,在一个由4×4个小正方形组成的正方形网格中, 阴影部分面积与正方形ABCD 的面积比是( )A. 3 :4B. 5 :8C. 9 :16D. 1 :2 二、填空题(每题5分,计20分)11.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =b a b a -+,如3※2=52323=-+.那么12※4= 。
12.全椒县中长期教育改革和发展规划纲要指出:要将全椒 打造成川东渝西的教育高地,为了促进教育的快速发展近期提出了“五个校园”建设工程,要求绿色校园达标率从2010年的40%到2012年达到80%,那么年平均增长率是 (2≈1.414,保留两位数)13. 如下图,矩形内有两个相邻的正方形,面积..分别为4和2,那么阴影部分的面积是 。
C14.如图,点O(0,0),B(0,1)是正方形OB B1 C 的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标(第13题)(第14题)三、解答题(共90分)15.(8分)化简或计算:(1)1021()(3)(2)2π--+-+--︱-6︱(2)16.(8分)如图所示,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度AB.yx3214321C CCBBBBCBO162(6)488--17.(8分)如图,在Rt△ABC中,∠B=90︒,AB=6cm,BC=3cm,点p从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s 的速度移动,如果p、Q两点同时出发,几秒钟后,p、Q间的距离等于42cm?18. (8分)已知正方形ABCD,GE⊥BD于B,AG⊥GE于G ,AE=AC,AE交BC于F,求证:(1)四边形AGBO是矩形;(3分)(2)求∠CFE的度数.(5分)19.(10分)关于X的方程0141)1(22=+++-kxkx。
(1)若方程有两个实数根,求k的范围。
(2)当方程的两根是一个矩形两邻边的长且矩形的对角线长为5时,求k的值。
OGF ED CBA第23题20. (10分)我县某中学对学校倡导的“压岁钱捐款活动”进行抽样调查,得到一组学生捐款的数据,下图是根据这组数据绘制的统计图,图中从左到右长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.(1)他们一共调查了多少学生?(3分)(2)写出这组数据的中位数、众数;(3分)4分)(3)若该校共有2000名学生,估计全校学生大约捐款多少元?(21. (12分)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.22.(12分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;23.(14分)(一位同学拿了两块45o三角尺MNK△,ACB△做了一个探究活动:将MNK△的直角顶点M放在ABC△的斜边AB的中点处,设4AC BC==.(1)如图(1),两三角尺的重叠部分为ACM△,则重叠部分的面积为,周长为.(2)将图(1)中的MNK△绕顶点M逆时针旋转45o,得到图26(2),此时重叠部分的面积为,周长为.(3)如果将MNK△绕M旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为.(4)在图(3)情况下,若1AD=,求出重叠部分图形的周长.ABCMN图(1)ACMNK图(2)ACMNK图(3)DG第23题图参考答案一、选择题:(每题4分,计40分)题号 1 2 3 4 5 6 7 8 9 10 答案CBBADBADCB二、填空题:(每题5分,计20分) 11、1212、41% 13、22-2 14、203三、解答题:15、(1)解:原式=-2+1+2-6 =-5(2)解: 原式=6×12-123-83 =3-20316、解:由题意知△ABC 是直角三角形,且90ABC ∠=︒,50BC =米.设AB x =米,则(10)AC x =+米,……(2分) 由勾股定理,得222AB BC AC += 即22250(10)x x +=+ ……(5分) 所以120x = 即120AB =米 ……(7分) 答:该河的宽度AB 的长为120米. ……(8分)17、解:设t 秒钟后PQ=42 由题意得:(2t )2+(6-t)2=( 42)2 解得: x 1=52x 2=22 ∵ BC=3cm ∴ t=2 (不合题意舍去) 答:52秒钟以后PQ=42. 18、(1)∵ABCD 是正方形 ∴BD ⊥AC 又已知AG ⊥GE ,GE ⊥BD∴四边形 AGBO 是矩形 ……3分 (2)∵ABCD 是矩形,且AO=OB ∴AG AE 21BD 21BO === ∴∠AEG =30° ……4分 于是由BE ∥AC ,知∠CAE =30° ∵AE=AC ∴∠ACE=∠AEC =75°……6分 而∠ACF =45°,则∠FCE=30°∴∠CFE =75° ……8分 19、20、解:(1)86285024586+÷=++++(名) 所以一共调查了50名学生. …… (3分)(2)这组数据的中位数是20元,众数是20元…….(6分) (3)平均每个学生捐款的数量是:1(54108151020162512)17.450⨯+⨯+⨯+⨯+⨯=(元) 17.4200034800⨯=(元)所以全校学生大约捐款34800元。
…… (10分)21、(1)证明:∵∠AEF =90o , ∴∠FEC +∠AEB =90o 在Rt △ABE 中,∠AEB +∠BAE =90o ,∴∠BAE =∠FEC ;…… (3分)(2)证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180o -45o =135o .又∵CF 是∠DCH 的平分线,∠ECF =90o +45o =135o 在△AGE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠=FEC GAE ECF AGE EC AG o,135, ∴△AGE ≌△ECF ; …… (8分) (3)解:由△AGE ≌△ECF ,得AE=EF . 又∵∠AEF =90o , ∴△AEF 是等腰直角三角形由AB=a ,BE =21a ,知AE =25a , ∴S △AEF =85a 2 …… (12分)22、证明:(1)连结MD ∵点E 是DC 的中点,ME ⊥DC ∴MD=MC 又∵AD=CF,MF=MA ∴△AMD ≌△FMC ∴∠MAD=∠MFC=120° ∵AD ∥BC ,∠ABC =90° ∴∠BAD =90° ∴∠MAB =30°在Rt △AMB 中,∠MAB =30° ∴BM= 12AM .,即AM=2BM ……(6分)(2)∵△AMD ≌△FMC ∴∠ADM=∠FCM ∵AD ∥BC ∴∠ADM=∠CMD ∴∠CMD=∠FCM∵MD=MC,ME ⊥DC ∴∠DME==∠CME= 1 2 ∠CMD ∴∠CME= 12 ∠FCM在Rt △MBP 中,∠MPB =90°-∠CME=90°- 12∠FCM ……(12分)23、(1)如图(1),两三角尺的重叠部分为ACM △,则重叠部分的面积为 4 ,周长为(4分) (2)将图(1)中的MNK △绕顶点M 逆时针旋转45o,得到图(2),此时重叠部分的面积为 4 ,周长为 8 .……(8分)(3)如果将MNK △绕M 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为 4 .……(10分)(4)在图(3)情况下,若1AD ,求出重叠部分图形的周长.。