河北省高三数学上学期第二次模拟考试试题理
河北省唐山市2014届高三第二次模拟考试数学(理)试题(解析版)
河北省唐山市2014届高三第二次模拟考试数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知a R ∈,若12aii+-为实数,则a =( ) A .2 B .-2 C .12- D .122.已知命题P :函数|1|x y e -=的图像关于直线1x =对称,q :函数cos(2)6y x π=+的图像关于点(,0)6π对称,则下列命题中的真命题为( )A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∨⌝答案 A 解析试题分析:函数|1|x y e -=的图像如图所示:由图形可知图像关于直线x=1对称,所以命题P正确;考点:1.函数图象;2.命题的真假判断.3.设变量,x y 满足||||1x y +≤,则2x y +的最大值和最小值分别为( ) A .1,-1 B .2,-2 C .1,-2 D .2,-14.执行下面的程序框图,若输出的S 是2047,则判断框内应填写( ) A .9?n ≤ B .10?n ≤ C .10?n ≥ D . 11?n ≥+=,则tanα=()5.已知sinααA B C.D.6.已知函数()sin()f x x ωϕ=+的部分图像如图所示,则()2f π=( )A .B .C D7.将6名男生、4名女生分成两组,每组5人,参加两项不同的活动,每组3名男生和2名女生,则不同的分配方法有( )A .240种B .120种C .60种D .180种8.直三棱柱111ABC A B C -的球面上,AB AC ==,12AA =,则二面角1B AA C --的余弦值为( )A .13-B .12-C .13D .129.某几何体的三视图如图所示,则该几何体的体积为( )A B . C D10.若正数,,a b c 满足24288c bc ac ab +++=,则2a b c ++的最小值为( )A B . C .2 D .考点:函数的最值.11.已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )A .1[,1)2 B . C . D .12.若不等式12(1)(1)lg(1)lg x x x xn a n x n n+++-+-≥-对任意不大于1的实数x 和大于1的正整数n 都成立,则a 的取值范围是( ) A .[0,)+∞ B .(,0]-∞ C .1[,)2+∞ D .1(,]2-∞试题分析:∵不等式12(1)(1)lg (1)lg x x x xn a n x n n+++-+-≥-对任意不大于1的实数x 和大于1的第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.商场经营的某种袋装大米质量(单位:kg )服从正态分布2(10,0.1)N ,任取一袋大米,质量不足9.8kg 的概率为 .(精确到0.0001) 注:()0.6826p x μσμσ-<≤+=,(22)0.9544p x μσμσ-<≤+=, (33)0.9974p x μσμσ-<≤+=14.已知向量(2,1)a =,(1,2)b =-,若a ,b 在向量c 上的投影相等,且5()()2c a c b -∙-=-,则向量c 的坐标为 .考点:向量的运算.15.已知12,F F 为双曲线22:13y C x -=的左、右焦点,点P 在C 上,12||2||PF PF =, 则12cos F PF ∠= .16.在ABC ∆中,角A ,B ,C 的对边a ,b ,c 成等差数列,且090A C -=,则cos B = .三、解答题:本大题共70分,其中(17)-(21)题为必考题,(22)、(23)、(24)题为选考题.解答题写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在公差不为0的等差数列{}n a 中,31015a a +=,且2511,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)设121111n n n n b a a a +-=+++,证明:112n b ≤<.18.(本小题满分12分)甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.(1)求甲、乙二人共命中一次目标的概率;(2)设X为二人得分之和,求X的分布列和期望.【答案】(1)0.18;(2)详见解析.【解析】19.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥底面ABCD,BD PC⊥,E是PA的中点.(1)求证:平面PAC⊥平面EBD;(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为14,求四棱锥P-ABCD的体积.试题解析:(Ⅰ)因为P A⊥平面ABCD,所以P A⊥BD.20.(本小题满分12分)已知抛物线2:2(0)E y px p =>的准线与x 轴交于点M ,过点M 作圆22:(2)1C x y -+=的两条切线,切点为A 、B ,||AB =(1)求抛物线E 的方程; (2)过抛物线E 上的点N 作圆C 的两条切线,切点分别为P 、Q ,若P ,Q ,O (O 为原点)三点共线,求点N 的坐标.因为直线PQ经过点O,所以3-2s=0,32s .21. (本小题满分12分)已知函数2()ln f x x x ax =--,a R ∈.(1)若存在(0,)x ∈+∞,使得()0f x <,求a 的取值范围;(2)若()f x x =有两个不同的实数解,(0)μνμν<<,证明:'()12f μν+>.又'1()2f x x a x=--,所以请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.∆∆;(2)EF//CB求证:(1)DEF EAF23. (本小题满分10分)选修4-4:坐标系与参数方程长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴的正半轴上滑动,2BP PA =,点P 的轨迹为曲线C.(1)以直线AB 的倾斜角α为参数,求曲线C 的参数方程;(2)求点P 到点(0,2)D -距离的最大值24. (本小题满分10分)选修4-5:不等式选讲 已知函数()|||3|,f x x a x a R =--+∈.(1)当1a =-时,解不等式()1f x ≤;(2)若[0,3]x ∈时,()4f x ≤,求a 的取值范围.。
2024年新高考九省联考高三第二次模拟数学试题及答案
2024年高考第二次模拟考试高三数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合(){}{}ln 3,1A x y x Bx x ==−=≤−,则()A B =R ( )A .{}13x x −<≤B .{}1x x >− C .{1x x ≤−,或}3x >D .{}3x x >2.已知复数i z a b =+(a ∈R ,b ∈R 且a b ),且2z 为纯虚数,则zz=( ) A .1B .1−C .iD .i −3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b + 在向量()0,1j = 上的投影向量为( )A . jB . j −C . 2jD . 2j −4. “1ab >”是“10b a>>”( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D . 既不充分也不必要条件5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A .60 B .114 C .278 D .3366.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A . ()5,11,3 −−∪−+∞B . [)5,1,3−∞−∪+∞C . (][) ,21,−∞−∪+∞D . [)()2,11,−−−+∞7.已知ABC ∆中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A . 4πB . 6πC . 8πD . 9π8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”.若长方形G 的四边均与椭圆22:164x y M +=相切,则下列说法错误的是( )A .椭圆MB .椭圆M 的蒙日圆方程为2210x y +=C .若G 为正方形,则G 的边长为D .长方形G 的面积的最大值为18二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得60分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的是( ) A .MN 的最小值是6 B .若点5,22P,则MF MP +的最小值是4C .113MF NF+= D .若18MF NF ⋅=,则直线MN 的斜率为1± 10.已知双曲线()222:102x y E a a−=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( )A . 若E 的两条渐近线相互垂直,则a =B. 若E E 的实轴长为1C . 若1290F PF ∠=°,则124PF PF ⋅=D . 当a 变化时,1F PQ 周长的最小值为11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( ) A .11B D 与EF 是异面直线B .存在点P ,使得12A P PF =,且BC //平面1APBC .1A F 与平面1B EBD .点1B 到平面1A EF 的距离为45三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为13.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.14. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列{}n a 的前n 项和为n S ,且对于任意的*n ∈N 都有321n n S a =+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中的最大值为n M ,最小值为n m ,令2n nn M m b +=,求数列{}n b 的前20项和20T .16.(15分)灯带是生活中常见的一种装饰材料,已知某款灯带的安全使用寿命为5年,灯带上照明的灯珠为易损配件,该灯珠的零售价为4元/只,但在购买灯带时可以以零售价五折的价格购买备用灯珠,该灯带销售老板为了给某顾客节省装饰及后期维护的支出,提供了150条这款灯带在安全使用寿命内更换的灯珠数量的数据,数据如图所示.以这150条灯带在安全使用寿命内更换的灯珠数量的频率代替1条灯带更换的灯珠数量发生的概率,若该顾客买1盒此款灯带,每盒有2条灯带,记X 表示这1盒灯带在安全使用寿命内更换的灯珠数量,n 表示该顾客购买1盒灯带的同时购买的备用灯珠数量.(1)求X 的分布列;(2)若满足()0.6P X n ≥≤的n 的最小值为0n ,求0n ;(3)在灯带安全使用寿命期内,以购买替换灯珠所需总费用的期望值为依据,比较01nn =−与0n n =哪种方案更优.17.(15分)如图,在三棱柱111ABC A B C −中,直线1C B ⊥平面ABC,平面11AA C C ⊥平面11BB C C .(1)求证:1AC BB ⊥;(2)若12AC BC BC ===,在棱11A B 上是否存在一点P ,使二面角1P BC C −−?若存在,求111B PA B 的值;若不存在,请说明理由.18.(17分)已知函数()ln =−+f x x x a .(1)若直线(e 1)yx =−与函数()f x 的图象相切,求实数a 的值; (2)若函数()()g x xf x =有两个极值点1x 和2x ,且12x x <,证明:12121ln()x x x x +>+.(e 为自然对数的底数).19.(17分)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点Q,P 的距离之比()||0,1,||MQ MP λλλλ=>≠是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为224x y +=,定点分别为椭圆2222:1x y C a b+=(0)a b >>的右焦点F 与右顶点A,且椭圆C 的离心率为1.2e = (1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为(0)k k >的直线l 与椭圆C 相交于B ,D(点B 在x 轴上方),点S,T 是椭圆C 上异于B,D 的两点,SF 平分,BSD TF ∠平分.BTD ∠(1)求||||BF DF 的取值范围;(2)将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为818π,求直线l 的方程.2024年高考第二次模拟考试高三数学全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .{13x x −<≤B .{1x x >− C.{1x x ≤−,或}3x >D .{3x x >【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可, 【详解】由题意得{}3A x x =>,{}1B x x =≤−,又{}1B x x =>−R 则(){}1A B x x ∪=>−R ,故选:B.A .1B .1−C .iD .i −【答案】D【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=−+,又因为2z 为纯虚数,所以2220a b ab −= ≠,即0a b =≠(舍)或0a b =−≠, 所以i z a a =−,所以i z a a =+, 所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z −−−====−+++−. 故选:D3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为( )A. jB. j −C. 2jD. 2j −【答案】C 【解析】【分析】根据a 与b 共线,可得240t −−=,求得2t =−,再利用向量a b +在向量()0,1j = 上的投影向量为()a b j jj j+⋅⋅ ,计算即可得解. 【详解】由向量()2,4a =−,()1,b t = ,若a与b共线,则240t −−=,所以2t =−,(1,2)a b +=−,所以向量a b +在向量()0,1j = 上的投影向量为: ()(1,2)(0,1)21a b j j j j j j+⋅−⋅⋅=⋅=, 故选:C4. “1ab >”是“10b a>>”( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断. 【详解】当0a >时,由1ab >,可得10b a>>, 当a<0时,由1ab >,得10b a<<; 所以“1ab >”不是“10b a>>”的充分条件. 因为01010a b ab a a>>>⇔− > ,所以1ab >, 所以“1ab >”是“10b a>>”的必要不充分条件. 故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题. 5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A.60 B.114 C.278 D.336【答案】D【解析】命题意图 本题考查排列与组合的应用.录用3人,有 353360C A = 种情况;录用4 人,有 4232354333162C C A C A −=种情况;录用 5 人,有12323331345333333225)4(C C A C A (C A C A )11A −+−=种情况.所以共有336种.6.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A. ()5,11,3 −−∪−+∞B. [)5,1,3−∞−∪+∞C. (][) ,21,−∞−∪+∞D. [)()2,11,−−−+∞【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1ra =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥°,由此可求解. 【详解】D 的标准方程为()()2221x a y a −+=+,圆心坐标为(),0D a ,半径为1ra =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=°.要使D 上总存在M ,N 两点使得PMN 为等边三角形, 则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥°,故1sin sin 302r MPDPD ∠=≥°=,即()1132a a +≥+,整理得23250a a +−≥,解得[)5,1,3a∈−∞−∪+∞.故选:B.7.已知ABC 中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A. 4π B. 6πC. 8πD. 9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥−P ABC 外接球的球心,求出外接球的半径,再计算它的表面积. 【详解】三棱锥−P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ,∴sin PA PQ θ==≤PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1, 直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°, 所以,A Q 重合,则∠ACB =90°, 则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径R OB =,∴三棱锥−P ABC 的外接球的表面积224π4π6πS R ==×=.故选:B .8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相【分析】由椭圆标准方程求得,a b 后再求得c ,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a =2b =,则c ,离心率为e =A 正确;当长方形G 的边与椭圆的轴平行时,长方形的边长分别为4,因此蒙,圆方程为2210x y +=,B 正确; 设矩形的边长分别为,m n ,因此22402m n mn +=≥,即20mn ≤,当且仅当m n =时取等号,所以长方形G 的面积的最大值是20,此时该长方形G 为正方形,边长为C 正确,D 错误. 故选:D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的【分析】A ,根据12||=MN x x p ++结合基本不等式即可判断;B ,由抛物线定义知当,,P M A 三点共线时MF MP +;C ,D ,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A ,设112212(,),(,),(,0)M x y N x y x x >, 因为这些MN 倾斜角不为0, 则设直线MN 的方程为32x ky =+,联立抛物线得2690y ky −−=, 则12126,9y y k y y +=⋅=−,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=, 则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确; 对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小, 即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确; 对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误; 对D ,1212123339()()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a −=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( ) A. 若E的两条渐近线相互垂直,则a =B. 若EE 的实轴长为1C. 若1290F PF ∠=°,则124PF PF ⋅= D. 当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===,故A 正确;B 选项,若E的离心率为c e a ==, 解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=°,则122221224PF PF a PF PF c −=+=, 整理得222121224448,4PF PF c a b PF PF ⋅=−==⋅=,故C 正确; D 选项,根据双曲线的定义可知,121222PF PF a QF QF a −=−= ,两式相加得11114,4PF QF PQ a PF QF a PQ +−=+=+, 所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥, 当且仅当84a a=,即a = 所以1F PQ周长的最小值为D 正确. 故选:ACD11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( )【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P,得到平面1APB 的法向量()1,0,1m =− ,根据数量积为0得到BC m ⊥ ,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =−=− ,由于112B D EF =,故11B D 与EF 平行,A 错误; B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z −−−−=,即224222x xy y z z =− =− −=−,解得242,,333x y z ===,故242,,333P , 设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⋅=⋅=++=⋅=⋅=+= , 令1a =,则0,1b c ==−,则()1,0,1m =−, 因为()()0,2,01,0,10BC m ⋅=−= ,故BC m ⊥ ,BC //平面1APB , 故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =,故1A F 与平面1B EB则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⋅⋅−+− ⋅=⋅−=−+= , 令11x =,则1131,2y z ==,故131,1,2n = , 则点1B 到平面1A EFD 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240 【解析】【详解】因为二项式nx+ 的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x+,则二项式展开式的通项3662166C C 2r r r r r rr T x x −−+=, 令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r −−++ ≥ ≥ ,解得111433r ≤≤, 因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x −×==,所以填24013.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0 【解析】【详解】注意到,()cos f x a x =+′.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ′′=−⇔++=−()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +−⇔++−=12cos cos 1,0x x a ⇔=−=±=.故答案为014. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+ 【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D Ay y ==,可求3AB CD +的值;当直线方程为()1x n y =−时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论. 【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =−,圆()22114x y +−=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =−=+=−=+,当l y ⊥轴时,则1A Dy y ==,所以113131622AB CD+=+++=; 当l 不垂直于y 轴时,设l 的方程为:()1x n y =−,代入抛物线方程得:()2222240n y n y n −++=, 所以2224,1A D A D n y y y y n++=⋅=。
河北省邢台市2014届高三第二次模拟考试数学(理)试题 word版
河北省邢台市2014届高三第二次模拟考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一. 选择题:(每小题5分,共60分.下列每小题所给出选项只有一项是符合题意,请将正确答案的序号填涂在答题卡上.) 1.设全集U R =,集合{}14A x x =<<,{}1,2,3,4,5B =,则()C A B ⋃⋂等于( )A.{}2,3B.{}1,2,3,4C.{}5D.{}1,4,5 2.复数z 满足方程123ii z +=--(i 为虚数单位),则复数z 在复平面内对应的点在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为:5:3k ,现用分层抽样方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( )A.24B.30C.36D.404.已知()2,M m 是抛物线()220y px p =>上一点,则“1p ≥”是“点M 到抛物线焦点的距离不少于3”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知x 、y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则24z x y =+的最小值为( )A.6-B.5C.10D.10-6.将函数()cos f x x x =-的图象向左平移m 个单位()0m >,若所得图象对应的函数为偶函数,则m 的最小值是 ( )A.23πB.3πC.8πD.56π7.按下列程序框图来计算:如果输入的,应该运算的次数为( )A.3B.4C.5D.68. 一个空间几何体的三视图及其相关数据如图所示,则这个空间几何体的表面积是( )A.112π B.1162π+ C.11πD.112π+9.已知身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有 ( )A.48种B.72种C.78种D.84种 10.在正四棱锥1111ABCD A B C D -中,2AB =,1AA =点A 、B 、C 、D 在球O 上,球O 与1BA ,的另一个交点为E ,与1CD 的另一个交点为F ,且1AE BA ⊥,则球O 表面积为 ( )A.6πB.8πC.12πD.16π11. 已知双曲线22221(0,0)x y a b a b-=>>,过其右焦点F 且与渐近线b y x a =-平行的直线分别与双曲线的右支和另一条渐近线交于A 、B 两点,且FA AB =,则双曲线的离心率为 ( )A. 32212.已知函数()()2111x ax f x a R x ++=∈+,若对于任意的*x N ∈,()3f x ≥恒成立,则a 的最小值等于 ( )A. 83- B.3-C.3-D.6-第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知向量()1,2a =-,()2,b x =,(),3c m =-,且//a b ,b c ⊥则x m += . 14. 若()5234501234512x a a x a x a x a x a x +=+++++,则3a = .15.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,设0a b >≥,若()()f a f b =,则()b f a 的取值范围是 = . 16. 如图,在ABC ∆中,sin2ABC ∠=2AB =,点D 在线段AC 上,且2AD DC =,BD =则BC = .三、解答题17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,若32n n S a n =+ (1) 求证:数列{}2n a -是等比数列; (2) 求数列23n n a ⎧⎫⎨⎬⨯⎩⎭的前n 项和n T .18.(本小题满分12分)春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动.(1)试求选出的3种商品中至少有一种是家电的概率;(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高100元,规定购买该商品的顾客有3次抽奖的机会;若中一等奖,则获得数额为m 元的奖金;若中两次奖,则共获得数额为3m 元的奖金;若中3次奖,则共获得数额为6m 元的奖金.假设顾客每次抽奖中奖的概率都是13,请问:商场将奖金数额m 最高定为多少元,才能使促销方案对商场有利?19. (本小题满分12分)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AB BC CA AA ===,D 为AB 的中点.(1)求证:1//BC 平面1DCA ;(2)求二面角11D CA C --的平面角的余弦值.20.(本小题满分12分)在平面直角坐标系xoy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为点()3,1-.(1)求椭圆C 的方程;(2)若动点P 在直线:l x =-P 作直线交椭圆C 于,M N 两点,使得PM PN =,再过P 作直线'l MN ⊥,证明:直线`l 恒过定点,并求出该定点的坐标.21.(本小题满分12分)已知函数()()1ln 1f x b x x x =+-+,斜率为1的直线与函数()f x 的图象相切于()1,0点.(1)求()()ln h x f x x x =-的单调区间;(2)当实数01a <<时,讨论()()()21ln 2g x f x a x x ax =-++的极值点.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分. 作答时请在答题卡涂上题号.22(本小题满分10分)选修4-1:几何证明选讲如图,O 的半径为2,AB 是直径,CD 是线,直线CD 、交AB 的延长线于P ,AE AC =,ED 交AB 于点F .(1)求证:PF PO PB PA ⋅=⋅; (2)若2PB BF =,试求PB 的长.23. (本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭,圆M 的参数方程为13cos 23sin x y θθ=+⎧⎨=-+⎩(其中θ为参数) (1)将直线的极坐标方程化为直角坐标方程; (2)若直线l 与圆M 相交于A 、B 两点,求直线 AM 与BM 的斜率之和.24.(本小题满分10分)选修4-5:不等式选讲已知函数231x -≤的解集为[],m n . (1)求m n +的值; (2)若x a m-<求证:1x a <+.参考答案(理科)1.D 因为U A ={x |x ≤1或x ≥4},所以(U A )∩B ={1,4,5}. 2.A 由1+2i z -3=-i ,得z -3=1+2i-i =-2+i ,则z =1+i.所以选A.3.Ck k +8=24120,得k =2,∴C 种型号产品抽取的件数为120×310=36. 4.B 若点M 到抛物线焦点的距离不少于3,则2+p2≥3,解得p ≥2,故选B. 5.A 画出可行域易知在点(3,-3)处有最小值-6. 6.A 因为f (x )=3sin x -cos x =2sin(x -π6),所以f (x )=2sin(x +m -π6)为偶函数,故m -π6=2k +12π(k ∈Z ),从而m 的最小值为2π3. 7.C 第一次循环,x =3x -2=28,不满足条件x >2014,再次循环; 第二次循环,x =3x -2=82,不满足条件x >2014,再次循环; 第三次循环,x =3x -2=244,不满足条件x >2014,再次循环; 第四次循环,x =3x -2=730,不满足条件x >2014,再次循环; 第五次循环,x =3x -2=2188,满足条件x >2014,结束循环, 因此循环次数为5次.8.D 由三视图可知,此几何体为半个圆台,由图中数据可知,上下底面半径分别为1,2,母线长为2,高为3,故该几何体的表面积为S =12[π×12+π×22+π(1+2)×2]+12()2+4×3=11π2+3 3.9.A 先把两个穿红衣服的人和穿蓝衣服的人排成一排,再用插空法把穿黄衣服的两人排入,有A 33A 24=72种排法,其中两个穿红衣服的人排在一起的排法有A 23A 22A 22=24种情况,则满足要求的排法共有72-24=48种.10.B 连结EF ,DF ,易证得BCFE 是矩形,则三棱柱ABE -DCF 是球O 的内接直三棱柱,∵AB =2,AA 1=23,∴tan ∠ABA 1=3,即∠ABA 1=60°,又AE ⊥BA 1,∴AE =3, BE =1,∴球O 的半径R =1222+12+(3)2=2,则球O 表面积S =4π(2)2=8π.11.B ∵直线AB 与渐近线y =-bax 平行,∴∠BOF =∠BFO (O 为坐标原点),设F (c ,0),则点B 坐标为(c 2,bc 2a ),∵FA →=AB →,∴点A 是BF 的中点,即A (3c4,bc 4a ),将点A 的坐标代入到双曲线方程得9c 216a 2-b 2c 216b 2a 2=1⇒e = 2. 12.A x ∈N *时,不等式f (x )≥3可化为a ≥-x -8x +3,设h (x )=-x -8x +3,则h ′(x )=-1+8x 2=-x 2+8x 2,当x ∈(0,22)时,h ′(x )>0,当x ∈(22,+∞)时,h ′(x )<0,所以x ∈N *时,h (x )max ={h (2),h (3)}max =-83,所以x ∈N *,f (x )≥3恒成立,只需a ≥-83即可.13.-10 ∵a ∥b ,∴x =-4,又∵b ⊥c ,∴2m +12=0,即m =-6,∴x +m =-10.14.80 由题可知a 3为x 3的系数,根据二项式的通项公式有T r +1=C r 5(2x )r=C r 52r x r ,令r =3,得到x 3的系数为C 3523=80.15.[34,2) 画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,12≤b <1,bf (a )=b ·f (b )=b (b +1)=b 2+b =(b +12)2-14∴34 ≤b ·f (a )<2.16.3 由sin ∠ABC 2=33,得cos ∠ABC =13, 在△ABC 中,设BC =a ,AC =3b ,由余弦定理得:9b 2=a 2+4-43a ,①又由∠ADB 与∠CDB 互补,∴cos ∠ADB =-cos ∠CDB ,即4b 2+163-41633b =-b 2+163-a 2833b,化简得3b 2-a 2=-6,②解①②得a =3,b =1,即BC =3.17.解:(1)由S n =3a n +2n ,得S n +1=3a n +1+2(n +1),以上两式相减得a n +1=3a n +1-3a n +2,即a n +1=32a n -1,所以a n +1-2=32(a n -2).又因为S 1=a 1=3a 1+2,所以a 1=-1,a 1-2=-3.故数列{a n -2}是以-3为首项,32为公比的等比数列.(6分)(2)由(1)得a n -2=-3×(32)n -1,所以a n =2-3×(32)n -1. 所以a n 2×3n =13n -12n , 所以T n =13(1-13n )1-13-12(1-12n )1-12=12n -12×3n -12.(12分) 18.解:(1)设选出的3种商品中至少有一种是家电为事件A ,从3种服装、2种家电、3种日用品中,选出3种商品,一共有C 38种不同的选法,选出的3种商品中,没有家电的选法有C 36种.所以,选出的3种商品中至少有一种是家电的概率为P (A )=1-C 36C 38=914.(5分)(2)设顾客三次抽奖所获得的奖金总额为随机变量X ,其所有可能的取值为0,m ,3m ,6m (单位:元).X =0表示顾客在三次抽奖都没有获奖,所以P (X =0)=(1-13)3=827;同理,P (X =m )=C 13×(1-13)2×13=49;P (X =3m )=C 23×(1-13)1×(13)2=29; P (X =6m )=C 33×(13)3=127.顾客在三次抽奖中所获得的奖金总额的期望值是E (X )=0×827+m ×49+3m ×29+6m ×127=43m .由43m ≤100,解得m ≤75.故m 最高定为75元,才能使促销方案对商场有利.(12分)19.(法一)(1)证明:如图一,连结AC 1与A 1C 交于点K ,连结DK . 在△ABC 1中,D 、K 分别为AB 、AC 1的中点, ∴DK ∥BC 1.(3分)又DK ⊂平面DCA 1, BC 1⊄平面DCA 1, ∴BC 1∥平面DCA 1.5分(2)解:二面角D -CA 1-C 1与二面角D -CA 1-A 互补. 如图二,作DG ⊥AC ,垂足为G ,又平面ABC ⊥平面ACC 1A 1,∴DG ⊥平面ACC 1A 1. 作GH ⊥CA 1,垂足为H ,连结DH ,则DH ⊥CA 1, ∴∠DHG 为二面角D -CA 1-A 的平面角.(8分) 设AB =BC =CA =AA 1=2,在等边△ABC 中,D 为中点,∴AG =14AC ,在正方形ACC 1A 1中,GH =38AC 1,∴DG =32,GH =38×22=342,∴DH =304.∴cos∠DHG=GHDH=324304=155.(11分)∴所求二面角的余弦值为-155.(12分)图一图二图三(法二)(1)证明:如图三,以BC的中点O为原点建立直角坐标系O-xyz,设AB=BC=CA=AA1=2.则A(0,0,3),D(12,0,32),B(1,0,0),A1(0,2,3),C(-1,0,0),B1(1,2,0),C1(-1,2,0).设n=(x,y,z)是平面DCA1的一个法向量,则⎩⎪⎨⎪⎧n·CD→=0,n·CA1→=0,又CD→=(32,0,32),CA1→=(1,2,3),∴⎩⎨⎧3x+z=0,x+2y+3z=0.令x=1,则z=-3,y=1,∴n=(1,1,-3).(3分)∵BC1→=(-2,2,0),∴n·BC1→=-2+2+0=0.又BC1⊄平面DCA1,∴BC1∥平面DCA1.(5分)(2)解:设m=(x1,y1,z1)是平面CA1C1的一个法向量,则⎩⎪⎨⎪⎧m·CC1→=0,m·CA1→=0.又CC1→=(0,2,0),CA1→=(1,2,3),∴⎩⎨⎧y1=0,x1+3z1=0.令z1=1,则x1=-3,∴m=(-3,0,1).(8分)∴cos〈m,n〉=m·n|m|·|n|=-2325=-155.(11分)∴所求二面角的余弦值为-155.(12分)20.解:(1)由题意知点(3,-1)在椭圆C 上,即9a 2+1b 2=1, ①又椭圆的离心率为63,所以c 2a 2=a 2-b 2a 2=(63)2=23,②联立①②可解得a 2=12,b 2=4,所以椭圆C 的方程为x 212+y 24=1.(5分)(2)因为直线l 的方程为x =-22,设P (-22,y 0),y 0∈(-233,233), 当y 0≠0时,设M (x 1,y 1),N (x 2,y 2),显然x 1≠x 2,联立⎩⎪⎨⎪⎧x 2112+y 214=1,x 2212+y 224=1,则x 21-x 2212+y 21-y 224=0,即y 1-y 2x 1-x 2=-13·x 1+x 2y 1+y 2, 又PM =PN ,即P 为线段MN 的中点,故直线MN 的斜率为-13·-22y 0=223y 0,又l ′⊥MN ,所以直线l ′的方程为y -y 0=-3y 022(x +22), 即y =-3y 022(x +423), 显然l ′恒过定点(-423,0);当y 0=0时,直线MN 即x =-22,此时l ′为x 轴亦过点(-423,0).综上所述,l ′恒过定点(-423,0).(12分)21.解:(1)由题意知:f ′(x )=b (ln x +x +1x )-1,f ′(1)=2b -1=1,b =1,h (x )=f (x )-x ln x -x +1,h ′(x )=1x -1,h ′(x )=1x -1>0,解得0<x <1.h ′(x )=1x-1<0,解得x >1.所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(6分)(2)g (x )=f (x )-(a +x )ln x +12ax 2=(1-a )ln x +12ax 2-x +1,∴g ′(x )=1-a x +ax-1=ax 2-x +1-a x =[ax -(1-a )](x -1)x =a [x -(1a -1)](x -1)x,由g ′(x )=0得:x 1=1a -1,x 2=1.①若0<1-1<1,a>0即1<a<1,0<x1<x2,此时g(x)的最小值点为x=1,极大值点x=1a-1.②若1a-1=1,a>0即a=12,x1=x2=1,则g′(x)≥0,g(x)在(0,+∞)上单调递增,无极值点.③若1-1>1,a>0即0<a<1,x1>x2=1,此时g(x)的极大值点为x=1,极小值点x=1 a.综上所述:当12<a<1时,g(x)的极小值点为x=1,极大值点x=1a-1;当a=12时,g(x)无极值点;当0<a<12,g(x)的极大值点为x=1,极小值点为x=1a-1.(12分)22.解:(1)∵AE=AC,∴∠EDC=∠AOC, ∴∠POC=∠FDP,∠P是公共角,∴△POC∽△PDF,∴POPC=PDPF,∴PD·PC=PF·PO,∵PD·PC=PB·P A,∴PF·PO=PB·P A.(5分)(2)∵PB=2BF,∴设PB=x,则BF=12x,PF=32x.又∵⊙O半径为2,∴PO=x+2,P A=x+4.由(1)知PF·PO=PB·P A,故32x(x+2)=x(x+4),解得x=2,x=0(舍去).∴PB=2.(10分)23.解:(1)∵ρsin(π4-θ)=ρ(sinπ4cos θ-cosπ4sin θ)=2,∴22ρcos θ-22ρsin θ=2,∴其直角坐标方程为x-y-2=0.(5分)(2)将圆M的参数方程代入直线方程x-y-2=0,得1+3cos θ+2-3sin θ-2=0,即sin θ-cos θ=1 3,两边平方整理得sin θcos θ=49,所以sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=49, ∴4tan 2θ-9tan θ+4=0,∴k AM +k BM =--94=94.(10分)24.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1 得1≤x ≤2,(3分)∴m =1,n =2,m +n =3.(6分)(2)若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1.(10分)。
2023年唐山市高三二模数学试题及答案
唐山市2023年普通高等学校招生统一考试第二次模拟演练数 学注意事项:1、答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3、考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合A ={x |x <-2},B ={x |-4<x <0},则A ∪B = A .{x |-4<x <-2} B .{x |x <0} C .{x |-2≤x <0} D .{x |x >-4} 2.i(3-i)的共轭..复数为A .3+i B .3-iC .1+3iD .1-3i 3.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学成绩不小于103分的人数至少为 A .220 B .240C .250D .3004.函数f (x )=2sin (2x +π3)的单调递减区间为A .(k π+π12,k π+7π12),k ∈Z B .(k π+π12,k π+5π6),k ∈ZC .(k π+π6,k π+5π6),k ∈Z D .(k π+π6,k π+7π12),k ∈Z5.已知圆C 1:x 2+y 2-2x =0,圆C 2:(x -3)2+(y -1)2=4,则C 1与C 2的位置关系是 A .外切 B .内切 C .相交 D .外离6.从2艘驱逐舰和6艘护卫舰中选出3艘舰艇分别担任防空、反潜、巡逻任务,要求其中至少有一艘驱逐舰,则不同的安排方法种数为 A .336 B .252 C .216 D .1807.椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2与E 交于A ,B 两点,△ABF 1为直角三角形,且|AF 1|,|AB |,|BF 1|成等差数列,则E 的离心率为A .12B .22C .32D .348.已知函数f (x )=e x +e -x -ax 2有三个极值点,则实数a 的取值范围是A .(-∞,1) B .(-∞,1] C .[1,+∞) D .(1,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.如图,直四棱柱ABCD -A 1B 1C 1D 1的所有棱长均为2,∠BAD =60︒,则A .AB 1与BC 1所成角的余弦值为14B .AB 1与BC 1所成角的余弦值为34C .AB 1与平面BCC 1B 1所成角的正弦值为64D .AB 1与平面BCC 1B 1所成角的正弦值为10410.如图,△ABC 是边长为2的等边三角形,连接各边中点得到△A 1B 1C 1,再连接△A 1B 1C 1的各边中点得到△A 2B 2C 2,…,如此继续下去,设△A n B n C n 的边长为a n ,△A n B n C n 的面积为M n ,则A .M n =34a 2nB .a 24=a 3a 5C .a 1+a 2+…+a n =2-22-nD .M 1+M 2+…+M n <3311.已知向量a =(cos α,cos β),b =(sin α,sin β),c =(1,1),下列命题成立的是 A .若a ∥b ,则α=β+k π(k ∈Z )B .若a ·b =1,则α+β=2k π+π2(k ∈Z )C .若(a +b )⊥(a -b ),则α+β=k π+π2(k ∈Z )D .设a ·c =m ,b ·c =n ,当m 2+n 2取得最大值时,α=β+2k π(k ∈Z )12.已知函数f (x )及其导函数g (x )的定义域均为R .f (2x )=f (4-2x ),f (x )+f (-x )=0,当x ∈[2,4]时,g '(x )<0,g (1)=1,则 A .f (x )的图象关于x =1对称 B .g (x )为偶函数C .g (x )+g (x +4)=0D .不等式g (e x )≥1的解集为(-∞,0]∪[ln(8k -1),ln(8k +1)](k ∈N *)三、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.某种产品的广告费支出 x根据上表数据得到y 关于x a 的值为_______. 14.已知直线l :3x -y -23=0过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且与C 的一条渐近线平行,则C 的实轴..长为________.15.正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为棱AB ,BC 的中点,过D 1,E ,F 做该正方体的截面,则截面形状为________,周长为________. 16.∀x >0,a e x -ln x +ln a ≥0,则实数a 的取值范围是________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin A sin B cos C =sin 2C .(1)求a 2+b 2c2的值;(2)若c =2,求△ABC 面积S 的最大值. 18.(12分)党的十八大以来,习近平总书记多次对职业病防治工作作出重要指示,并在全国卫生与健康大会上强调,推进职业病危害源头治理。
河北省石家庄一中高三数学第二次考试试题 理(含解析)
2012-2013学河北省石家庄一中高三暑期第二次考试数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上.2.(5分)设向量=(1,2),=(﹣2,y),若∥,则|3+2|=()|3+2|=3.(5分)已知函数是奇函数,则=()解:∵函数,即,,=4.(5分)“”是“(x+2)(x﹣1)≥0”的()可得≥0,可得5.(5分)在△ABC中,a,b,c分别是角A,B,C的对边,,则=()中,∵A==sinB=sinA=则由正弦定理得:=,6.(5分)(2009•天津)已知函数的最小正周向左平移个单位长度向右平移向左平移个单位长度向右平移由周期函数的周期计算公式:7.(5分)下列四种说法中,错误的个数是()①A={0,1}的子集有3个;②命题“存在”的否定是:“不存在;③函数f(x)=e﹣x﹣e x的切线斜率的最大值是﹣2;=2”的否定是对任意的﹣(时,即=2﹣2x围成的三角形的面积为×1×=9.(5分)(2010•江西)等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…810.(5分)(2011•淮南一模)已知点G是△ABC的重心,(λ,μ∈R),若∠A=120°,,则的最小值是()由三角形重心的性质可得,,设,结合基本不等式可求解:由向量加法的三角形法则及三角形重心的性质可得,∵∠A=120°,==即的最小值为==11.(5分)(2012•乐山二模)若函数f(x)的导数为f′(x)=﹣x(x+1),则函数f(log a x).×≤0x≤0∴,12.(5分)设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0)时,f(x)=﹣1,若在区间(﹣2,6)内的关于x的方程f(x)﹣logg a(x+2)=0(a ,=﹣1=﹣﹣二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题纸相应的空内.13.(5分)已知,且,则= .sin=﹣,,.==2×(﹣)14.(5分)(2011•湖南)在边长为1的正三角形ABC中,设,则= ﹣.,用表示出来,利用向量的数量积的运算法则和定义式即可求得,∴D﹣故答案为﹣.15.(5分)已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是a>.==a+>.16.(5分)函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f (x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1﹣x)+f(x)=1x∈[0,1];③当时,恒成立.则= 1 .③当时,),结合)≥,又由[,=),时,)≥,,恒成立,),(=),=1,]恒成立,是解答本题的关键.三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤.17.(10分)(2010•江苏)在平面直角坐标系xOy中,点A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()•=0,求t的值..从而得:AD=)由题设知:)•从而得:,,得:(方法一)由题设知.、BC=;)由题设知:)•,所以,,18.(12分)已知p:对任意m∈[﹣1,1],不等式恒成立;q:存在x,使不等式x2+ax+2<0成立,若“p或q”为真,“p且q”为假,求a的取值范围.得,解得假,则真,则19.(12分)设函数(1)求f(x)的最小正周期;(2)在△ABC中,a,b,c分别是角A,B,C的对边,,求b,c的长.=)=,即,解得.20.(12分)设函数f(x)=x﹣ae x﹣1.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若f(x)≤0对x∈R恒成立,求a的取值范围.21.(12分)ABC中,a、b、c分别是角A、B、C的对边,<C<,且.(1)判断△ABC的形状(2)若,求的取值范围、,又由因为)由值范围,进而求出))因为22.(12分)(2012•湘潭三模)抛物线y=g(x)过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x﹣n)g(x)在x=a和x=b处取到极值.(1)用m,x表示y=g(x)并比较a,b,m,n的大小(要求按从小到大排列);(2)若,且过原点存在两条互相垂直的直线与曲线y=f(x)均相切,求y=f(x).,两条切线垂直,即可求得函数解析式.﹣()+mnx﹣)又切线过原点,故﹣)﹣(=0=,≥8,∴,…(。
河北省石家庄市2019届高三数学模拟考试试题(二)文(含解析)
石家庄市2019届高中毕业班模拟考试(二)文科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,复数1ii+=( ) A. 1i -+ B. -1i -C. 1i +D. 1i -【答案】D 【解析】 【分析】利用复数的除法运算,化简复数1i1i i+=-,即可求解,得到答案. 【详解】由题意,复数()1i (i)1i 1i i i (i)+⋅-+==-⨯-,故选D . 【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.2.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()U C A B ⋂=( ) A. {}|12x x <≤ B. {}12x x #C. {}11x x -≤< D. {}|1x x ≥-【答案】B 【解析】 【分析】由补集的运算求得{}1U C A x x =≥,再根据集合的并集运算,即可求解,得到答案. 【详解】由题意,集合{}{}1,12A x x B x x =<=-≤≤,则{}1U C A x x =≥, 根据集合的并集运算,可得()U C A B ⋂={}12x x ≤≤,故选B .【点睛】本题主要考查了集合混合运算,其中解答中熟记集合的并集和补集的概念及运算是解答的关键,着重考查了运算与求解能力,属于基础题.3.如图是一个算法流程图,则输出的结果是( )A. 3B. 4C. 5D. 6【答案】A 【解析】 【分析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案. 【详解】由题意,执行上述的程序框图: 第1次循环:满足判断条件,2,1x y ==; 第2次循环:满足判断条件,4,2x y ==; 第3次循环:满足判断条件,8,3x y ==; 不满足判断条件,输出计算结果3y =, 故选A .【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.4.某班全体学生测试成绩的频率分布直方图如图,数据的分组依次为:[)20,40,[)40,60,[)60,80,[]80,100.若高于80分的人数是15,则该班的学生人数是()A. 40B. 45C. 50D. 60【答案】C 【解析】 【分析】根据给定的频率分布直方图,可得在[]80,100之间的频率为0.3,再根据高于80分的人数是15,即可求解学生的人数,得到答案. 【详解】由题意,根据给定的频率分布直方图,可得在[]80,100之间的频率为200.00150.3⨯=,又由高于80分的人数是15,则该班的学生人数是15500.3=人,故选C . 【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了运算与求解能力,属于基础题.5.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A. 3B. 2C. 32-D. 2-【答案】A 【解析】 【分析】画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y =-+,化直线3y x z =+,当直线3y x z =+过点A 时,此时直线3y x z =+在y 轴上的截距最大,目标函数取得最大值,又由2100x y y -+=⎧⎨=⎩,解得(1,0)A -,所以目标函数的最大值为3(1)03z =-⨯-+=,故选A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.已知抛物线24y x =,过焦点F 的直线与此抛物线交于A ,B 两点,点A 在第一象限,过点A 作抛物线准线的垂线,垂足为A ',直线A F '的斜率为,则AA F '的面积为( )A. B. C.【答案】A 【解析】 【分析】根据抛物线的几何性质,求出点A 的坐标,得到||4AA '=,利用三角形的面积公式,即可求解,得到答案.【详解】由题意,抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 设(1,2),(0)A a a '->,则2(,2)A a a ,因为直线A F '的斜率为,所以211a=--,所以a = 所以2||14AA a '=+=,所以AA F '∆的面积为142S =⨯⨯=A . 【点睛】本题主要考查了抛物线的性质的应用,以及三角形面积的计算,其中解答中熟练应用抛物线的几何性质,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.7.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤ ⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为( ) A.12πB.6π C.3π D.4π 【答案】D 【解析】 【分析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案. 【详解】将将函数()sin 2f x x =的图象向左平移ϕ个单位长度, 可得函数()sin[2()]sin(22)g x x x ϕϕ=+=+ 又由函数()g x 为偶函数,所以2,2k k Z πϕπ=+∈,解得,42k k Z ππϕ=+∈, 因为02πϕ≤≤,当0k =时,4πϕ=,故选D .【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.8.设l 表示直线,α,β,γ表示不同的平面,则下列命题中正确的是( ) A. 若//l α且αβ⊥,则l β⊥B. 若//γα且//γβ,则//αβC. 若//l α且//l β,则//αβD. 若γα⊥且γβ⊥,则//αβ【答案】B 【解析】 【分析】A 中,l 与β可能相交、平行或l β⊂;B 中,由面面平行的性质可得//αβ;C 中,α与β相交或平行;D 中,α与β相交或平行,即可求解. 【详解】由l 表示直线,α,β,γ表示不同的平面,在A 中,若//l α且αβ⊥,则l β⊥,则l 与β可能相交、平行或l β⊂; 在B 中,若//γα且//γβ,则//αβ,由面面平行的性质可得//αβ; 在C 中,若//l α且//l β,则//αβ,则α与β相交或平行; 在D 中,若γα⊥且γβ⊥,则//αβ,则α与β相交或平行, 故选B .【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记线面位置关系的判定定理与性质定理是解答的关键,着重考查了推理与运算能力,属于基础题.9.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( )A.54B. 5 【答案】C 【解析】 【分析】由双曲线1C 与双曲线2C 有相同的渐近线,列出方程求出m 的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,2=,解得2m =,此时双曲线221:128x y C -=,则曲线1C 的离心率为c e a ===,故选C . 【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.10.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A. B.C. D.【答案】B 【解析】 【分析】由题设条件知:0x <时,()0y xf x '=->,01x <<时,()0y xf x '=-<,0x =或1x = 时,()0y xf x '=-=,1x >时,()0y xf x '=->,由此即可求解.【详解】由函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,所以当1x >时,()0f x '<;1x =时,()0f x '=;1x <时,()0f x '>;所以当0x <时,()0y xf x '=->,当01x <<时,()0y xf x '=-<, 当0x =或1x = 时,()0y xf x '=-=,当1x >时,()0y xf x '=->, 可得选项B 符合题意,故选B .【点睛】本题主要考查了利用导数研究函数的极值的应用,其中解答中认真审题,主要导数的性质和函数的极值之间的关系合理运用是解答的关键,着重考查了推理与运算能力,属于基础题.11.已知当m ,[]1,1n ∈-时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A. m n >B. m n <C. m n <D. m 与n 的大小关系不确定【答案】C 【解析】 【分析】 设()3sin2xf x x π=+,利用导数求得函数()f x 在[1,1]-单调递增,再根据()()f m f n <,即可求解,得到答案.【详解】由题意,设()3sin2xf x x π=+,则()23cos22xf x x ππ'=+,当[1,1]x ∈-时,()0f x '>,()f x 单调递增, 又由33sinsin22mnm n ππ<++,所以()()f m f n <,即m n <,故选C .【点睛】本题主要考查了利用导数研究函数的单调性及其应用,其中解答中设出新函数,利用导数求得函数的单调性是解答的关键,着重考查了推理与运算能力,属于中档试题.12.在ABC △中,角A ,B ,C 的对边长分别为a ,b ,c ,满足()22sin 40a a B B -++=,b =的面积为( )B.D. 【答案】D 【解析】【分析】化简得2444sin()3a B a a aπ++==+,又由44a a +≥=,得到sin()13B π+=,解得6B π=,由余弦定理c =,利用面积公式,即可求解.【详解】由题意知()22sin 40a a B B -++=,可得24sin()403a a B π-++=,即24sin()43a B a π+=+,即2444sin()3a B a a aπ++==+,又由44a a +≥=,当且仅当4a a =,即2a =时等号成立,所以sin()13B π+=,所以32B ππ+=,解得6B π=,在ABC ∆中,由余弦定理可得2222cos b a c ac B =+-,即222222cos 6c c π=+-⨯,整理得2240c --=,解得c =,所以三角形的面积11sin 2226S ac B π==⨯⨯=, 故选D .【点睛】本题主要考查了三角函数恒等变换公式,以及余弦定理的应用,其中解答中熟练应用三角恒等变换的公式,化简求得6B π=,再根据余弦定理求得c =是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题. 13.已知1sin 3α=,,22ππα⎛⎫∈- ⎪⎝⎭,则tan α=__________.【解析】 【分析】根据三角函数的基本关系式求得cos 3α=,进而求得tan α,即可求解,得到答案.【详解】根据三角函数的基本关系式可得22218cos 1sin 1()39αα=-=-=,又因为,22ππα⎛⎫∈-⎪⎝⎭,所以cos 3α=,所以sin tan cos 4ααα==. 【点睛】本题主要考查了三角函数的基本关系式的化简、求值,其中解答中合理应用三角函数的基本关系式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,则20192f ⎛⎫= ⎪⎝⎭__________.【答案】1- 【解析】 【分析】由1x >时,得到函数()f x 是周期为1的函数,可得201911()(1009)()222f f f =+=,即可求解.【详解】由函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,可得当1x >时,满足()(1)f x f x =-,所以函数()f x 是周期为1的函数,所以122201911()(1009)()log 1222f f f =+===-.【点睛】本题主要考查了分段函数的求值问题,以及函数的周期性的应用,其中解答中得到函数的周期性,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.在平行四边形ABCD 中,已知1AB =,2AD =,60BAD ∠=︒,若CE ED =,2DF FB =,则AE AF ⋅=____________.【答案】52【解析】 【分析】设,AB a AD b ==,则1,2a b ==,得到12AE b a =+,2133AF a b =+,利用向量的数量积的运算,即可求解.【详解】由题意,如图所示,设,AB a AD b ==,则1,2a b ==, 又由CE ED =,2DF FB =,所以E 为CD 的中点,F 为BD 的三等分点,则12AE b a =+,221()333AF b a b a b =+-=+, 所以22121151()()233363AE AF a b a b a a b b ⋅=+⋅+=+⋅+2021515112cos6023632=⨯+⨯⨯+⨯=.【点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题.16.在三棱椎P ABC -中,底面ABC 是等边三角形,侧面PAB 是直角三角形,且2PA PB ==,PA BC ⊥,则该三棱椎外接球的表面积为__________.【答案】12π 【解析】由于PA =PB ,CA =CB ,PA⊥AC,则PB⊥CB,因此取PC 中点O ,则有OP =OC =OA =OB ,即O为三棱锥P -ABC 外接球球心,又由PA =PB =2,得AC =AB =,所以PC ==2412S ππ=⨯=.点睛:多面体外接球,关键是确定球心位置,通常借助外接的性质—球心到各顶点的距离等于球的半径,寻求球心到底面中心的距离、半径、顶点到底面中心的距离构成直角三角形,利用勾股定理求出半径,如果图形中有直角三角形,则学借助于直角三角形的外心是斜边的中点来确定球心.三、解答题:解答应写出必要的文字说明、证明过程或演算步骤. 17.已知数列{}n a 是等差数列,前n 项和为n S ,且533S a =,468a a +=.(1)求n a .(2)设2nn n b a =⋅,求数列{}n b 的前n 项和n T .【答案】(1) ()23n a n =- (2) 2(4)216n n T n +=-⋅+【解析】 【分析】(1)由数列{}n a 是等差数列,所以535S a =,解得30a =,又由46582a a a +==,解得2d =, 即可求得数列的通项公式;(2)由(1)得()1232nn n n b a n +=⋅=-⋅,利用乘公比错位相减,即可求解数列的前n 项和.【详解】(1)由题意,数列{}n a 是等差数列,所以535S a =,又533S a =,30a ∴=, 由46582a a a +==,得54a =,所以5324a a d -==,解得2d =, 所以数列的通项公式为()()3323n a a n d n =+-=-. (2)由(1)得()1232nn n n b a n +=⋅=-⋅,()()()234122120232n n T n +=-⋅+-⋅+⋅++-⋅,()()()()3412221242322n n n T n n ++=-⋅+-⋅++-⋅+-⋅,两式相减得()()2341222222232n n n n T T n ++-=⋅-++++-⋅,()1228128(3)2(4)21612n n n n n -++--+-⋅=-⋅+=-,即2(4)216n n T n +=-⋅+.【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.18.已知三棱锥P ABC -中,ABC △为等腰直角三角形,1AB AC ==,PB PC ==设点E 为PA 中点,点D 为AC 中点,点F 为PB 上一点,且2PF FB =.(1)证明://BD 平面CEF ;(2)若PA AC ⊥,求三棱锥P ABC -的表面积. 【答案】(1)见证明;(2)4 【解析】 【分析】(1)连接PD 交CE 于G 点,连接FG ,由三角形的性质证得//FG BD ,再由线面平行的判定定理,即可作出证明. (2)由P A A C ⊥,求得2PA =,得到,ABCPACSS,利用2ABCPACPBCS SSS=++表面积,即可求解.【详解】(1)连接PD 交CE 于G 点,连接FG , 点E 为PA 中点,点D 为AC 中点,∴点G 为PAC的重心,2PG GD ∴=,2PF FB =,//FG BD ∴,又FG ⊂平面CEF ,BD ⊄平面CEF ,//BD ∴平面CEF .(2)因为AB AC =,PB PC =,PA PA =, 所以PAB △全等于PAC ,PA AC ⊥,PA AB ∴⊥,PA 2∴=,所以12ABCS=,1PACS =在PBC 中,BC =PB PC ==BC 2=,所以13222PBCS==, 1322=422ABC PAC PBCS SSS=++=++表面积.【点睛】本题主要考查了直线与平面平行的判定,以及几何体的表面积的计算,其中解答中熟记线面平行的判定定理和三角形的面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.19.在平面直角坐标系中,()2,0A -,()2,0B ,设直线AC 、BC 的斜率分别为1k 、2k 且1212k k ⋅=- ,(1)求点C 的轨迹E 的方程;(2)过()F 作直线MN 交轨迹E 于M 、N 两点,若MAB △的面积是NAB △面积的2倍,求直线MN 的方程.【答案】(1) 22142x y +=(0y ≠)(2) 07x y -=或07x y ++=【解析】 【分析】(1)由题意,设(),C x y ,得到12y k x =+,22y k x =-,根据1212k k =-,即可求解椭圆的标准方程;(2)设直线:MN x my =-1212,y y y y +,再由2MABNABSS=,得到122y y =-,列出关于m 的方程,即可求解.【详解】(1)由题意,设(),C x y ,则12y k x =+,22yk x =-,又由2122142y k k x ==--,整理得22142x y +=,由点,,A B C 不共线,所以0y ≠,所以点C 的轨迹方程为221(0)42x y y +=≠.(2)设()11,M x y ,()22,N x y ,易知直线MN 不与x轴重合,设直线:MN x my =联立方程组22142x my x y ⎧=-⎪⎨+=⎪⎩,整理得得()22220m y +--=,易知>0∆,且12y y +=,122202y y m -=<+ 由2MABNABSS=,故122y y =,即122y y =-,从而()2212122122141222y y y y m y y m y y +-==++=-+, 解得227m =,即7m =,所以直线MN的方程为0x y +=或0x y ++=. 【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元新个税政策的税率表部分内容如下:(1)现有李某月收入19600元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?(2)现收集了某城市50名年龄在40岁到50岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有40人,没有孩子的有10人,有一个孩子的人中有30人需要赡养老人,没有孩子的人中有5人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的50人中,任何两人均不在一个家庭).若他们的月收入均为20000元,试求在新个税政策下这50名公司白领的月平均缴纳个税金额为多少?【答案】(1)950元(2) 1150元【解析】【分析】(1)由李某月应纳税所得额(含税)为11600元,根据税率的计算方法,即可求解.(2)根据题意,根据税率的计算方法,即可求解在新个税政策下这50名公司白领月平均缴纳个税金额,得到答案.---=元,【详解】(1)李某月应纳税所得额(含税)为:1960050001000200011600⨯=元,不超过3000的部分税额为30003%90⨯=元,超过3000元至12000元部分税额为860010%860+=元.所以李某月应缴纳的个税金额为90860950(2)有一个孩子需要赡养老人应纳税所得额(含税)为:---=元,2000050001000200012000月应缴纳的个税金额为:90900990+=元;有一个孩子不需要赡养老人应纳税所得额(含税)为:200005000100014000--=元, 月应缴纳的个税金额为:909004001390++=元;没有孩子需要赡养老人应纳税所得额(含税)为:200005000200013000--=元, 月应缴纳的个税金额为:909002001190++=元;没有孩子不需要赡养老人应纳税所得额(含税)为:20000500015000-=元, 月应缴纳的个税金额为:909006001590++=元;因为()990301390101190515905501150⨯+⨯+⨯+⨯÷=元, 所以在新个税政策下这50名公司白领月平均缴纳个税金额为1150元.【点睛】本题主要考查了函数实际应用问题,其中解答中认真审题,合理利用税率的计算方法,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.21.已知函数()1ln xf x x+=, (1)已知e 为自然对数的底数,求函数()f x 在21e x =处的切线方程; (2)当1x >时,方程()()()110f x a x a x=-+>有唯一实数根,求a 的取值范围. 【答案】(1) 422e 3e y x =- (2) 01a << 【解析】 【分析】(1)求得函数的导数()2ln x f x x -'=,得到4212e f e ⎛⎫'= ⎪⎝⎭,221e e f ⎛⎫=- ⎪⎝⎭,利用直线的点斜式方程,即可求解切线的方程; (2)当时,方程()()11f x a x x=-+,即()2ln 0x a x x --=,令()()2ln h x x a x x =--,求得()221ax ax h x x-++'=,令()221r x ax ax =-++,分类讨论利用导数求得函数的单调性与最值,即可求解. 【详解】(1)由题意,函数()1ln xf x x+=,定义域()0,∞+,则()2ln x f x x -'=,所以4212e f e ⎛⎫'= ⎪⎝⎭,221e e f ⎛⎫=- ⎪⎝⎭函数()f x 在21e x =处的切线方程为2421e 2e e y x ⎛⎫+=- ⎪⎝⎭,整理得422e 3e y x =-, 即函数()f x 在21ex =处的切线方程422e 3e y x =-. (2)当时,方程()()11f x a x x=-+,即()2ln 0x a x x --=,令()()2ln h x x a x x =--,有()10h =,()221ax ax h x x-++'=,令()221r x ax ax =-++,()1,x ∈+∞因为0a >,所以()r x 在()1,+∞单调递减,①当()110r a =-≤即1a ≥时, ()0r x <,即()h x 在()1,+∞单调递减,所以()()10h x h <=,方程()()11f x a x x=-+无实根. ②当()10r >时,即 0<<1a 时,存在()01,x ∈+∞,使得()01,x x ∈时,()0r x >,即()h x 单调递增; ()0,x x ∈+∞时,()0r x <,即()h x 单调递减; 因此()()0max 00h x h >=,取11x a =+,则21111111ln 111ln 11h a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+-+++=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令11t a=+,()1t >, 由()ln h t t t =-,则()11h t t'=-,1t >,所以()0h t '<,即()h t 在1t >时单调递减, 所以()()10h t h <=.故存在101,1x x a ⎛⎫∈+ ⎪⎝⎭,()10h x =.综上,a 的取值范围为0<<1a .【点睛】本题主要考查导数在函数中的综合应用,以及方程的有解问题,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.在极坐标系中,曲线C 的方程为()2cossin 0a a ρθθ=>,以极点为原点,极轴所在直线为x 轴建立直角坐标,直线l的参数方程为2212x y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与C 交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设点()2,1P -;若PM 、MN 、PN 成等比数列,求a 的值【答案】(1) 曲线C 的直角坐标方程为()20x ay a =>,直线l 的普通方程为10x y +-= ; (2) 1a =【解析】 【分析】(1)由极坐标与直角坐标的互化公式和参数方程与普通方程的互化,即可求解曲线的直角坐标方程和直线的普通方程;(2)把l 的参数方程代入抛物线方程中,利用韦达定理得12t t +=,1282t t a =+,可得到2211,,PM N MN t t t t P ===-,根据因为PM ,MN ,PN 成等比数列,列出方程,即可求解.【详解】(1)由题意,曲线C 的极坐标方程可化为()22cossin ,0a a ρθρθ=>,又由cos sin x y ρθρθ=⎧⎨=⎩,可得曲线C 的直角坐标方程为()20x ay a =>,由直线l的参数方程为21x y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去参数t ,得10x y +-=,即直线l 的普通方程为10x y +-=;(2)把l的参数方程2212xy⎧=-⎪⎪⎨⎪=-+⎪⎩代入抛物线方程中,得()()2820t t a-++=,由2280a a∆=+>,设方程的两根分别为1t,2t,则12t t+=>,12820t t a=+>,可得10,t>,2t>.所以12MN t t=-,1PM t=,2PN t=.因为PM,MN,PN成等比数列,所以()21212t t t t-=,即()212125t t t t+=,则()()2582a=+,解得解得1a=或4a=-(舍),所以实数1a=.【点睛】本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.23.设函数()22f x x x a=-+-.(1)当1a=时,求不等式()3f x≥的解集;(2)当()2f x x a=-+时,求实数x的取值范围.【答案】(1) (][),02,-∞⋃+∞ (2) 当4a≤时,x的取值范围为22ax≤≤;当4a>时,x的取值范围为22ax≤≤.【解析】【分析】(1)当1a=时,分类讨论把不等式()3f x≥化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得()()222f x x a x x a≥---=-+,当且仅当()()220x a x--≤时,取“=”,分类讨论,即可求解.【详解】(1)当1a =时,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩, 不等式()3f x ≥可化为33312x x -+≥⎧⎪⎨≤⎪⎩或13122x x +≥⎧⎪⎨<<⎪⎩或3332x x -≥⎧⎨≥⎩ , 解得不等式的解集为(][),02,-∞⋃+∞.(2)由绝对值的三角不等式,可得()()22222f x x x a x a x x a =-+-≥---=-+, 当且仅当()()220x a x --≤时,取“=”,所以当4a ≤时,x 的取值范围为22a x ≤≤;当4a >时,x 的取值范围为22a x ≤≤. 【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.。
2021届高三数学第二次模拟试题 理(含解析)
2021届高三数学第二次模拟试题 理(含解析)注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如果复数12aii-+(a R ∈,i 为虚数单位)的实部与虚部相等,则a 的值为( ) A. 1 B. -1C. 3D. -3【答案】D 【解析】 【分析】由复数的除法运算化简得到实部和虚部,令其相等即可得解.【详解】()()()()()1221212225ai i a a iai i i i ----+-==++-, 由题意知:21255a a-+=-,解得3a =-. 故选D.【点睛】本题主要考查了复数的除法运算及实部和虚部的定义,属于基础题.2.若{0,1,2}A =,{|2,}aB x x a A ==∈,则A B =( )A. {0,1,2}B. {0,1,2,3}C. {0,1,2,4}D. {1,2,4}【答案】C 【解析】 【分析】先求出集合B ,再求并集即可.【详解】由{}0,1,2A =,得{}{}|2,1,2,4aB x x a A ==∈=.{}0,1,2,4A B ⋃=.故选C.【点睛】本题主要考查了集合的描述法及并集的运算,属于基础题.3.向量(2,)a t =,(1,3)b =-,若a ,b 的夹角为钝角,则t 的范围是( ) A. 23t <B. 32>t C. 23t <且6t ≠- D. 6t <-【答案】C 【解析】 【分析】若a ,b 的夹角为钝角,则0a b <且不反向共线,进而利用坐标运算即可得解. 【详解】若a ,b 的夹角为钝角,则0a b <且不反向共线,230a b t =-+<,得23t <. 向量()2,a t =,()1,3b =-共线时,23t ⨯=-,得6t =-.此时2a b =-. 所以23t <且6t ≠-. 故选C.【点睛】本题主要考查了利用数量积研究向量的夹角,当为钝角时,数量积为0,容易忽视反向共线时,属于易错题.4.双曲线1422=-y x 的顶点到渐近线的距离等于( )25B.45C.2545【答案】A 【解析】 【分析】分别写出双曲线的顶点坐标和渐近线方程,利用点到直线的距离公式求解即可.【详解】双曲线2214x y -=的顶点为()2,0±.渐近线方程为:12y x =±.双曲线221 4xy-=的顶点到渐近线的距离等于255114=+.故选A.【点睛】本题主要考查了双曲线的几何性质,属于基础题.5. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有A. 60种B. 70种C. 75种D. 150种【答案】C【解析】试题分析:因,故应选C.考点:排列数组合数公式及运用.6.已知某个几何体的三视图如下图所示,则该几何体的体积是()A.5603B. 200C.5803D. 240【答案】B【解析】【分析】还原几何体得四棱柱,利用三视图求底面积和高可得解.【详解】由三视图可知,该几何体是以侧视图的四边形为底面的四棱柱,高为10,底面面积为()284202+⨯=,故体积为:2010200⨯=.故选B.【点睛】本题主要考查了由三视图还原几何体及柱体的体积的求解,属于基础题.7.下列函数中,最小正周期为π,且图象最新直线3x π=对称的函数是( )A. )32sin(2π+=x y B. )62sin(2π-=x yC. 2sin()23x y π=+D. 2sin(2)3y x π=-【答案】B 【解析】试题分析:首先选项C 中函数2sin 23x y π⎛⎫=+⎪⎝⎭的周期为4,故排除C ;将3x π=分别代入A ,B ,D ,得函数值分别为0,2,3,而函数()sin y A x B ωϕ=++在对称轴处取最值,故选B . 考点:三角函数的周期性、对称性.8.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A. 20i <,1S S i=-,i i 2= B. 20i ≤,1S S i=-,i i 2=C. 20i <,2SS =,1i i =+ D. 20i ≤,2SS =,1i i =+ 【答案】D 【解析】 【分析】先由第一天剩余的情况确定循环体,再由结束条件确定循环条件即可. 【详解】根据题意可知,第一天12S =,所以满足2S S =,不满足1S S i=-,故排除AB , 由框图可知,计算第二十天的剩余时,有2SS =,且21i =,所以循环条件应该是20i ≤. 故选D.【点睛】本题考查了程序框图的实际应用问题,把握好循环体与循环条件是解决此题的关键,属于中档题.9.已知α是第二象限角,且53)sin(-=+απ,则tan 2α的值为( ) A.45B. 237-C. 724-D. 249-【答案】C 【解析】 【分析】根据诱导公式得sin α,进而由同角三角函数的关系及角所在象限得tan α,再利用正切的二倍角公式可得解.【详解】由()3sin 5πα+=-,得3sin 5α=. 因为α是第二象限角,所以4cos 5α=-.34sin tan cos ααα==-.232tan 242tan291tan 7116ααα-===---. 故选C.【点睛】本题主要考查了同角三角函数的关系及正切的二倍角公式,属于基础题.10.P 为圆1C :229x y +=上任意一点,Q 为圆2C :2225x y +=上任意一点,PQ 中点组成的区域为M ,在2C 内部任取一点,则该点落在区域M 上的概率为( ) A.2513 B.35C.1225πD.35π【答案】B 【解析】 【分析】先求得M 轨迹是在以00,22x y ⎛⎫⎪⎝⎭为圆心,以23为半径的圆绕原点一周所形成的图形,根据几何概型的概率公式,求出相应的面积即可得到结论.【详解】设()00,Q x y ,中点M(x, y),则()002,2P x x y y --代入229x y +=,得()()2200229x x y y -+-=,化简得:22009224x y x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,又220025x y +=表示以原点为圆心半径为5的圆,故易知M 轨迹是在以00,22x y ⎛⎫⎪⎝⎭为圆心,以23为半径的圆绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上, 即应有222(14)x y r r +=, 那么在C 2内部任取一点落在M 内的概率为1615325255πππ-==,故选B.【点睛】本题主要考查了几何概型的求解,涉及轨迹问题,是解题的关键,属于中档题.11.已知抛物线24x y =焦点为F ,经过F 的直线交抛物线于),(11y x A ,),(22y x B ,点A ,B 在抛物线准线上的射影分别为1A ,1B ,以下四个结论:①124x x =-,②121AB y y =++,③112A FB π∠=,④AB 的中点到抛物线的准线的距离的最小值为2.其中正确的个数为( )A. 1B. 2C. 3D. 4【答案】C 【解析】 【分析】设直线AB 为1y kx =+与抛物线联立,由韦达定理可判断①,由抛物线定义可判断②,由0FA FB ⋅=可判断③,由梯形的中位线定理及韦达定理可判断④.【详解】物线24x y =焦点为(0,1)F ,易知直线AB 的斜率存在, 设直线AB 为1y kx =+.由214y kx x y=+⎧⎨=⎩,得2440x kx --=. 则4,42121-==+x x k x x ,①正确;1212||||||112AB AF BF y y y y =+=+++=++,②不正确;1212(,2),(,2),40,FA x FB x FA FB x x FA FB =-=-∴⋅=+=∴⊥ ,112A FB π∠=,③正确;AB 的中点到抛物线的准线的距离21112121111(||||)(2)(112)(44)22222d AA BB y y kx kx k =+=++=++++=+≥ .当0k =时取得最小值2. ④正确.故选C.【点睛】本题主要考查了直线与抛物线的位置关系,考查了设而不求的思想,转化与化归的能力,属于中档题.12.已知函数()xe f x ax x=-,(0,)x ∈+∞,当21x x >时,不等式1221()()f x f x x x <恒成立,则实数a 的取值范围为( ) A. (,]e -∞ B. (,)e -∞C. (,)2e-∞ D. (,]2e -∞ 【答案】D 【解析】 【分析】将原问题转化为函数单调性的问题,然后求解实数a 的取值范围即可. 【详解】不等式()()12210f x f x x x -<即()()1122120x f x x f x x x -<,结合210x x >>可得()()11220x f x x f x -<恒成立,即()()2211x f x x f x >恒成立, 构造函数()()2xg x xf x e ax ==-,由题意可知函数()g x 在定义域内单调递增,故()'20xg x e ax =-≥恒成立,即2xe a x≤恒成立,令()()02xe h x x x =>,则()()21'2x e x h x x-=, 当01x <<时,()()'0,h x h x <单调递减;当1x >时,()()'0,h x h x >单调递增;则()h x 的最小值为()11212e eh ==⨯,据此可得实数a 的取值范围为,2e ⎛⎤-∞ ⎥⎝⎦.本题选择D 选项.【点睛】本题主要考查导函数研究函数的性质,导函数处理恒成立问题,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共4小题,每小题5分.13.在锐角三角形ABC 中,a ,b ,c 分别为角A 、B 、C 32sin a c A =,7c =ABC ∆33,a b +的值为__________. 【答案】5 【解析】 【分析】由正弦定理边化角可得3π=C ,由面积公式和余弦定理列方程可得a b +.【详解】由32sin a c A=,结合正弦定理可得332sin sin ,sin 0,sin A C A A C =≠∴=. 在锐角三角形ABC 中,可得3π=C .所以ABC ∆的面积1333sin 2S ab C ===6ab =. 由余弦定理可得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=, 解得5a b +=. 故答案为5.【点睛】本题主要考查了正余弦定理及三角形面积公式的应用,重点考查了计算能力,属于基础题.14.在三棱锥S ABC -中,90SAB SAC ACB ∠=∠=∠=︒,2=AC ,13=BC ,29SB =SC 与AB 所成角的余弦值为__________.17【解析】【详解】如图,取A 为原点、AB 和AS 所在直线分别为y 轴和z 轴建立空间直角坐标系.则点()()130,17,0,0,0,23,2,,01717B S C ⎛⎫⎪ ⎪⎝⎭,故132,,231717SC ⎛⎫=- ⎪ ⎪⎝,()0,17,0AB =.于是,所求夹角的余弦值为1717SC AB SC AB⋅=. 故答案为:1715.如图所示,有三根针和套在一根针上的n 个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.(1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n 个金属片从1号针移到3号针最少需要移动的次数记为(n)f ,则()f n =__________.【答案】7,2n-1; 【解析】解:设h (n )是把n 个盘子从1柱移到3柱过程中移动盘子之最少次数 n=1时,h (1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即h (2)=3=22-1;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱,[用h (2)种方法把中、小两盘移到2柱,大盘3柱;再用h (2)种方法把中、小两盘从2柱3柱,完成],h (3)=h (2)×h(2)+1=3×2+1=7=23-1, h (4)=h (3)×h(3)+1=7×2+1=15=24-1, …以此类推,h (n )=h (n-1)×h(n-1)+1=2n -1, 故答案为:7;2n -1.16.一个四面体的顶点在空间直角坐标系xyz O -中的坐标分别是5)A ,3,0,0)B ,(0,1,0)C ,(3,1,5)D ,则该四面体的外接球的体积为__________.【答案】29π【解析】 【分析】3,1,5. 【详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体3,1,53153++=,所以球半径为23,体积为34932r ππ=.【点睛】本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:(共60分) 17.设数列{}n a 满足1123n n a a +=+,14a =. (1)求证{3}n a -是等比数列,并求n a ; (2)求数列{}n a 的前n 项和n T .【答案】(1)113()3n n a -=+(2)313123nn T n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)根据条件可得()11333n n a a +-=-,从而证得等比关系,再利用等比数列的通项公式求解即可;(2)利用分组求和即可. 【详解】(1)∵1123n n a a +=+,14a =, ∴()11333n n a a +-=-,故{}3n a -是首项为1,公比为13的等比数列, ∴1133n n a -⎛⎫=+ ⎪⎝⎭.(2)1133n n a -⎛⎫=+ ⎪⎝⎭,故0111113...333n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1131333112313nnn n ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭-.【点睛】本题主要考查了构造新等比数列,考查了数列的递推关系及分组求和,属于基础题.18.为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩0u ;(精确到个位) (2)研究发现,本次检测的理科数学成绩X 近似服从正态分布2(,)N μσ(0u u =,σ约为19.3),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占40%; (i )估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位) (ii )从该市高三理科学生中随机抽取4人,记理科数学成绩能达到自主招生分数要求的人数为Y ,求Y 的分布列及数学期望()E Y .(说明11()1()x uP X x φσ->=-表示1X x >的概率.参考数据:(0.7257)0.6ϕ=,(0.6554)0.4ϕ=) 【答案】(1)103;(2)(i )117;(ii) 58. 【解析】 【分析】(1)直方图中,每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到该市此次检测理科数学的平均成绩;(2)(ⅰ)令11030.725719.3x -=计算1x 的值;(ⅱ)根据二项分布的概率公式得出Y 的分布列,利用二项分布的期望公式可得数学期望. 【详解】(1)该市此次检测理科数学成绩平均成绩约为:0650.05750.08850.12950.15u =⨯+⨯+⨯+⨯1050.241150.181250.11350.051450.03103.2103+⨯+⨯+⨯+⨯+⨯=≈(2)(ⅰ)记本次考试成绩达到自主招生分数要求的理科数学成绩约为1x ,根据题意,111103()110.419.3x u x P x x φφσ--⎛⎫⎛⎫>=-=-= ⎪ ⎪⎝⎭⎝⎭,即11030.619.3x φ-⎛⎫= ⎪⎝⎭.由()0.72570.6φ=得,111030.7257117.011719.3x x -=⇒=≈,所以,本次考试成绩达到自主招生分数要求的理科数学成绩约为117分.(ⅱ)因为24,5Y B ⎛⎫ ⎪⎝⎭~,()442355i iiP Y i C -⎛⎫⎛⎫∴== ⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4i =. 所以Y 的分布列为 Y 01234P 816252166252166259662516625所以()28455E Y =⨯=. 【点睛】本题主要考查直方图的应用、正态分别的应用以及二项分布的数学期望,属于中档题. 求解离散型随机变量的数学期望的一般步骤:①“判断取值”,即判断随机变量的所有可能取值以及取每个值所表示的意义;②“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率加法公式、独立事件的概率公式以及对立事件的概率公式等),求出随机变量取每个值时的概率;③“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;④“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(),X B n p ~),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19.如图,PA ⊥矩形ABCD 所在平面,PA AD =,M 、N 分别是AB 、PC 的中点.(1)求证:平面ANB ⊥平面PCD ; (2)若直线PB 与平面PCD 所成角的正弦值为1010,求二面角N MD C --的正弦值. 【答案】(1)见解析(2)36【解析】 【分析】(1)通过证明MN ⊥面PCD ,可证得面面垂直;(2)建立空间直角坐标系,设2AB t =,由向量的夹角公式先求解线面角得t ,再利用面的法向量求解二面角即可.【详解】如图,取PD 中点E ,连接EN ,AE . (1)证明:∵M ,N ,E 为中点,∴//EN AM ,12EN AM AB ==, ∴AMNE 是平行四边形,//MN AE , 又∵CD AD ⊥,CD PA ⊥,∴CD ⊥面PAD ,∴面⊥PCD 面PAD .∵PA AD =,E 为中点,,AE PD ⊥AE ⊥面PCD , ∴MN ⊥面PCD ,∵MN ⊂面ANB , ∴平面ANB ⊥平面PCD . (2)建立如图所示坐标系,()0,0,0A ,()2,0,0B t ,()2,2,0C t ,()0,2,0D ,()0,0,2P ,(),0,0M t ,(),1,1N t .由(1)知MN ⊥面PCD , ∴()2,0,2PB t =-,()0,1,1MN =. ∵直线PB 与平面PCD 所成角的正弦值为1010, ∴由1010PB MN PB MN⋅=得2t =. 设(),,m x y z =为面NMD 的法向量,则()2,2,0DM =-,()0,1,1MN =.由00DM m MN m ⎧⋅=⎨⋅=⎩得()1,1,1m =-,3m =,∵AP ⊥面CMD ,()0,0,2AP =,设二面角N MD C --为θ,θ为锐角, 则3cos 3AP m AP mθ⋅==,∴sin θ=【点睛】本题主要考查了线面和面面垂直的判断及性质,利用空间直线坐标系,通过空间向量求解线面角及二面角,属于中档题.20.动点(,)M x y 2222(22)(22)6x y x y -+++=. (1)求M 点的轨迹并给出标准方程;(2)已知(22,0)D ,直线l :22y kx k =-交M 点的轨迹于A ,B 两点,设AD DB λ=且12λ<<,求k 的取值范围.【答案】(1)2219x y +=(2)7k >7k <【解析】 【分析】(1)由方程知轨迹为椭圆,进而得,a c 从而可得解;(2)由AD DB λ=得12y y λ=-,由直线与椭圆联立,可结合韦达定理整理得2321912k λλ+=+-,设()12f λλλ=+-,求其范围即可得解. 【详解】(1)解:M 点的轨迹是以()22,0,()22,0-为焦点,长轴长为6的椭圆,其标准方程为2219x y +=.(2)解:设()11,A x y ,()22,B x y ,由AD DB λ=得12y y λ=-……① 由12λ<<得0k ≠,由2y kx k =-得22y kx k+=代入2219x y +=整理()22219420k yky k ++-=……②显然②的判别式∆>0恒成立, 由根与系数的关系得1224219ky y k+=-+……③12219y y k =-+……④ 由①③得()142119k y k λλ=-+,()242119ky k λ=-+()22323219112k λλλλ+==-+-. 设()12f λλλ=+-,则由对勾函数性质知()f λ在()1,2上为增函数,故得()102f λ<<. 所以21964k +>,即k 的取值范围是7k >7k <【点睛】本题主要考查了椭圆的定义及直线与椭圆的位置关系,考查了“设而不求”的思想,着重考查了学生的计算能力,属于中档题.21.已知函数()ln()xf x e x m =-+,其中1m ≥.(1)设0x =是函数()f x 的极值点,讨论函数()f x 的单调性; (2)若()y f x =有两个不同的零点1x 和2x ,且120x x <<, (i )求参数m 的取值范围; (ii )求证:2121ln(1)1x x ex x e ---+>-.【答案】(1)见解析;(2)(i )e m >,(ii )见解析. 【解析】 【分析】(1)求函数导数,由()'0011f m=-=可得解,进而得单调区间; (2)(i )分析函数导数可得函数单调性,结合,(),,()x m f x x f x →-→+∞→+∞→+∞,所以(0)1ln 0f m =-<,可得解;(ii )先证当m e =时,若()ln()0xf x ex e =-+=,得存在3()(0)0f x f ==,进而证31x <-,再证e m >时,11x <-,可得211t x x =->,构造函数()ln(1)th t e t =-+,利用函数单调性即可证得.【详解】(1)()1'xf x e x m=-+,若0x =是函数()f x 的极值点,则()'0011f m=-=,得1m =,经检验满足题意, 此时()1'1xf x e x =-+,()'f x 为增函数, 所以当(1,0),'()0x f x ∈-<,()f x 单调递减; 当(0,),'()0x f x ∈+∞>,()f x 单调递增 (2)(i )1m ≥, ()1'xf x e x m=-+, 记()()'h x f x =,则()()21'0xh x e x m =+>+,知()'f x 在区间(),m -+∞内单调递增. 又∵()1'010f m=->, ()1'101m f e m -=+-<-, ∴()'f x 在区间()1,0m -内存在唯一的零点0x ,即()0001'0x f x e x m =-=+,于是001x e x m=+, ()00ln x x m =-+.当0m x x -<<时, ()()'0,f x f x <单调递减; 当0x x >时, ()()'0,f x f x >单调递增.若()y f x =有两个不同的零点1x 和2x ,且120x x <<,易知,(),,()x m f x x f x →-→+∞→+∞→+∞,所以(0)1ln 0f m =-<,解得e m >. (ii )当me =时有()ln()xf x ex e =-+,令()ln()0x f x e x e =-+=.由(i )中的单调性知,存在3()(0)0f x f ==,当3(,0),()0x x f x ∈<. 111(1)ln(1)ln(1)ln1.7022ef e e e -=--<--<-=<,所以31x <-.下证当e m >时,11x <-.由()ln()ln()x xf x e x m e x e =-+<-+,所以33333()ln()ln()0x xf x e x m e x e =-+<-+=,由(i )知,当12(,),()0x x x f x ∈<,得131x x <<-..所以211x x ->,令211t x x =-> 要证2121ln(1)1x x ex x e ---+>-,即证ln(1)1t e t e -+>-.令1()ln(1),'()1tth t e t h t e t =-+=-+单调递增,且1'(1)02h e =->, 所以'()0,()h t h t >单调递增,所以()(1)ln 21h t h e e >=->-.得证.【点睛】本题主要研究了函数的极值和函数的单调性,考查了构造函数的思想及放缩法证明不等式,属于难题.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程.以直角坐标系原点O 为极点,x 轴正方向为极轴,已知曲线1C 的方程为()2211x y -+=,2C 的方程为3x y +=,3C 是一条经过原点且斜率大于0的直线. (1)求1C 与2C 的极坐标方程;(2)若1C 与3C 的一个公共点A (异于点O ),2C 与3C 的一个公共点为B ,求3OA OB-的取值范围.【答案】(1)1C 的极坐标方程为θρcos 2=,2C 的极坐标力程为3cos sin ρθθ=+(2)3(1,1)OA OB-∈- 【解析】 【分析】(1)利用极坐标与直角坐标互化公式求解即可; (2)设3C 极坐标方程为θα=,0,,2R παρ⎛⎫∈∈ ⎪⎝⎭,分别与1C 和2C 的极坐标方程联立,可得2cos OA α=和3cos sin OB αα=+,进而看化简求值.【详解】解:(1)曲线1C 的方程为()2211x y -+=,1C 的极坐标方程为2cos ρθ=, 2C 的方程为3x y +=,其极坐标力程为3cos sin ρθθ=+.(2)3C 是一条过原点且斜率为正值的直线,3C 的极坐标方程为θα=,0,,2R παρ⎛⎫∈∈ ⎪⎝⎭,联立1C 与3C 的极坐标方程2cos ρθθα=⎧⎨=⎩,得2cos ρα=,即2cos OA α=,联立1C 与2C 的极坐标方程3cos sin ρθθθα⎧=⎪+⎨⎪=⎩,得3cos sin ραα=+,即3cos sin OB αα=+,所以32cos cos sin OA OB ααα-=--2cos 4πα⎛⎫=+ ⎪⎝⎭, 又0,2πα⎛⎫∈ ⎪⎝⎭,所以()31,1OA OB -∈-. 【点睛】本题主要考查了直角坐标与极坐标互化及极坐标应用解长度问题,属于基础题.23.选修4-5:不等式选讲(1)已知+∈R c b a ,,,且1a b c ++=,证明9111≥++cb a ; (2)已知+∈Rc b a ,,,且1abc111a b c a b c≤++.【答案】(1)见解析(2)见解析 【解析】 【分析】 (1)由111a b c a b c a b ca b c a b c++++++++=++展开利用基本不等式证明即可; (2)由11111111112a b c a b a c b c ⎛⎫++=+++++ ⎪⎝⎭11112222ab ac bc ⎛⎫≥⨯ ⎪ ⎪⎝⎭,结合条件即可得解.【详解】证明:(1)因为精品 Word 可修改 欢迎下载 111a b c a b c a b c a b c a b c++++++++=++111b c a c a b a a b b c c =++++++++ 39b a b c a c a b c b c a=++++++≥, 当()()03323222=-+++x x x x 时等号成立. (2)因为11111111112a b c a b a c b c ⎛⎫++=+++++ ⎪⎝⎭11112222ab ac bc ⎛⎫≥⨯ ⎪ ⎪⎝⎭, 又因为1abc ,所以1c ab =,1b ac =,1a bc =,∴()111c b a a b c ++≥. 当()()03323222=-+++x x x x 时等号成立,即原不等式成立.【点睛】本题主要考查了基本不等式的应用,需要进行配凑,具有一定的技巧性,属于中档题.。
河北省保定市2014年高三第二次模拟考试理科数学试题(A卷)
A
C
O
B
P
23. (本小题满分 10 分)选修 4-4:坐标系与参数方程 在极坐标系中,圆 C的方程为 2a cos (a 0) ,以极点为坐标原点,极轴为 x 轴正半轴建立平面直角 坐标系,设直线的参数方程为
x 3t 1, (t 为参数) . y 4t 3,
P
0
3 20 1 2
2
7 20
E =0
3 1 7 +1 +2 =1.2 „„„„„ 12 分 20 2 20 AD CE 1 , DB EA 2
19. (本小题满分12分) 证明:(1)因为等边△ ABC 的边长为 3,且
所以 AD 1 , AE 2 . 在△ ADE 中, DAE 60 , 由余弦定理得 DE 1 2 2 1 2 cos 60 3 .
∵ 0 A B ∴ A B
………………………6 分
(2)法一:由
1 1 3 2 ab sin C ab sin ab 1 得 ab 2 2 ……………8 分 2 2 4 4
同理得 bc 2 5, ca 2 10 --------------------10 分 所以 (abc) 80 ,故 abc = 4 5 ……………………………12 分
2
法二:由
1 1 3 2 ab sin C ab sin ab 1 得 ab 2 2 ……………8 分 2 2 4 4
由
a b c 得 sin A sin B sin C
5a 10b 2c ,即 a 2b, c 5b ---------------------10 分
A1 A D E B C
(完整)2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
河北省2023届高三数学摸底考试试题答案(pdf)
数学参考答河北省2023届高三年级摸底考试案一、单选题1——4:BADD 5——8:BBBC 二、多选题9.AB10.ABD 11.BCD12.CD三、填空题13.1-14.15.116.12n n +⋅四、解答题17.【解析】(1)数列{}n a 中,0n a >,由112++=-n n n n a a a a ,可得2111=-+nn a a .…………………………………………………………………………2分又11111a ==,则数列1n a ⎧⎫⎨⎬⎩⎭是首项为1公差为2的等差数列,则12)1(211-=-+=n n a n,则数列{}n a 的通项公式为121-=n a n .…………………………………………………4分(2)由(1)知121-=n a n ,则1111(21(21)(21)22121n n a b n n n n n ===-+-+-+,…………………………………6分则数列{}n b 的前n 项和111111111123352121221()()n S n n n =-+-++-=--++L ,………………………8分,012131,311210,312,*<+-≤-∴≤+<∴≥+∴∈n n n N n .2131,1121132<≤∴<+-≤∴n S n …………………………………………………10分18.【解析】(1)由题可知,X 的所有可能取值为0,30,50,60……………………………1分()010.40.6P X ==-=()()300.410.60.16P X ==⨯-=()500.40.6(10.8)0.048P X ==⨯⨯-=()600.40.60.80.192P X ==⨯⨯= (5)分所以X 的分布列为X0305060P0.60.160.0480.192………………………………………………………………………………………………6分(2)由(1)知,()00.6300.16500.048600.19218.72E X =⨯+⨯+⨯+⨯=.若小康按照ABC 顺序答题,记Y 为小康答题的累计得分,则Y 的所有可能取值为0,10,30,60()010.80.2P Y ==-=()()100.810.60.32P Y ==-=()300.80.6(10.4)0.288P X ==⨯⨯-=()600.80.60.40.192P X ==⨯⨯=………………………………………………………10分所以()00.2100.32300.288600.19223.36E Y =⨯+⨯+⨯+⨯=故小乐的判断正确…………………………………………………………………………12分19.【解析】(1)若选①,由正弦定理得,(),)()(a c a c b c b -=-+………………………2分即,222ac a c b -=-即,222ac b c a =-+2221cos ,222a cb ac B ac ac +-∴===……4分(0,),,3B B ππ∈∴=Q ……………………………………………………………………5分若选②cos2()3cos cos2()3cos cos23cos 1,A C B B B B B π++=-+=+=Q …………………2分,1cos 31cos 22=+-∴B B 即22cos 3cos 20,B B +-=即2cos -=B (舍)或21cos =B ,…………………………………………………………4分(0,),,3ππ∈∴=Q B B ……………………………………………………………………5分(2)BD AC ⊥Q ,BD 为AC 边上的高,当面积最大时,高取得最大值.…………………6分法一:由余弦定理得,B ac c a b cos 216222-+==,由重要不等式得162ac ac ac ≥-=,当且仅当a=c 时取等,……………….…….…….…….…….……….…………………9分所以34sin 21≤=∆B ac S ABC .…….…….…….…….…….…….………………10分所以AC 边上的高的最大值为4312b =..…….…….…….…….………………12分法二:由正弦定理得ABC ∆外接圆的直径为2sin b R B ==,.……………………7分利用正弦定理表示面积得:11sin sin 2233ABC S ac B A C B ∆==⋅122sin()sin()233A A A A ππ=-=-)363A π=-+≤……………………………………………………10分所以AC 边上的高的最大值为322134=b ..…….…….…….…….………………12分20.【解析】(1)证明:如右图,连接AE ,由题意知AB 为O 的直径,所以AE BE ⊥.因为AD ,EF 是圆柱的母线,所以AD EF ∥且AD EF =,所以四边形AEFD 是平行四边形.所以AE DF ∥,所以BE DF ⊥.因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF BE ⊥.又因为DF EF F = ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .………………………………………4分(2)由(1)知BE 是三棱锥B DEF -底面DEF 上的高,由(1)知EF AE ⊥,AE DF ∥,所以EF DF ⊥,即底面三角形DEF 是直角三角形.设DF AE x ==,BE y =,则22:6Rt ABE x y+=在中有,………………………………………………………………5分所以221113326622B DEF DEFx yV S BE x y-∆+⎛=⋅=⋅⋅⋅=≤=⎝,当且仅当3==yx时等号成立,即点E,F分别是»AB,»CD的中点时,三棱锥B DEF-的体积最大,…………………………………………………………………………………7分(:另解等积转化法:1.3B DEF D BEF D BCF B CDF CDFV V V V S BC----∆====⋅,)F CD E F AB CD易得当与距离最远时取到最大值此时、分别为 、 中点下面求二面角B DF E--的正弦值:法一:由(1)得BE⊥平面DEF,因为DF⊂平面DEF,所以BE DF⊥.又因为EF DF⊥,EF BE E⋂=,所以DF⊥平面BEF.因为BF⊂平面BEF,所以BF DF⊥,所以BFE∠是二面角B DF E--的平面角,……9分由(1)知BEF为直角三角形,则3BF==.故3sin3BEBFEBF∠==,所以二面角B DF E--的正弦值为分法二:由(1)知EA,EB,EF两两相互垂直,如图,以点E为原点,EA,EB,EF所在直线为x,y,z轴建立空间直角坐标系E xyz-,则00000000(),(,,),(,B D E F.由(1)知BE⊥平面DEF,故平面DEF的法向量可取为00()EB=uuu r.设平面BDF的法向量为(,,)n x y z=,由((0,DF BF==,……………………………………………………8分得n DFn BF⎧⋅=⎨⋅=⎩,即⎧=⎪⎨+=⎪⎩,即xy=⎧⎪⎨=⎪⎩,取1z=,得n= (10)分设二面角B DF E --的平面角为θ,cos cos ,n EB n EB n EBθ⋅=<>==⋅r uur r uurr uur ,所以二面角B DF E --的正弦值为33.………………………………………………12分21.【解析】(1)解法一:由2ce a==得:2c a =,b ∴=,120PF PF ⋅=uuu r uuu rQ ,∴12PF PF ⊥,在12Rt F PF V 中,由122PF PF a -=得:222121224PF PF PF PF a +-=,代入222124PF PF c +=,126PF PF =得:224124c a -=解得:23b =,21a =,∴双曲线方程为:2213y x -=.………………………………………4分解法二:由2ce a==得:2c a =,b ∴==,设点()(),0P x y y >,则点P满足22221x y a b-=…①,120PF PF ⋅=uuu r uuu r Q ,()()222,,0c x y c x y x c y ∴---⋅--=-+=,即222x y c +=…②,121211222F PF S PF P y c F ⋅==,即3y c ⋅=…③,则由①②得:2b y c =,代入③得:23b =,21a =,∴双曲线方程为:2213y x -=.…………4分(2)解法一:当l 斜率不存在时,:2l x =,此时()2,3A ,()2,3B -,2(2)9QA QB m ⋅=--,uur uuu r当l 斜率为0时,:0l y =,此时()1,0A -,()10B ,,21QA QB m ⋅=-uur uuu r;QA QB ⋅若为定值,uur uuu r 22:(2)91.,0,1m m m QA QB ⋅=--=-=-则有解得uur uuu r:(10),:0.QA QB Q ⋅=-uur uuu r下证当为,时恒有;………………………………………………6分当l 斜率存在时,设():2l y k x =-,()11,A x y ,()22,B x y ,联立()22233y k x x y ⎧=-⎨-=⎩得()222234430k x k x k -+--=,则236360k ∆=+>,212243k x x k -∴+=-,2122433k x x k --=-,…………………………………8分()()121211QA QB x x y y ∴⋅=+++uur uuu r ()()212121212124x x x x k x x x x =++++-++⎡⎤⎣⎦()()()222121212114k x x k x x k =+--+++………………………………………………10分()()22222224341211433k k k k k k k ---=+--++--()222241(3)410.3k k k k+-=++=-综上所述:存在1m =-,使得0QA QB ⋅=uur uuu r;……………………………………………12分解法二:当l 斜率为0时,:0l y =,此时()1,0A -,()10B ,,由(),0Q m 得:21QA QB m ⋅=-uur uuu r;………………………………………………………………………6分当l 斜率不为0时,设:2l x ty =+,()11,A x y ,()22,B x y ,联立22233x ty x y =+⎧⎨-=⎩得:()22311290t y ty -++=,则236360t ∆=+>,1221231t y y t -∴+=-,122931y y t =-,…………………………………………………………8分()()()()11221212,,QA QB x m y x m y x m x m y y ∴⋅=-⋅-=--+uur uuu r2212121212(2)(2)(1)(2)()(2)ty m ty m y y t y y m t y y m =+-+-+=+⋅+-++-()2222222129(1215)9(1)(2)(2)(2)313131t m t t m t m m t t t --+=++-+-=+----,………………………10分若⋅uur uuu r QA QB 为定值,则1215931m -=-,1m ∴=-,()1,0Q ∴-,此时0QA QB ⋅=uur uuu r ;当1m =-,l 斜率为0时,210QA QB m ⋅=-=uur uuu r;综上所述,存在1m =-,使得0QA QB ⋅=uur uuu r;………………………………………………………………………………12分2min ln ln ln 122.(1)()ln 0,,(),()(0,),()0,(,),()0,()(0,)1(,),()(),20,();,()0,()x x x f x x ax a g x g x x x x x e g x x e g x g x e e g x g e ex g x x e g x x g x -'=+==-=-=''∈<∈+∞>∴+∞∴==-→→+∞><→+∞→【解析】令则设当时时在上单调递减,在上单调递增分时当时且时L L L L L L L L L L L L L L L L L Q 0,311,(),0,(),a f x a a f x e e∴<-=->分当时无零点当或时有一个零点L L L L L L L10,().5L L L L L L L L L L L L L L L L L L L L L L L L L a f x e-<<当时有两个零点分ln ()()()(2),((),7ln 10(0)ln 10(0),:()10(0)8()1,()1,(,0)x at atat t f x x x x f e x f e t f f t a x a ate t at t t at e t tf x e x h x x e h x e x --------=≤-⇔≤-++-≥>++-≥>+-≥>'=+-=-∈-∞设则分即证,即证即证,分设则当时L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L 00,()0,(0,),()0,()(,0),()(0),()(0)010110,0"",(1),,,()0x h x x h x h x h x h x h x e x a x ef x -'<∈+∞'>∴-∞+∞∴≥=∴+-≥==>-=当时在单调递减在,单调递增,分当且仅当时成立由知当时存在使得L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ()11()()10,().12x f x f e xf x ef x a-∴+-≥∴≤-分分L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L。
河北省唐山市2014届高三年级第二次模拟考试理科数学试卷
试卷类型:A唐山市2013—2014学年度高三年级第二次模拟考试理科数学说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)已知a∈R,若1+a i2-i为实数,则a=(A)2 (B)-2 (C)-12(D)12(2)已知命题p:函数y=e|x-1|的图象关于直线x=1对称,q:函数y=cos(2x+π6)的图象关于点(π6,0)对称,则下列命题中的真命题为(A)p∧q(B)p∧⌝q(C)⌝p∧q(D)⌝p∨⌝q(3)设变量x,y满足|x|+|y|≤1,则2x+y的最大值和最小值分别为(A)1,-1 (B)2,-2(C)1,-2 (D)2,-1(4)执行右边的程序框图,若输出的S是2047,则判断框内应填写(A)n≤9?(B)n≤10?(C)n≥10?(D)n≥11?(5)已知sinα+2cosα=3,则tanα=(A)22(B) 2 (C)-22(D)- 2(6)已知函数f(x)=sin(ωx+φ)的部分图象如图所示,则f(π2)=(A)-32(B)-22(C)32(D)22(7)将6名男生,4名女生分成两组,每组5人,参加两项不同的活动,每组3名男生和2名女生,则不同的分配方法有 (A )240种 (B )120种 (C )60种 (D )180种(8)直三棱柱ABC -A 1B 1C 1的所有顶点都在半径为2的球面上,AB =AC =3,AA 1=2,则二面角B -AA 1-C 的余弦值为(A )- 1 3 (B )- 1 2 (C ) 1 3 (D ) 12(9)某几何体的三视图如图所示,则该几何体的体积为 (A )1136 (B ) 3(C )533 (D )433(10)若正数a ,b ,c 满足c 2+4bc +2ac +8ab =8,则 a +2b +c 的最小值为 (A ) 3 (B )2 3 (C )2 (D )2 2(11)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是(A )[ 1 2,1) (B )[22,32] (C )[22,1) (D )[32,1)(12)若不等式lg 1x +2x +…+(n -1)x +(1-a )n xn≥(x -1)lg n 对任意不大于1的实数x 和大于1的正整数n都成立,则a 的取值范围是 (A )[0,+∞) (B )(-∞,0](C )[ 1 2,+∞) (D )(-∞, 12]第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.(13)商场经营的某种袋装大米质量(单位:kg )服从正态分布N (10,0.12),任取一袋大米,质量不足9.8kg的概率为__________.(精确到0.0001)注:P (μ-σ<x ≤μ+σ)=0.6826,P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-3σ<x ≤μ+3σ)=0.9974.(14)已知向量a =(2,1),b =(-1,2),若a ,b 在向量c 上的投影相等,且(c -a )·(c -b )=- 52,则向量c 的坐标为________.(15)已知F 1,F 2为双曲线C :x 2-y 23=1的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=_________.(16)在△ABC 中,角A,B ,C 的对边a ,b ,c 成等差数列,且A -C =90 ,则cos B =________.俯视图三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)在公差不为0的等差数列{a n}中,a3+a10=15,且a2,a5,a11成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=1a n +1a n+1+…+1a2n-1,证明:12≤b n<1.(18)(本小题满分12分)甲向靶子A射击两次,乙向靶子B射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.(Ⅰ)求甲、乙二人共命中一次目标的概率;(Ⅱ)设X为二人得分之和,求X的分布列和期望.(19)(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥底面ABCD,BD⊥PC,E是PA的中点.(Ⅰ)求证:平面PAC⊥平面EBD;(Ⅱ)若PA=AB=2,直线PB与平面EBD所成角的正弦值为14,求四棱锥P-ABCD的体积.(20)(本小题满分12分)已知抛物线E :y 2=2px (p >0)的准线与x 轴交于点M ,过点M 作圆C :(x -2)2+y 2=1的两条切线,切点为A ,B ,|AB |=423.(Ⅰ)求抛物线E 的方程;(Ⅱ)过抛物线E 上的点N 作圆C 的两条切线,切点分别为P ,Q ,若P ,Q ,O (O 为原点)三点共线,求点N 的坐标.(21)(本小题满分12分)已知函数f (x )=x 2-ln x -ax ,a ∈R .(Ⅰ)若存在x ∈(0,+∞),使得f (x )<0,求a 的取值范围;(Ⅱ)若f (x )=x 有两个不同的实数解u ,v (0<u <v ),证明:f(u +v2)>1. 请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲如图,E 是圆O 内两弦AB 和CD 的交点,过AD 延长线上一点F 作圆O 的切线FG ,G 为切点,已知EF =FG .求证:(Ⅰ)△DEF ∽△EAF ; (Ⅱ)EF ∥CB .(23)(本小题满分10分)选修4-4:坐标系与参数方程长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴的正半轴上滑动,BP →=2PA →,点P 的轨迹为曲线C .(Ⅰ)以直线AB 的倾斜角α为参数,求曲线C 的参数方程; (Ⅱ)求点P 到点D (0,-2)距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -a |-|x +3|,a ∈R . (Ⅰ)当a =-1时,解不等式f (x )≤1;(Ⅱ)若当x ∈[0,3]时,f (x )≤4,求a 的取值范围.唐山市2013—2014学年度高三年级第二次模拟考试理科数学参考答案一、选择题:A 卷:CABAA BBDCD CDB 卷:DBBAABADCD DC 二、填空题:(13)0.0228(14)(12,32)(15)1 4(16)3 4三、解答题: (17)解:(Ⅰ)设等差数列{a n }的公差为d .由已知得 ⎩⎨⎧a 1+2d +a 1+9d =15,(a 1+4d )2=(a 1+d )(a 1+10d ). 注意到d ≠0,解得a 1=2,d =1. 所以a n =n +1. …4分 (Ⅱ)由(Ⅰ)可知b n =1n +1+1n +2+…+12n ,b n +1=1n +2+1n +3+…+12n +2,因为b n +1-b n =12n +1+12n +2-1n +1=12n +1-12n +2>0,所以数列{b n }单调递增. …8分b n ≥b 1= 12. …9分又b n =1n +1+1n +2+…+12n ≤1n +1+1n +1+…+1n +1=nn +1<1,因此 12≤b n <1. …12分(18)解:(Ⅰ)记事件“甲、乙二人共命中一次”为A ,则P (A )=C 120.8×0.2×0.5+0.22×0.5=0.18. …4分 (Ⅱ)X 的可能取值为0,5,10,15,20. P (X =0)=0.22×0.5=0.02,P (X =5)=C 120.8×0.2×0.5=0.16,P (X =10)=0.82×0.5+0.22×0.5=0.34,P (X =15)=C 120.8×0.2×0.5=0.16,P (X =20)=0.82×0.5=0.32. X 的分布列为…10分X 的期望为E (X )=0×0.02+5×0.16+10×0.34+15×0.16+20×0.32=13.…12分(19)解:(Ⅰ)因为PA ⊥平面ABCD ,所以PA ⊥BD . 又BD ⊥PC ,所以BD ⊥平面P AC ,因为BD ⊂平面EBD ,所以平面P AC ⊥平面EBD .…4分(Ⅱ)由(Ⅰ)可知,BD ⊥AC ,所以ABCD 是菱形,BC =AB =2. …5分 设AC ∩BD =O ,建立如图所示的坐标系O -xyz ,设OB =b ,OC =c , 则P (0,-c ,2),B (b ,0,0),E (0,-c ,1),C (0,c ,0).PB →=(b ,c ,-2),OB →=(b ,0,0),OE →=(0,-c ,1).设n =(x ,y ,z )是面EBD 的一个法向量,则n ·OB →=n ·OE →=0, 即⎩⎨⎧bx =0,-cy +z =0,取n =(0,1,c ). …8分 依题意,BC =b 2+c 2=2. ① 记直线PB 与平面EBD 所成的角为θ,由已知条件sin θ=|n ·PB →|__________|n |·|PB →|=c (1+c 2)(b 2+c 2+22)= 14. ② 解得b =3,c =1.…10分所以四棱锥P -ABCD 的体积V = 1 3×2OB ·OC ·PA = 1 3×23×1×2=433.…12分(20)解:(Ⅰ)由已知得M (- p2,0),C (2,0).设AB 与x 轴交于点R ,由圆的对称性可知,|AR |=223.于是|CR |=|AC |2-|AR |2= 1 3,所以|CM |=|AC |sin ∠AMC =|AC |sin ∠CAR =3,即2+ p2=3,p =2.故抛物线E 的方程为y 2=4x .…5分(Ⅱ)设N (s ,t ).P ,Q 是NC 为直径的圆D 与圆C 的两交点.圆D 方程为(x -s +22)2+(y - t2)2=(s -2)2+t 24,即x 2+y 2-(s +2)x -ty +2s =0. ①又圆C 方程为x 2+y 2-4x +3=0. ② ②-①得(s -2)x +ty +3-2s =0. ③ …9分 P ,Q 两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ 的方程.因为直线PQ 经过点O ,所以3-2s =0,s = 32.故点N 坐标为( 3 2,6)或( 32,-6). …12分(21)解:(Ⅰ)当x ∈(0,+∞)时,f (x )<0等价于x -ln xx<a .令g (x )=x -ln xx ,则g '(x )=x 2-1+ln x x 2.当x ∈(0,1)时,g '(x )<0;当x ∈(1,+∞)时,g '(x )>0. g (x )有最小值g (1)=1. …4分 故a 的取值范围是(1,+∞). …5分(Ⅱ)因f (x )=x ,即x 2-ln x =(a +1)x 有两个不同的实数解u ,v . 故u 2-ln u =(a +1)u ,v 2-ln v =(a +1)v .于是(u +v )(u -v )-(ln u -ln v )=(a +1)(u -v ). …7分由u -v <0解得a =u +v -ln u -ln vu -v-1.又f '(x )=2x - 1x-a ,所以f '(u +v 2)=(u +v )-2u +v -(u +v )+ln u -ln v u -v +1=ln u -ln v u -v -2u +v+1. …9分设h (u )=ln u -ln v -2(u -v )u +v u ∈(0,v )时,h '(u )=(u -v )2u (u +v )2>0,h (u )在(0,v )单调递增,h (u )<h (v )=0, 从而ln u -ln v u -v -2u +v >0,因此f '(u +v 2)>1. 12分(22)解:(Ⅰ)由切割线定理得FG 2=F A ·FD .又EF =FG ,所以EF 2=FA ·FD ,即EF FA =FDEF.因为∠EFA =∠DFE ,所以△FED ∽△EAF . …6分(Ⅱ)由(Ⅰ)得∠FED =∠FAE . 因为∠FAE =∠DAB =∠DCB ,所以∠FED =∠BCD ,所以EF ∥CB .…10分(23)解:(Ⅰ)设P (x ,y ),由题设可知,则x =2 3|AB |cos(π-α)=-2cos α,y = 13|AB |sin(π-α)=sin α, 所以曲线C 的参数方程为⎩⎨⎧x =-2cos α,y =sin α(α为参数,90︒<α<180︒). …5分(Ⅱ)由(Ⅰ)得|PD |2=(-2cos α)2+(sin α+2)2=4cos 2α+sin 2α+4sin α+4=-3sin 2α+4sin α+8=-3(sin α- 2 3)2+283.当sin α= 2 3时,|PD |取最大值2213. …10分(24)解:(Ⅰ)当a =-1时,不等式为|x +1|-|x +3|≤1.当x ≤-3时,不等式化为-(x +1)+(x +3)≤1,不等式不成立;当-3<x <-1时,不等式化为-(x +1)-(x +3)≤1,解得- 52≤x <-1;当x ≥-1时,不等式化为(x +1)-(x +3)≤1,不等式必成立.综上,不等式的解集为[- 52,+∞). …5分(Ⅱ)当x ∈[0,3]时,f (x )≤4即|x -a |≤x +7, 由此得a ≥-7且a ≤2x +7.当x ∈[0,3]时,2x +7的最小值为7, 所以a 的取值范围是[-7,7]. …10分。
2024届河北省唐山市滦县二中高三2月开学模拟(网络考试)数学试题
2024届河北省唐山市滦县二中高三2月开学模拟(网络考试)数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图,则输出的S =( )A .2B .3C .23D .12- 2.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( ) A .25 B .2 C .72 D .3 3.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .74.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .125.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )A .623+B .622+C .442+D .443+6.某工厂只生产口罩、抽纸和棉签,如图是该工厂2017年至2019年各产量的百分比堆积图(例如:2017年该工厂口罩、抽纸、棉签产量分别占40%、27%、33%),根据该图,以下结论一定正确的是( )A .2019年该工厂的棉签产量最少B .这三年中每年抽纸的产量相差不明显C .三年累计下来产量最多的是口罩D .口罩的产量逐年增加7.如图,平面α与平面β相交于BC ,AB α⊂,CD β⊂,点A BC ∉,点D BC ∉,则下列叙述错误的是()A .直线AD 与BC 异面B .过AD 只有唯一平面与BC 平行C .过点D 只能作唯一平面与BC 垂直D .过AD 一定能作一平面与BC 垂直8.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ).A .[0,)+∞B .(1,)+∞C .(0,)+∞D .[,1)-∞9.函数2()ln(1)x x e e f x x --=+在[3,3]-的图象大致为( ) A . B .C .D .10.如图,圆O 的半径为1,A ,B 是圆上的定点,OB OA ⊥,P 是圆上的动点, 点P 关于直线OB 的对称点为P ',角x 的始边为射线OA ,终边为射线OP ,将OP OP '-表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( )A .B .C .D .11.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆ 12.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8二、填空题:本题共4小题,每小题5分,共20分。
河北省邯郸市2014届高三第二次模拟考试理科数学试卷(带解析)
河北省邯郸市2014届高三第二次模拟考试理科数学试卷(带解析)1.已知集合{}1,0,1A =-,{}11B x x =-≤<,则AB =( )A.{}0B.{}0,1C.{}1,0-D.{}1,0,1- 【答案】C 【解析】试题分析:由题意知{}1,0A B =-,故选C.考点:集合的交集运算2.复数z 满足()()25z i i --=,则z =( )A.22i --B.22i -+C.22i -D.22i + 【答案】D 【解析】试题分析:由题意知()()()()525252222225i i z i i z i i i i ++-====+⇒=+--+,故选D. 考点:复数的除法 3.下列说法不正确...的是 A.命题“对x R ∀∈,都有20x ≥”的否定为“0x R ∃∈,使得200x <” B.“a b >”是“22ac bc >”的必要不充分条件C. “若tan α≠3πα≠” 是真命题D.甲、乙两位学生参与数学模拟考试,设命题p 是“甲考试及格”,q 是“乙考试及格”,则命题“至少有一位学生不及格”可表示为()()p q ⌝⌝∧【答案】D【解析】试题分析:由全称命题的否定可知,命题“对x R ∀∈,都有20x ≥”的否定为“0x R ∃∈,使得200x <”,A 选项说法正确;当0c =时,22ac bc =,则22a b ac bc >⇒>/,若22ac bc >,则0c ≠,则20c >,由不等式的性质可知a b >,因此“a b >”是“22ac bc >”的必要不充分条件,B 选项说法正确;考查命题“若tan α≠3πα≠”的逆否命题“若3πα=,则tan α=tan α≠3πα≠”为真命题,因此,命题“若tan α≠3πα≠”为真命题,故C 选项说法也正确;命题“至少有一位学生不及格”的否定是“两位学生都及格”,其否定的表示为“p q ∧”,因此命题“至少有一位学生不及格”的表示为()()()p q p q ⌝⌝⌝∧=∨,故D 选项说法错误,故选D.考点:1.全称命题的否定;2.充分必要条件;3.四种命题;4.复合命题4.函数()()()4,04,<0x x x f x x x x +≥⎧⎪=⎨-⎪⎩,若()()f a f a <-,则a 的取值范围是( )A.(),0-∞B.()0,+∞C.()4,0-D.()0,4 【答案】A【解析】试题分析:作出函数()f x 的图象如下图所示,由图象可知,函数()f x 为奇函数,且在R 上单调递增,由()()f a f a <-得a a <-,解得0a <,故选A.考点:1.函数的图象;2.函数的单调性5.如图1所示的程序框图,运行相应的程序,若输出y 的值为4,则输入x 的值可能为( ) A.6 B.7- C.8- D.7【答案】C 【解析】试题分析:输出的y 的值为4,即242x y x ==⇒=,也就是说循环进行到最后一次,x 的值变为2,若输入的x 的值为6,则循环结束后x 的值变为0,不合乎题意;若输入的x 值为7-或7时,循环结束后x 的值变为1,不合乎题意;若输入的x 的值为8-时,循环结束后x 的值变为2,合乎题意,故选C. 考点:算法与程序框图6.过抛物线24y x =焦点的直线交抛物线于A 、B 两点,若8AB =,则直线AB 的倾斜角为( )A.566ππ或B.344ππ或C.233ππ或D.2π 【答案】B 【解析】试题分析:解法一:由于过抛物线()220y px p =≠的焦点的直线与抛物线相交的弦长为22sin pα(其中α为直线的倾斜角),设直线AB 的倾斜角为α,则有22418sin sin 2αα=⇒=,由于0απ≤≤,则sin 0α≥,所以sin α=4πα=或34π,故选B.解法二:易知抛物线24y x =的焦点坐标为()1,0,设点()11,A x y ,()22,B x y ,则122AB x x =++,当直线AB x ⊥轴时,直线AB 的方程为1x =,则1221124AB x x =++=++=,不合乎题意;一般地,设直线AB 的方程为()1y k x =-,代入抛物线的方程得()214k x x -=⎡⎤⎣⎦,化简得()2222240k x k x k -++=,由韦达定理得212224k x x k ++=,所以212224228k AB x x k+=++=+=,解得1k =±,因此直线AB 的倾斜角为4π或34π,故选C.考点:1.直线与抛物线的位置关系;2.抛物线的定义7.如图是一个几何体的三视图,则该几何体的体积是( )A.54B.27C.18D.9 【答案】C 【解析】试题分析:由三视图可知,该几何体是底面为矩形的三棱锥,矩形的长为6,高为3,底面积为6318S =⨯=,此三棱锥的高为3h =,因此该几何体的体积为111831833V Sh ==⨯⨯=,故选C.考点:1.三视图;2.空间几何体的体积8.在各项均为正数的等比数列{}n a 中,若()1122m m m a a a m +-⋅=≥,数列{}n a 的前n 项积为n T ,若21512m T -=,则m 的值为( ) A.4 B.5 C.6 D.7 【答案】B 【解析】试题分析:由题意知1m a -、m a 、1m a +成等比数列,则有2112m m m m a a a a -+=⋅=,由于0m a >,因此2m a =,211221m m T a a a --=⋅⋅⋅,()()2212121122121221m m m m m m T T T a a a a a a ------∴=⋅=⋅⋅⋅⋅⋅⋅⋅()()()()()2121224221812122221121225122m m m m m m m m a a a a a a a -------=⋅⋅⋅⋅⋅=====对,所以4218m -=,解得5m =,故选B.考点:1.等比数列的性质;2.倒序相乘法9.已知函数()()2sin f x x ϕ=+,且()01f =,()00f '<,则函数3y f x π⎛⎫=- ⎪⎝⎭图象的一条对称轴的方程为( ) A.0x = B.6x π= C.23x π=D.2x π= 【答案】A【解析】 试题分析:()()2sin f x x ϕ=+,()()2cos f x x ϕ'∴=+,()02cos 0cos 0f ϕϕ'∴=<⇒<,而()102sin 1sin 2f ϕϕ==⇒=,cos ϕ∴===,()526n n Z πϕπ∴=+∈, ()552sin 22sin 66f x x n x πππ⎛⎫⎛⎫∴=++=+ ⎪ ⎪⎝⎭⎝⎭,因此52s i n2s i 3362f xx x ππππ⎛⎫⎛⎫⎛⎫-=-+=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2cos x =,因此函数3y f x π⎛⎫=- ⎪⎝⎭的对称轴为直线()x k k Z π=∈,取0k =,则直线0x =是函数y =3f x π⎛⎫- ⎪⎝⎭的一条对称轴,故选A.考点:三角函数图象的对称性10.某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得30-分;选乙题答对得10分,答错得10-分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( ) A.24 B.36 C.40 D.44 【答案】D 【解析】试题分析:分以下两种情况讨论:(1)两位同学选甲题作答,一个答对一个答错,另外两个同学选乙题作答,一个答对一个答错,此时共有242224C ⨯⨯=种;(2)四位同学都选择甲题或乙题作答,两人答对,另外两人答错,共有222412C C =种情况; (3)一人选甲题作答并且答对,另外三人选乙题作答并且全部答错,此时有144C =种情况; (4)一人选甲题作答并且答错,另外三人选乙题作答并且全部答对,此时有144C =种情况;综上所述,共有24124444+++=种不同的情况.故选D. 考点:排列组合11.已知三棱锥A BCD -中,2AB AC BD CD ====,2BC AD =,直线AD 与底面BCD 所成角为3π,则此时三棱锥外接球的表面积为( )A.4πB.8πC.16π【答案】B 【解析】试题分析:如下图所示,取BC 的中点O ,连接OA 、OD ,易证AOB DOB ∆≅∆,所以OA OD =,EO D CBA易证OA BC ⊥,OD BC ⊥,且OA OD O =,OA 、OD ⊂平面AOD ,BC ∴⊥平面AOD ,过点A 在平面AOD 内作AE OD ⊥,由于AE ⊂平面AOD ,AE BC ∴⊥, 由于AE OD ⊥,OD BC D =,OD 、BC ⊂平面BCD ,AE ∴⊥平面BCD因此,ADO ∠为直线AD 与平面BCD 所成的角,所以3ADO π∠=,由于OA OD =,所以A O D ∆为等边三角形,O A O D∴==,OA BC ⊥,且22BC OB AD OB AD OA ==⇒==,由勾股定理得2222222AB OA OB OA OA =+==⇒,易知O A O B O D ====所以O 为三棱锥A BCD -外接球的球心,其半径为,所以其外接球的表面积为248S ππ=⨯=,故选B.考点:1.直线与平面垂直;2.外接球12.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( )A.()1,3-B.()3,1-C.()3,+∞D.(),1-∞- 【答案】A 【解析】试题分析:考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x xg x a a x a a a x '=+-=-+,则()00g '=,当01a <<时,ln 0a <,当0x <时,10xa ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<,当0x >,10xa -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln x g x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln x g x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,结合图象知12m -<,解得13m -<<,故选A. 考点:1.函数的图象;2.函数的零点13.已知1a =,()1,3b =,()b a a -⊥,则cos ,a b =_________________. 【答案】12. 【解析】试题分析:由题意知(212b =+,()()20b a a b a a a b a -⊥⇔-⋅=⋅-=,即2cos ,0a b a b a ⋅⋅-=,即2112cos ,10cos ,2a b a b ⨯⨯-=⇒=. 考点:1.平面向量垂直条件的转化;2.平面向量的数量积 14.若实数x 、y 满足条件()()04330x y x y x y ≤+≤⎧⎨--≤⎩,则2z x y =+的最大值为_______.【答案】7. 【解析】试题分析:作出不等式组()()04330x y x y x y ≤+≤⎧⎨--≤⎩所表示的平面区域如下图所示,直线30x y -=与直线4x y +=交于点()1,3A ,作直线:2l z x y =+,则z 为直线l 在x 轴上的截距,当直线l 经过可行域上的点A 时,此时直线l 在x 轴上的截距最大,z 取最大值,即max 1237z =+⨯=.考点:线性规划15.已知数列{}n a 的前5项为3、4、6、10、18,据此可写出数列{}n a 的一个通项公式为____. 【答案】122n -+.【解析】试题分析:由题意知13a =,24a =,36a =,410a =,518a =,02112a a ∴-==,13222a a -==,24342a a -==,35482a a -==,归纳得212n n n a a ---=,3122n n n a a ---∴-=,,0212a a -=,上述1n -个等式相加得()01230112122222112n n n n n a a ------=+++==--,11112121322n n n n a a ---∴=-+=-+=+.考点:1.不完全归纳法;2.累加法16.已知F 是双曲线12222=-by a x 的右焦点,点A 、B 分别在其两条渐近线上,且满足2BF FA =,0OA AB ⋅=(O 为坐标原点),则该双曲线的离心率为____________.【解析】试题分析:双曲线22221x y a b-=的两条渐近线方程为0x y a b ±=,即by x a =±,假设点A 在直线b y x a =,并设A 的坐标为()11,x y ,点()22,B x y ,则点B 在直线by x a=-,()()()2222,0,,BF c x y c x y =-=--,()()()1111,,0,FA x y c x c y =-=-,2BF FA =,于是有212122y y y y -=⇒=-,由于点A 在直线b y x a =,则1111ay by x x a b =⇒=,同理得22ay x b=-, 由于2BF FA =,则()212c x x c -=-,则212ay ay c c b b ⎛⎫+=- ⎪⎝⎭,即11222ay ay c c b b -=-, 于是有134bcy a=, ()1111,,ay OA x y y b ⎛⎫== ⎪⎝⎭,()()11122111112,,,2,,3ay ay ay AB x y x y y y y b b b ⎛⎫⎛⎫⎛⎫=-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,221130ay OA AB y b ⎛⎫∴⋅=-= ⎪⎝⎭,所以()222222222430333a c a b c a e b a -=⇒==-⇒==,因此e =考点:1.向量的坐标运算;2.双曲线的渐近线;3.双曲线的离心率17.已知函数()232cos 2f x x x =+-. (1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦的最大值; (2)在ABC ∆中,A ∠、B ∠、C ∠所对的边分别是a 、b 、c ,2a =,()12f A =-,求ABC ∆周长L 的最大值.【答案】(1)最小正周期为π,在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为0;(2)6.【解析】试题分析:(1)将函数()f x 的解析式利用降幂公式与辅助角公式化简为()=sin 216f x x π⎛⎫+- ⎪⎝⎭,利用公式即可求出函数()f x 的最小正周期,然后由0,2x π⎡⎤∈⎢⎥⎣⎦求出26x π+的取值范围,根据图象确定sin 26x π⎛⎫+⎪⎝⎭的取值范围,即可求出函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值;(2)先利用()12f A =-结合角A 的取值范围求出角A 的值,解法一是对边a 利用余弦定理,借助基本不等式求出b c +的最大值,从而求出L 的最大值,解法二是利用正弦定理与内角和定理将L 转化为以角B 的三角函数,将L 转化为求此函数在区间20,3π⎛⎫⎪⎝⎭的最大值.(1)()232cos 2f x x x =+-1cos 23222x x +=+- =sin 216x π⎛⎫+- ⎪⎝⎭,所以()f x 最小正周期22T ππ==, 0,2x π⎡⎤∈⎢⎥⎣⎦,72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤∴+∈- ⎪⎢⎥⎝⎭⎣⎦()f x ∴最大值为0;(2)由()12f A =-得1sin 262A π⎛⎫+= ⎪⎝⎭ 又132666A πππ<+<5266A ππ∴+=3A π∴=,解法一:由余弦定理得,222222cos a b c bc A b c bc =+-=+-()()()22223344b c b c b c bc b c ++=+-≥+-=,即4b c +≤=,6a b c ∴++≤ (当且仅当2b c ==时取等号)所以6L =;解法二:由正弦定理得2sin sin sin3b cB Cπ==,即sin 3b B =,3c C =,所以)sin sin 3b c B C +=+2sin sin 4sin 36B B B ππ⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎥⎝⎭⎝⎭⎣⎦, 203B π<<,5666B πππ∴<+<, 1sin 126B π⎛⎫∴<+≤ ⎪⎝⎭(当且仅当3B C π==时取最大值)4b c ∴+≤,∴6a b c ++≤ 所以6L =.考点:1.降幂公式;2.正弦定理与余弦定理;3.三角函数的基本性质;4.基本不等式 18.从天气网查询到邯郸历史天气统计(2011-01-01到2014-03-01)资料如下:自2011-01-01到2014-03-01,邯郸共出现:多云507天,晴356天,雨194天,雪36天,阴33天,其它2天,合计天数为:1128天.本市朱先生在雨雪天的情况下,分别以21的概率乘公交或打出租的方式上班(每天一次,且交通方式仅选一种),每天交通费用相应为2元或40元;在非雨雪天的情况下,他以90%的概率骑自行车上班,每天交通费用0元;另外以10%的概率打出租上班,每天交通费用20元.(以频率代替概率,保留两位小数. 参考数据:1150.20564≈) (1)求他某天打出租上班的概率;(2)将他每天上班所需的费用记为X (单位:元),求X 的分布列及数学期望. 【答案】(1)0.18;(2)详见解析. 【解析】 试题分析:(1)将事件“打出租车上班”分成两类:一类是雨雪天打出租车上班,另一类是非雨雪天打出租车上班,利用条件概率求各自的概率,并将两个概率相加即可得到问题中涉及的事件的概率;(2)列举出随机变量X 的可能值,利用在各种天气下朱先生上班所选择的交通工具的方式求出在X 在相应可能值下相应的概率,然后列举出随机变量X 的概率分布列,并求出X 的数学期望. (1)设A 表示事件“雨雪天”, B 表示事件“非雨雪天”, C 表示事件“打出租上班”,()()()()()()B C P A C P A P BC P AC P C P +=+=18.01.08.05.020.0%10112836194121112836194=⨯+⨯≈⨯⎪⎭⎫⎝⎛+-+⨯+=,(2)X 的可能取值为0、2、20、40,()194360190%0.80.90.721128P X +⎛⎫==-⨯≈⨯= ⎪⎝⎭()19436120.200.50.1011282P X +==⨯≈⨯=()1943620110%0.80..10.081128P X +⎛⎫==-⨯≈⨯= ⎪⎝⎭()194361400.200.50.1011282P X +==⨯≈⨯=,()80.510.04008.02010.0272.00=⨯+⨯+⨯+⨯=X E (元)考点:1.条件概率;2.随机变量的概率分布列与数学期望19.如下图,在三棱锥S ABC -中,SA ⊥底面ABC ,点B 为以AC 为直径的圆上任意一动点,且SA AB =,点M 是SB 的中点,AN SC ⊥且交SC 于点N . (1)求证:SC ⊥面AMN ;(2)当AB BC =时,求二面角N MA C --的余弦值.z【答案】(1)详见解析;(2)13. 【解析】 试题分析:(1)由已知条件SA ⊥平面ABC 得到SA BC ⊥,再由已知条件得到BC AB ⊥,从而得到BC ⊥平面SAB ,进而得到B C A M ⊥,利用等腰三角形三线合一得到A M S B ⊥,结合直线与平面垂直的判定定理得到AN ⊥平面SBC ,于是得到AM SC ⊥,结合题中已知条件AN SC ⊥以及直线与平面垂直的判定定理得到SC ⊥平面AMN ;(2)以A 为坐标原点,AB 为x 轴,AS 为z 轴,建立空间直角坐标系A xyz -,利用空间向量法求二面角N MA C -- 的余弦值.(1)证明:SA ⊥底面ABC ,BC SA ∴⊥,又易知BC AB ⊥, BC ∴⊥平面SAB ,BC AM ∴⊥,又SA AB =,M 是SB 的中点,AM SB ∴⊥, AM ∴⊥平面SBC ,AM SC ∴⊥, 又已知SC AN ⊥, ⊥∴SC 平面AMN ;(2)如下图以A 为坐标原点,AB 为x 轴,AS 为z 轴,建立空间直角坐标系xyz A -,由于可设1AB SA ==,则()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,0,1S ,11,0,22M ⎛⎫⎪⎝⎭, xy11,0,22AM ⎛⎫∴= ⎪⎝⎭,()1,1,0AC =,设平面ACM 的一个法向量(),,n x y z =,则00n AC n AM ⎧⋅=⎪⎨⋅=⎪⎩,即011022x y x z +=⎧⎪⎨+=⎪⎩, 可得()1,1,1n =-,由(1)可知CS 为面AMN 的法向量, 易求()1,1,1CS =-- 1cos ,3CS nCS n CS n ⋅∴==⋅,∴二面角N MA C --的余弦值是13.考点:1.直线与平面垂直;2.空间向量法求二面角20.已知1F 、2F 为椭圆E 的左右焦点,点31,2P ⎛⎫ ⎪⎝⎭为其上一点,且有1PF24PF +=.(1)求椭圆C 的标准方程;(2)过1F 的直线1l 与椭圆E 交于A 、B 两点,过2F 与1l 平行的直线2l 与椭圆E 交于C 、D 两点,求四边形ABCD 的面积ABCD S 的最大值.【答案】(1)22143x y +=;(2)6. 【解析】试题分析:(1)设椭圆E 的标准方程为()222210x y a b a b+=>>,先利用椭圆定义得到2a 的值并求出a 的值,然后将点P 的坐标代入椭圆方程求出b 的值,最终求出椭圆E 的方程;(2)根据平行四边形的几何性质得到4ABCD OAB S S ∆=,即先求出OAB ∆的面积的最大值,先设直线AB 的方程为1x my =-,且()11,A x y 、()22,B x y ,将此直线的方程与椭圆E 的方程联立,结合韦达定理将OAB ∆的面积表示成只含m 的表达式,并利用换元法将代数式进行化简,最后利用基本不等式并结合双勾函数的单调性来求出OAB ∆面积的最大值,从而确定平行四边形ABCD 面积的最大值.(1)设椭圆E 的标准方程为()222210x y a b a b +=>>,由已知124PF PF +=得24a =,∴2a =, 又点31,2P ⎛⎫⎪⎝⎭在椭圆上,∴219144b+=∴b = 椭圆E 的标准方程为22143x y +=; (2)由题意可知,四边形ABCD 为平行四边形 ∴4ABCD OAB S S ∆=, 设直线AB 的方程为1x my =-,且()11,A x y 、()22,B x y ,由221143x my x y =-⎧⎪⎨+=⎪⎩得()2234690m y my +--=,122634m y y m ∴+=+,122934y y m =-+, 11112121122OABOF A OF B S S S OF y y y y ∆∆∆=+=⋅-=-,==令21m t +=,则1t ≥,OAB S ∆== 又()19g t t t∴=+在[)1,+∞上单调递增,∴()()110g t g ∴≥=,∴OAB S ∆的最大值为32,所以ABCD S 的最大值为6.考点:1.椭圆的定义与方程;2.直线与椭圆的位置关系;3.韦达定理;4.基本不等式21.已知函数()()222ln 2f x x x x ax =-++.(1)当1a =- 时,求()f x 在()()1,1f 处的切线方程; (2)设函数()()2g x f x x =--,(ⅰ)若函数()g x 有且仅有一个零点时,求a 的值; (ⅱ)在(ⅰ)的条件下,若2e x e -<<,()gx m ≤,求m 的取值范围.【答案】(1)340x y +-=;(2)(i )1;(ii ))223,e e ⎡-+∞⎣.【解析】试题分析:(1)将1a =-代入函数解析式,求出()f x ',由此计算()1f '与()1f 的值,最后利用点斜式写出相应的切线方程;(2)利用参数分离法将问题转化为直线y a =与函数()()12ln x xh x x--=的图象有且仅有一个交点来处理,然后利用导数来研究函数()h x 的单调性与极值,从而求出a 的值;(ii )将问题转化为()max g x m ≤,然后利用导数研究()g x 在区间()2,e e -上最值,从而确定实数m 的取值范围.(1)当1a =-时,()()222ln 2f x x x x x =--+,定义域()0,+∞,()()()22ln 22f x x x x x '=-+--, ()13f '∴=-,又()11f =,()f x 在()()1,1f 处的切线方程340x y +-=;(2)(ⅰ)令()()20g x f x x =--=,则()222ln 22x x x ax x -⋅++=+,即()12ln x x a x--=,令()()12ln x xh x x--=,则()2221122ln 12ln x x x h x x x x x---'=--+=, 令()12ln t x x x =--,()221x t x x x+'=--=-,()0t x '<,()t x 在()0,+∞上是减函数,又()()110t h '==,所以当01x <<时,()0h x '>,当1x <时,()0h x '<, 所以()h x 在()0,1上单调递增,在()1,+∞上单调递减,()()max 11h x h ∴==,所以当函数()g x 有且仅有一个零点时1a =;(ⅱ)当1a =,()()222ln g x x x x x x =-+-,若2ex e -<<,()g x m ≤,只需证明()max g x m ≤,()()()132ln g x x x '=-⋅+,令()0g x '=,得1x =或32x e -=,又2e x e -<<,∴函数()g x 在322,e e --⎛⎫ ⎪⎝⎭上单调递增,在32,1e -⎛⎫ ⎪⎝⎭上单调递减,在()1,e 上单调递增 又33322122g e e e ---⎛⎫=-+ ⎪⎝⎭,()223g e e e =-,()333322213222222g e e e e e e e g e ----⎛⎫⎛⎫=-+<<<-= ⎪ ⎪⎝⎭⎝⎭,即()32g e g e -⎛⎫< ⎪⎝⎭,()()2max 23g x g e e e ∴==-,223m e e ∴≥-.考点:1.利用导数求函数的切线方程;2.函数的零点;3.不等式恒成立;4.参数分离法 22.已知,AB 为圆O 的直径,CD 为垂直AB 的一条弦,垂足为E ,弦AG 交CD 于F . (1)求证:E 、F 、G 、B 四点共圆; (2)若24GF FA ==,求线段AC 的长.【答案】(1)详见解析;(2) 【解析】试题分析:(1)证明90BEF BGF ∠=∠=,利用四边形BEFG 对角互补证明E 、F 、G 、B 四点共圆;(2)利用(1)中的结论结合割线定理得到AF AG AE AB ⋅=⋅,然后在Rt ABC ∆中利用射影定理得到2AC AE AB =⋅从而计算出AC 的值.(1)如图,连结GB ,由AB 为圆O 的直径可知90AGB ∠=,BA又CD AB ⊥,所以90AGB BEF ∠=∠=,因此E 、F 、G 、B 四点共圆;(2)连结BC ,由E 、F 、G 、B 四点共圆得AF AG AE AB ⋅=⋅, 又2AF =,6AG =,所以12AE AB ⋅=,因为在Rt ABC ∆中,2AC AE AB =⋅所以AC =考点:1.四点共圆;2.割线定理;3.射影定理23.已知圆C 的极坐标方程为2cos ρθ=,直线l 的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t为参数),点A 的极坐标为4π⎫⎪⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程; (2)求AP AQ ⋅的值.【答案】(1)()2211x y -+=;(2)12. 【解析】试题分析:(1)在极坐标方程2cos ρθ=的两边同时乘以ρ,然后由222x y ρ=+,cos x ρθ=即可得到圆C 的直角坐标方程;(2)将直线l 的标准参数方程代入圆的直角坐标方程,消去x 、y 得到有关t 的参数方程,然后利用韦达定理求出AP AQ ⋅的值. (1)由2cos ρθ=,得22cos ρρθ=222x y ρ=+,cos x ρθ=,222x y x ∴+=即()2211x y -+=,即圆C 的直角坐标方程为()2211x y -+=;(2)由点A的极坐标4π⎫⎪⎪⎝⎭得点A 直角坐标为11,22⎛⎫⎪⎝⎭,将1211y 22x t⎧=⎪⎪⎨⎪=+⎪⎩代入()2211x y -+=消去x 、y,整理得211022t t --=, 设1t 、2t为方程2102t -=的两个根,则1212t t =-,所以1212AP AQ t t ⋅==. 考点:1.圆的极坐标方程与直角坐标方程之间的转化;2.韦达定理 24.已知函数()1f x x x a =-+-. (1)当2a =时,解不等式()4f x ≥;(2)若不等式()2f x a ≥恒成立,求实数a 的取值范围. 【答案】(1)1722x x x ⎧⎫≤-≥⎨⎬⎩⎭,或;(2)⎥⎦⎤ ⎝⎛∞-31,. 【解析】试题分析:(1)将2a =代入函数()f x 的解析式,利用零点分段法将区间分成三段,去绝对值符号,并求出相应的不等式;(2)将问题转化为()min 2f x a ≥,利用双绝对值函数12y x x x x =-+-的最小值为min y12x x -,于是得到()m i n 1f x a =-,问题转化为12a a -≥来求解,解出不等式12a a -≥即可.第 21 页 共 21 页 (1)由()4f x ≥得,⎩⎨⎧≥-≤4231x x ,或⎩⎨⎧≥<<4121x ,或⎩⎨⎧≥-≥4322x x , 解得:12x ≤-或72x ≥,原不等式的解集为1722x x x ⎧⎫≤-≥⎨⎬⎩⎭,或; (2)由不等式的性质得:()1f x a ≥-, 要使不等式()2f x a ≥恒成立,则a a 21≥-, 解得:1-≤a 或31≤a 所以实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-31,. 考点:1.零点分段法求解不等式;2.不等式恒成立。
河北省冀州中学高三年级模拟考试数学(理)试题
2 3
) C. 3
2 3
A. 3
4 3
B.
3 3
D. 3
9.一个棱锥的三视图如上图,则该棱锥的全面积(单位:cm2)为( ) A.48+12 2 B.48+24 2 C.36+12 2 D.36+24 2 10.右图可能是下列哪个函数的图象( ) 2xsinx x x 2 A.y=2 -x -1 B. y = x C.y=(x2-2x)ex D. y= 4 +1 lnx 11.若 G 是 ABC 的重心, a, b, c 分别是角 A, B, C 的对边,若 3 aGA bGB cGC 0 ,则角 A ( ) 3 A. 90 B. 60 C. 45 D. 30 12.四面体 ABCD 中, AD 与 BC 互相垂直, AD 2 BC 4 , 且 AB BD AC CD 2 14 ,则四面体 ABCD 的体积的最大值是 ( ) . A.4 B.2 10 C.5 D. 30
(Ⅱ)求 2 3 cos2
C 4 sin( B) 的最大值,并求取得最大值时角 B、C 的大小. 2 3
18. (本小题满分 12 分) 生产 A,B 两种元件,其质量按测试指标划分为:指标大于或等于 82 为正品,小于 82 为次品,现 随机抽取这两种元件各 100 件进行检测,检测结果统计如下: 测试指标
第Ⅱ卷(非选择题
共 90 分)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分) .
13.已知 ( x
1 2 x
)n 的展开式中前三项的系数成等差数列,则 n =
.
14.航空母舰“辽宁舰”在某次飞行训练中,有 5 架歼-15 飞机准备着舰.如果甲、乙两机必须相邻 着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有 种 x x 1 15. 方程 sin x 在区间 0, 内的所有实根之和为 . (符号 x 表示不超过 2 2 2 。 x 的最大整数) 3 (1)n 1 , n N , 16.若数列 {an } 与 {bn } 满足 bn 1an bn an 1 (1)n 1, bn 且 a1 2 ,设数列 {an } 的前 n 2 项和为 Sn ,则 S63 = . 三、解答题:解答应写出文字说明、证明过程或演算步骤 17.(本小题满分 12 分)在 ABC 中,角 A、B、C 对边分别是 a、b、c ,满足 2 AB AC a2 (b c)2 . (Ⅰ)求角 A 的大小;
2021年高三第二次模拟考试(理科数学)
试卷类型:A2021年高三第二次模拟考试(理科数学)注意事项:1、答卷前,考生务必填写答题卷上的有关项目.2、选择题每小题选出答案后,用2B铅笔把答案填在答题卡相应的位置上.3、非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卷的整洁.考试结束后,将答题卷交回.5、参考公式:第一部分选择题(共40分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合,,则=()A. B. C. D.2.双曲线的焦距为()A. B. C. D.3.下列函数,其中既是偶函数又在区间上单调递减的函数为( )A. B. C. D.4.“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.如右图所示的程序框图,若输出的是,则①可以为 ( )A. B.C. D.6. 已知长方体的一个顶点上的三条棱长分别是,且它的8个顶点都在同一个球面上,这个球面的表面积为125π则该球的半径为( )A.B.10C.D.7.已知函数满足:,=3,则+++的值等于( )A .36B .24C .18D .128. 在实数集中,我们定义的大小关系“”为全体实数排了一个“序”.类似的,我们在平面向量集上也可以定义一个称为“序”的关系,记为“”.定义如下: 对于任意两个向量,当且仅当“”或“”.按上述定义的关系“”,给出如下四个命题: ①若,则; ②若,则;③若,则对于任意,; ④对于任意向量,,若,则.其中真命题的序号为( )A .①②④ B.①②③ C.①③④ D.②③④第二部分 非选择题(共110分)二、填空题:(本大题共7小题,第14、15小题任选一题作答,多选的按第14小题给分,共30分)9. 复数的模为____________10.如图是某赛季CBA 广东东莞银行队甲乙两名篮球运动员每场 比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .11.已知,,则 .12.已知点在直线上,则的最小值为 .13.在数列中, .则(1)数列的前项和 ;(3分) (2)数列的前项和 .(2分) 温馨提示:答此题前,请仔细阅读卷首所给的参考公式。
河北省张家口市2023届高三第二次模拟考试 数学答案
张家口市2023年高三年级第二次模拟考试数学参考答案题号123456789101112答案CDCDABCDA B C B C A B B C 1.C 解析:由题意可得A =(2,4),B =(-ɕ,3),于是,A ɘB =(2,3),因此(∁R A )ɣ(∁R B )=∁R (A ɘB )=(-ɕ,2]ɣ[3,+ɕ).故选C .[命题意图]本题考查集合的运算及简单不等式的解法,考查学生的数学运算素养.2.D 解析:由题意可得z =1-i ,于是,1+i z =1+i 1-i =i ,故1+i z3=i 3=-i .故选D .[命题意图]本题考查复数的几何意义以及复数的除法㊁乘方运算,考查学生的数学运算素养.3.C 解析:利用圆心距d 和半径r =2的关系来确定直线与圆的位置关系.由题意可得x 20+y 20=2,于是d =2x 20+y 20=22=2=r ,所以,两者相切.故选C .[命题意图]本题考查直线与圆的位置关系的判定,考查学生的数学运算和逻辑推理素养.4.D 解析:由向量数量积的性质可得|2a -b |2=(2a -b )2=4a 2+b 2-4a ㊃b .于是,-4a ㊃b =2,即32x ㊃(-1)+12x =-12,所以,x =12.故选D .[命题意图]本题考查向量的运算及数量积的性质,考查学生的逻辑推理和数学运算素养.5.A 解析:设地球的公转周期为5T ,则火星的公转周期为9T .设地球㊁火星运行轨道的半长轴分别为m ,n ,则m 325T 2=n 381T2,于是,m n =32581.故选A .[命题意图]本题考查函数建模㊁分数指数幂与根式的互化以及阅读理解能力,考查学生的数学运算和数学建模素养.6.B 解析:在纵断面内,以反射镜的顶点(即抛物线的顶点)为坐标原点,过顶点垂直于灯口直径的直线为x 轴,建立直角坐标系,如图,由题意可得A (40,40).设抛物线的标准方程为y 2=2p x (p >0),于是402=2p ㊃40,解得p =20.所以,抛物线的焦点到顶点的距离为p 2=10,即光源到反射镜顶点的距离为10c m .故选B .[命题意图]本题考查抛物线的标准方程和几何性质,考查学生阅读理解和将实际问题数学化能力.7.C 解析:根据欧拉函数的定义可得a 1=φ(2)=1,a 2=φ(22)=2,a 3=φ(23)=4,a 4=φ(24)=8,一般地,a n =φ(2n )=2n -1.事实上,φ(2n )表示从1到2n 的正整数中,与2n互质的正整数的个数,相当于去掉从1到2n 的正整数中所有2的倍数的个数(共2n -1个数),因此,a n =φ(2n )=2n -2n -1=2n -1.所以,S 10=1+2+4+ +29=1023.故选C .[命题意图]本题考查数学新定义及数列求和,考查学生灵活运用新定义分析和解决问题的能力,考查学生逻辑推理和数学运算素养.8.D 解析:由题意可得,函数f (x )为增函数.若f (y 0)>y 0,则f (f (y 0))>f (y 0)>y 0;同理,若f (y 0)<y 0,则f (f (y 0))<f (y 0)<y 0,均与题设条件不符.由f (f (y 0))=y 0可得f (y 0)=y 0,且y 0ɪ[0,1].因此,关于x 的方程2l n (x +1)+x -m =x 在[0,1]上有解,整理得2l n (x +1)-x 2+x =m 在[0,1]上有解.设g (x )=2l n (x +1)-x 2+x ,x ɪ[0,1],则g '(x )=2x +1-2x +1为[0,1]上的减函数,注意到g '(1)=0,故g '(x )ȡ0,从而函数g (x )在[0,1]上单调递增.所以,g (x )ɪ[g (0),g (1)]=[0,2l n 2].因此,实数m 的取值范围是[0,2l n 2].故选D .[命题意图]本题考查函数的图象与性质㊁函数的零点的综合运用,考查学生的逻辑推理和数学运算素养.9.A B C 解析:显然a 不是最小的数,也不是最大的数.由于上四分位数即第75百分位数,于是18ˑ75%=13.5,将这些数据按照从小到大排列后,第14个数为上四分位数.而除去a 后,从小到大排列得到的第13个数为83,所以a 的可能取值为83,84,85.故选A B C .[命题意图]本题考查统计中的百分位数,考查学生的数据分析和数学运算素养.10.B C 解析:由题意,f (x )=c o s (2x -φ)+12.将其图象向左平移π6个单位长度,得到函数g (x )=c o s2x +π6-φ+12=c o s 2x +π3-φ+12,而g (x )-g (-x )=0恒成立,即函数y =g (x )为偶函数,于是π3-φ=k π,k ɪZ .又|φ|<π2,所以,φ=π3,因此,函数f (x )=c o s 2x -π3+12,g (x )=c o s 2x +12.所以,函数g (x )的最小正周期为π,A 错误;由2x =π2+k π,即x =π4+k π2(k ɪZ )时,c o s 2x =0,因此,函数g (x )的图象的对称中心为π4+k π2,12(k ɪZ ),B 正确;当0ɤx ɤπ3时,-π3ɤ2x -π3ɤπ3,所以f (x )在0,π3上的最小值为1,最大值为32,C 正确;令2x -π3=π+2k π,即x =2π3+k π(k ɪZ )为函数的极小值点,D 错误.故选B C .[命题意图]本题考查三角函数的恒等变换㊁三角函数的图象性质与三角函数图象的变换,考查学生的代数变形能力和数学运算素养.11.A B 解析:当P 在对角线B D 上运动时,B D ʊ平面A B 1D 1,从而点P 到平面A B 1D 1的距离为定值,从而三棱锥P -A B 1D 1的体积为定值,即三棱锥A -P B 1D 1的体积为定值,A 正确;以D 为原点,D A ,D C ,D D 1分别为x 轴㊁y 轴㊁z 轴,建立空间直角坐标系,则D 1(0,0,1),由P 在对角线B D 上运动,B 1(1,1,1),C (0,1,0),A (1,0,0),C 1(0,1,1),P (m ,m ,0)(0ɤm ɤ1),于是B 1C ң=(-1,0,-1),D 1P ң=(m ,m ,-1).假设存在点P 满足异面直线D 1P 与B 1C 所成角为π3,因此,12=-m +12m 2+1㊃2,解得m =14.所以,异面直线D 1P 与B 1C 所成角可以取到π3,B 正确;注意到直线AC 1ʅ平面A 1BD ,所以,平面A 1B D 的一个法向量为A C 1ң=(-1,1,1),于是,32=-m +m -12m 2+1㊃3,解得m ɪ⌀.所以,C 错误;注意到点P 到棱A A 1的距离为P A ,过点P 作B C 的垂线,垂足为H ,则点P 到平面B C C 1B 1的距离为P H ,在平面A B C D 内,动点P 到定点A 的距离与到定直线B C 的距离之比为2,即动点P 的轨迹在双曲线上,D 错误.故选A B .[命题意图]本题考查立体几何中动点轨迹,异面直线所成角㊁线面角的计算,考查利用空间向量处理空间角,利用圆锥曲线的定义确定立体几何中动点的轨迹,考查学生的逻辑推理㊁直观想象和数学运算素养.12.B C 解析:对于选项A ,∀ε>0,令x 1=n ,x 2=n +1n ,当n 充分大时,x 2-x 1=1n<δ;另一方面,|f (x 1)-f (x 2)|=n 2-n +1n2=2+1n2>2,不满足|f (x 1)-f (x 2)|<ε,因此,函数f (x )=x 2在[0,+ɕ)上不一致连续.对于选项B ,令x 1,x 2ɪ[1,+ɕ),且x 1<x 2,则|x 1-x 2|=|x 1-x 2|x 1+x 2<|x 1-x 2|2,∀ε>0,取δ=2ε,当x 1,x 2ɪ[1,+ɕ),且|x 1-x 2|<δ时,|x 1-x 2|<δ2=ε,所以,函数f (x )=x 在区间[1,+ɕ)上一致连续.对于选项C ,∀ε>0,取δ=ε>0,∀x 1,x 2ɪ(-ɕ,+ɕ),当|x 1-x 2|<δ时,有|s i n x 1-s i n x 2|=2s i n x 1-x 22c o s x 1+x 22ɤ2s i nx 1-x 22ɤ2㊃|x 1-x 2|2<δ=ε,因此,函数f (x )=s i nx 在区间(-ɕ,+ɕ)上一致连续.利用题目给出的一致连续的定义,我们可以得到函数f (x )在区间I 不一致连续的定义:对给定的某正数ε0,不论δ取值多么小,总至少有x 1,x 2ɪI ,满足|x 1-x 2|<δ,但|f (x 1)-f (x 2)|ȡε0,则称函数f (x )在区间I 不一致连续.对于选项D ,对给定的ε0=1,∀δ>0,δ充分小,不妨设δ<12,取x 1=δ,x 2=δ2,则|x 1-x 2|=δ2<δ,但1x 1-1x 2=1δ>1,这说明,函数f (x )=1x 在区间(0,+ɕ)上不一致连续.故选B C .[命题意图]本题考查学生阅读理解能力及逻辑推理素养,考查学生灵活运用所学知识解决问题的能力.13.-160 解析:由题意可得2n =64,于是,n =6.设第r +1项为常数项,则C r 6x 6-r -2xr=(-2)r C r 6x 6-2r ,即6-2r =0,解得r =3.所以,该展开式的常数项为(-2)3C 36=-160.[命题意图]本题考查二项展开式通项公式以及二项式系数的性质,考查学生的数学运算素养.14.1 解析:函数f (x )的定义域为(-ɕ,0]ɣ[2,+ɕ).由复合函数的单调性可知,f (x )在(-ɕ,0]上单调递减,在[2,+ɕ)上单调递增.而f (0)=4,f (2)=1.所以,函数f (x )的最小值为1.[命题意图]本题考查函数的单调性及应用求最值,考查学生的逻辑推理和数学运算素养.15.1 解析:由题意可得,点C 在抛物线y =x 2-a x -3(a ɪR )上,且点D 在x 轴上方,即b >0.设过A ,B ,C 三点的圆的方程为x 2+y 2+D x +E y +F =0.令y =0,则有x 2+D x +F =0;令x =0,则有y 2+E y +F =0.设A ,B 的横坐标分别为x 1,x 2,则x 1,x 2也为方程x 2+D x +F =0的根,由韦达定理可得,x 1x 2=F =-3;同理,-3,b 为方程y 2+E y +F =0的根,由韦达定理可得-3b =F .因此,-3b =-3,即b =1.[命题意图]本题考查圆的定义及方程的应用,考查学生的数学抽象能力和数学运算素养.16.105 解析:如图,由P M ң=32N M ң,可得|P N ||P M |=13,又|P F 2||P F 1|=13,故N F 2ʊM F 1,且|M F 1|=3|F 2N |.设|F 2N |=m ,则|M F 1|=3m ,而|F 2M ң|=2|F 2N ң|,于是|F 2M |=2m .由椭圆的定义可知,2a =|M F 1|+|M F 2|=3m +2m =5m ,即a =5m2.延长M F 1交椭圆C 于点Q ,连接Q F 2,则由椭圆的对称性可知,|Q F 1|=|F 2N |=m .又|Q F 1|+|Q F 2|=2a ,故|Q F 2|=4m ,即әQ M F 2为等腰三角形,于是,c o s øQ M F 2=14.在әM F 1F 2中,设|F 1F 2|=2c ,由余弦定理可得4c 2=9m 2+4m 2-2㊃3m ㊃2m ㊃14=10m 2,即c =102m .所以,椭圆C 的离心率为e =c a =102m52m =105.[命题意图]本题考查椭圆的定义㊁几何性质㊁离心率的计算,考查学生数形结合㊁逻辑推理㊁直观想象和数学运算素养.17.解:(1)由题意,当n =1时,a 2=2S 1+2=2a 1+2=4.(1分) 当n ȡ2时,(n -1)a n =2S n -1+2.又n a n +1=2S n +2(n ɪN *),所以,当n ȡ2时,有n a n +1-(n -1)a n =2a n ,即a n +1n +1=a n n .(3分) 这表明从第二项起,数列a nn是以a 22=2为首项的常数列,即a n n =2(n ȡ2).(4分)所以,数列{a n }的通项公式为a n =1,n =1,2n ,n ȡ2.(5分)(2)由(1)可得,b 1=1a 1a 2=14,T 1=b 1=14<38.(6分) 当n ȡ2时,b n =1a n a n +1=14n (n +1)=141n -1n +1,(7分) 所以,T n =b 1+b 2+ +b n =14+1412-13+13-14+ +1n -1n +1=14+18-14(n +1)<38.综上所述,对n ɪN *,都有T n <38.(10分) [命题意图]本题考查利用递推关系确定数列的通项公式以及数列求和方法,考查学生的逻辑推理能力和数学运算素养.18.解:(1)由A +B +C =π,得t a n A =-t a n (B +C )=-t a n B +t a n C 1-t a n B t a n C,即t a n A +t a n B +t a n C =t a n A t a n B t a n C ,(2分)又t a n A +t a n B +t a n C =3t a n B t a n C ,所以t a n A =3.(4分) 因为A ɪ0,π2,所以,A =π3.(5分) (2)由题意可得λȡb (c -b )a2恒成立.由余弦定理可得12=c o s A =b 2+c 2-a 22b c,于是,b 2+c 2-a 2=b c .所以b c -b 2=c 2-a 2,则b (c -b )a 2=c 2-a 2a2=c a 2-1,(7分) 由正弦定理得c a =s i n C s i n A =233s i n C .(8分) 在锐角әA B C 中,A =π3,则B +C =2π3,且B ,C ɪ0,π2,故π6<C <π2,(9分)所以12<s i n C <1,所以c a ɪ33,233,(10分) 因此,b (c -b )a 2ɪ-23,13,(11分)于是,λȡ13.所以,实数λ的取值范围是13,+ɕ.(12分) [命题意图]本题考查利用正弦定理㊁余弦定理解三角形问题,考查边元结构的取值范围,考查学生的逻辑推理和数学运算素养.19.解:(1)由题意可得,E F ʊB C ,又B C ⊂平面A B C ,E F ⊄平面A B C ,所以,E F ʊ平面A B C .(2分)又E F ⊂平面A E F ,平面A E F 与底面A B C 的交线为l ,所以,E F ʊl .(3分)从而,l ʊB C ,而B C ⊂平面P B C ,l ⊄平面P B C ,所以,l ʊ平面P B C .(4分) (2)由(1)可知,在底面A B C 内过点A 作B C 的平行线,即平面A E F 与底面A B C 的交线l .由题意可得A C 2+B C 2=A B 2,即A C ʅB C .故әA B C 的面积S =12A C ㊃BC =4.设点P 到平面A B C 的距离为h ,则433=13S h =13ˑ4h ,于是h =3.(6分)注意到侧面P A C 是边长为2的正三角形,取A C 的中点记为D ,连接P D ,则P D =3,从而P D ʅ平面A B C .(8分) 取A B 的中点记为M ,连接D M ,则D M ʅA C .于是,以D 为坐标原点,D A ,D M ,D P 所在直线分别为x 轴㊁y 轴㊁z 轴,建立空间直角坐标系,则A (1,0,0),P (0,0,3),C (-1,0,0),B (-1,4,0),E -12,0,32 ,F -12,2,32,设Q (1,y 1,0).于是,P Q ң=(1,y 1,-3),A E ң=-32,0,32,E F ң=(0,2,0).设平面A E F 的法向量为n =(x 2,y 2,z 2),则A E ң㊃n =0,E F ң㊃n =0,即-32x 2+32z 2=0,2y 2=0,取z 2=1,则x 2=33,y 2=0,即n =33,0,1.又直线P Q 与平面A E F 所成角为α,于是s i nα=|c o s <P Q ң,n >|=33-31+134+y 21=14+y 21,(9分)而异面直线P Q ,E F 所成角为β,于是c o s β=|c o s <P Q ң,E F ң>|=|y 1|4+y 21,(10分) 假设存在点Q 满足题设α+β=π2,则s i n α=c o s β,整理得|y 1|=1.(11分) 所以,这样的点Q 存在,且有A Q =1.(12分)[命题意图]本题考查立体几何中的面与面的交线㊁线面平行㊁线面垂直㊁线面角与异面直线所成角的计算,考查学生的逻辑推理能力和数学表达能力.20.解:(1)由题意可得,随机变量X 的所有可能取值为0,1,2,3.(1分)X =0表示从甲㊁乙两盒中取出的都是白球,故P (X =0)=C 23C 25㊃C 24C 25=950;(2分)X =1表示甲盒中取出1个白球1个红球㊁乙盒中取出2个白球或甲盒中取出2个白球㊁乙盒中取出1个白球1个红球,故P (X =1)=C 12C 13C 25㊃C 24C 25+C 23C 25㊃C 14C 11C 25=1225;(3分) X =3表示从甲盒中取出2个红球㊁乙盒中取出1个白球1个红球,故P (X =3)=C 22C 25㊃C 14C 11C 25=125.(4分)于是,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=310.(5分)所以,随机变量X 的分布列为X 0123P9501225310125数学期望为E (X )=0ˑ950+1ˑ1225+2ˑ310+3ˑ125=65.(6分)(2)设事件A 1:从甲盒中取出两个红球,事件A 2:从甲盒中取出两个白球,事件A 3:从甲盒中取出一个红球一个白球,事件B :从乙盒中取出两个白球.则A 1,A 2,A 3两两互斥,且B =A 1B ɣA 2B ɣA 3B .(7分)且P (A 1)=C 22C 25,P (B |A 1)=C 24C 27,P (A 2)=C 23C 25,P (B |A 2)=C 26C 27,P (A 3)=C 13C 12C 25,P (B |A 3)=C 25C 27.(10分)于是,P (B )=P (A 1B ɣA 2B ɣA 3B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=C 22C 25㊃C 24C 27+C 23C 25㊃C 26C 27+C 13C 12C 25㊃C 25C 27=3770.所以,从甲盒中任取两个球放入乙盒后,从乙盒中取出两个白球的概率为3770.(12分)[命题意图]本题考查概率与统计的综合应用,考查随机变量的分布列和期望的计算以及复杂事件的全概率公式,考查学生的逻辑推理和数学运算素养.21.解:(1)由题意可得b a =3,即b 2=3a2.(1分) 又c =2,即a 2+b 2=4,所以,a 2=1,b2=3.(2分)因此,双曲线C 的方程为x 2-y 23=1.(3分)(2)设点M (x ,y ),P (x 1,y 1),Q (x 2.y 2),x 1,x 2>1,设直线l 的方程为x =m y +2,与双曲线C 的方程x 2-y 23=1联立,整理得(3m 2-1)y 2+12m y +9=0,则3m 2-1ʂ0,Δ=(12m )2-36(3m 2-1)=36(m 2+1)>0,整理得m 2ʂ13.(5分)由根与系数的关系得y 1+y 2=-12m 3m 2-1,于是x 1+x 2=m (y 1+y 2)+4=-43m 2-1,注意到x 1+x 2>2,于是-43m 2-1>2,解得m 2<13.(7分) 又点M 满足F P ң=Q M ң,即x 1-2=x -x 2,y 1=y -y 2, 整理得x =x 1+x 2-2,y =y 1+y 2,(9分)于是x =-43m 2-1-2=-6m 2-23m 2-1,y =-12m 3m 2-1,消去m 得x 24-y 212=1(x >0).(10分)因此,点M 的轨迹是以(-4,0),(4,0)为焦点,实轴长为4的双曲线的右支,(11分)由双曲线的定义可知,存在两个定点E 1(-4,0),E 2(4,0),使得|M E 1|-|M E 2|=4.(12分) [命题意图]本题考查双曲线的定义㊁几何性质㊁直线与双曲线的位置关系以及动点轨迹,考查学生的逻辑推理㊁数学抽象和数学运算素养.22.解:(1)函数f (x )的定义域为(0,+ɕ).由题意,f'(x )=-2x +1-a x =-2x 2-x +a x.(1分)若函数f (x )为(0,+ɕ)上的单调函数,则f '(x )在(0,+ɕ)上恒非正或恒非负.(2分)又u =2x 2-x +a 为开口向上的抛物线,从而知f '(x )在(0,+ɕ)上恒非正,(3分)即u =2x 2-x +a ȡ0在(0,+ɕ)上恒成立,于是,Δ=1-8a ɤ0,解得,a ȡ18.(4分) 所以,函数f (x )为(0,+ɕ)上的单调递减函数时,实数a 的取值范围是18,+ɕ.(5分)(2)若函数f (x )的极值点为x 1,x 2(x 1ʂx 2),则x 1,x 2是方程2x 2-x +a =0的两个不等正实根,从而,Δ=1-8a >0,x 1+x 2=12>0,x 1x 2=a 2>0,解得0<a <18.不妨设x 1<x 2,则x 1=1-1-8a 4,x 2=1+1-8a 4,且f (x )在(0,x 1),(x 2,+ɕ)上单调递减,在(x 1,x 2)上单调递增,从而x 2为极大值点,x 1为极小值点.(7分) 因此,|f (x 1)-f (x 2)|=f (x 2)-f (x 1)=-x 22+x 2-a l n x 2+x 21-x 1+a l n x 1=(x 1-x 2)(x 1+x 2)+(x 2-x 1)+a l n x 1x 2=x 1-x 22+(x 2-x 1)+a l n x 1x 2=x 2-x 12+a l n x 1x 2.所以,原不等式等价于x 2-x 12+a l n x 1x 2<14-2a ,(9分)整理得1-8a 4+a l n 1-1-8a 1+1-8a <14-2a ,(*)其中0<a <18.设1-8a =t ,则t ɪ(0,1),且a =1-t 28,则不等式(*)等价于t 4+1-t 28l n 1-t 1+t <14-2㊃1-t 28,其中t ɪ(0,1),整理得l n1-t 1+t <-2t 1+t,其中t ɪ(0,1),即l n 1+-2t 1+t<-2t 1+t ,其中t ɪ(0,1),(10分) 设y =l n (1+x )-x ,由y '=11+x -1=-x 1+x>0,得x ɪ(-1,0),即函数y =l n (1+x )-x 在(-1,0)上单调递增,在(0,+ɕ)上单调递减,于是,当x =0时,y 取得最大值0,从而,l n (1+x )ɤx ,当且仅当x =0时取等号.而t ɪ(0,1),-2t 1+t ʂ0,所以l n 1+-2t 1+t<-2t 1+t ,其中t ɪ(0,1).所以,原不等式成立,即|f (x 1)-f (x 2)|<x 1+x 22-2a .(12分) [命题意图]本题考查函数与导数的综合应用,考查利用导数研究函数的单调性,证明函数极值满足的含参不等式问题,考查学生的逻辑推理㊁数学建模和数学运算素养.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省“五个一名校联盟”2017届高三教学质量监测(二)理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求(1)已知是虚数单位,若,则z=(A)(B)(C)(D)(2)已知全集={1,2,3,4,5,6,7},集合={1,3,7},={,},则()∩()=(A){1,3} (B) {5,6} (C){4,5,6} (D){4,5,6,7}(3)已知命题是简单命题,则“是假命题”是“是真命题”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件(4)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为(A)(B)(C)(D)(5)已知角的顶点与原点重合,始边与轴正半轴重合,终边在直线上,则(A)(B)(C)(D)(6)设函数是定义在上的奇函数,且,则= (A)-2 (B)-1 (C)1 (D)2(7)函数的图像向右平移个单位得到函数的图像,并且函数在区间上单调递增,在区间上单调递减,则实数的值为(A)(B)(C) 2 (D)(8)设变量满足约束条件,则的最大值为(A)(B)(C)0(D)(9)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出v的值为(A)(B)(C)(D)(10)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为(A)(B)(C)(D) 4(11)已知椭圆:的左、右顶点分别为,为椭圆的右焦点,圆上有一动点,不同于两点,直线与椭圆交于点,则的取值范围是(A)(B)(C)(D)(12)若关于的不等式的非空解集中无整数解,则实数的取值范围是(A ) (B ) (C ) (D )第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)已知正实数x ,y 满足2x +y =2,则2x +1y的最小值为_________.(14)已知点A (1,0) , B (1, 3 ) ,点C 在第二象限,且∠AOC =150°,OC →=-4OA →+λOB →,则λ=_________.(15)在平面直角坐标系中,将直线与直线及轴所围成的图形绕轴旋转一周得到一个圆锥,圆锥的体积圆锥. 据此类比:将曲线与直线及轴、轴所围成的图形绕轴旋转一周得到一个旋转体,该旋转体的体积________.(16)已知数列的前项和为,,,数列 的前项和为,若对恒成立,则实数的取值范围是__________.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23)题为选考题.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (Ⅰ)求角A 的大小;(Ⅱ)若c =2,角B 的平分线BD = 3 ,求a .(18)(本小题满分12分)空气质量指数(Air Quality Index ,简称AQI )是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录去年某地某月10天的AQI 的茎叶图如下.(Ⅰ)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数;(按这个月总共30天计算)(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.(19)(本小题满分12分)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 是以BD 为直角腰的直角梯形,DE = 2BF =2,平面BFED ⊥平面ABCD . (Ⅰ)求证: AD ⊥平面BFED ;(Ⅱ)在线段EF 上是否存在一点P ,使得平面PAB 与平面ADE 所成的锐二面角的余弦值为5 728.若存在,求出点P 的位置; 若不存在,说明理由.(20)(本小题满分12分)已知椭圆C 1:x2a2+y2b2=1 (a >b >0)的离心率为32,P (-2,1)是C 1上一点.(Ⅰ)求椭圆C 1的方程;(Ⅱ)设A 、B 、Q 是点P 分别关于x 轴、y 轴及坐标原点的对称点,平行于AB 的直线l 与C 1相交于不同于P 、Q 的两点C 、D ,点C 关于原点的对称点为E . 证明:直线PD 、PE 与y 轴围成的三角形是等腰三角形.(21)(本小题满分12分)已知函数f (x )=a ln x +12x 2-ax (a 为常数).(Ⅰ)试讨论f (x )的单调性;(Ⅱ)若f (x )有两个极值点分别为x 1,x 2.不等式f (x 1)+f (x 2) <λ(x 1+x 2)恒成立,求λ的最小值.请考生在第(22),(23)二题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.BDCP(22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x = 5 cosα,y =sinα(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos (θ+π4)=2.l 与C 交于A 、B 两点.(Ⅰ)求曲线C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设点P (0,-2),求|PA |+|PB |的值. (23)(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式|x -3|+|x -m |≥2m 的解集为R . (Ⅰ)求m 的最大值;(Ⅱ)已知a >0,b >0,c >0,且a +b +c =m , 求4a 2+9b 2+c 2的最小值及此时a ,b ,c 的值.河北省“五个一名校联盟”2017届高三教学质量监测(二)理科数学参考答案一、选择题:ACAC ABCC DBDB 二、填空题:(13) 92 (14)1(15)(16)三、解答题:(17)(本小题满分12分)解:(Ⅰ)2a cos C -c =2b ,由正弦定理得 2sin A cos C -sin C =2sin B , …2分2sin A cos C -sin C =2sin(A +C ) =2sin A cos C +2cos A sin C , ∴-sin C =2cos A sinC , ∵sin C ≠0,∴cos A =- 12,而A ∈(0, π),∴A =2π3. …6分(Ⅱ)在△ABD 中,由正弦定理得,AB sin∠ADB =BDsinA∴ sin ∠ADB =ABsinA BD = 22, ∴ ∠ADB =π4, …9分∴∠ABC =π6,∠ACB =π6,AC =AB = 2由余弦定理, BC =错误!=错误!. …12分(18)(本小题满分12分)解:(Ⅰ)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为610=35, …2分估计该月空气质量优良的频率为35,从而估计该月空气质量优良的天数为30×35=18.…4分(Ⅱ)由(Ⅰ)估计某天空气质量优良的概率为35,ξ的所有可能取值为0,1,2,3.P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 1335⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫35225=54125, P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125, …8分故ξ的分布列为:ξ 0 1 2 3 P8125361255412527125显然ξ~B ⎝ ⎛⎭⎪⎫3,35,Eξ=3×35=1.8. …12分 (19)(本小题满分12分)解:(Ⅰ)在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠BCD =120°, ∴故 AB =2,∴BD 2=AB 2+AD 2-2AB ·AD ·cos 60°=3, ∴ AB 2=AD 2+BD 2∴BD ⊥AD ,∵平面BFED ⊥平面ABCD , 平面BFED ∩平面ABCD =BD , ∴ AD ⊥平面BFED .…5分 (Ⅱ)∵AD ⊥平面BFED ∴AD ⊥DE ,以D 为原点,分别以DA ,DE ,DE 为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系, 则D (0,0,0),A (1,0,0),B (0,3,0),E (0,0,2),F (0,3,1) EF →=(0,3,-1),AB→=(-1,3,0),AE →=(-1,0,2) x yz ABDCEFP设EP →=λEF →=(0,3λ,-λ) (0≤λ≤1),则AP →=AE →+λEF →=(-1,3λ,2-λ) …7分 取平面EAD 的一个法向量为n =(0,1,0), 设平面PAB 的一个法向量为m =(x ,y ,z ), 由AB →·m =0,AP →·m =0得:⎩⎪⎨⎪⎧-x +3y =0, -x + 3 λy+(2-λ)z =0,令y =2-λ,得m =(23-3λ,2-λ,3-3λ), …9分∵ 二面角A -PD -C 为锐二面角, ∴ cos 〈m ,n 〉=| m·n| |m||n|=5 7 28,解得λ= 13,即P 为线段EF 靠近点E 的三等分点. …12分(20)(本小题满分12分)解:(Ⅰ)由题意可得⎩⎨⎧1-b2a2=34, 4a2+1b2=1,解得⎩⎨⎧a2=8,b2=2.故椭圆C 的方程为x28+y22=1.…5分(Ⅱ)由题设可知A (-2,-1)、 B (2, 1)因此直线l 的斜率为12,设直线l 的方程为:y =12x +t .由⎩⎨⎧y =12x +t , x 28+y22=1,得x 2+2tx +2t 2-4=0.(Δ>0)设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2t ,x 1·x 2=2t 2-4 …7分 ∴k PD +k PE =y2-1x2+2+-y1-1-x1+2=(y2-1)(2-x1) -(2+x2) (y1+1)(2+x2) (2-x1)而(y 2-1)(2-x 1) -(2+x 2) (y 1+1) =2(y 2-y 1)-(x 1 y 2+x 2y 1)+x 1-x 2-4=x 2-x 1-x 1·x 2-t (x 1+x 2) +x 1-x 2-4 =-x 1·x 2-t (x 1+x 2)-4 =-2t 2+4+2t 2-4 =0即直线PD 、PE 与y 轴围成一个等腰三角形.…12分(21)(本小题满分12分)解:(Ⅰ)f′(x)=a x +x -a =x2-ax +ax(x >0), ①当a <0时,解f′(x)=0得,x =,f(x)的单调减区间为(0,,单调增区间为(,+∞); …2分②当0≤a ≤4时,x 2-ax +a =0的Δ=a 2-4a ≤0,所以f′(x)≥0,f(x)的增区间为(0,+∞),无减区间; …4分③当a >4时,Δ=a 2-4a >0,解f′(x)=0得,x 1,2=,f(x)的单调增区间为(0,, (,+∞),单调减区间为(,).…6分(Ⅱ)由(Ⅰ)可知f(x)有两个极值点时,设为x 1,x 2, 则 a >4,x 1+x 2=a ,x 1x 2=a故f(x 1)+f(x 2)=alnx 1+12x 21-a x 1+alnx 2+12x 2-ax 2=aln(x 1x 2)+12(x 21+x 2)-a (x 1+x 2)=aln (x 1x 2)+12 (x 1+x 2)2-x 1x 2-a (x 1+x 2)=a ⎝ ⎛⎭⎪⎫ln a -12a -1于是 f(x1)+f(x2) x1+x2=lna -12a -1,a ∈()4,+∞. …9分令φ(a )=lna -12a -1,则φ′(a )=1a -12.因为a >4,所以φ′(a ) <0.于是φ(a )=lna -12a -1在()4,+∞上单调递减.因此 f (x1)+f (x2) x1+x2=φ(a ) <φ(4)=ln4-3.且 f (x1)+f (x2) x1+x2可无限接近ln4-3.又因为x 1+x 2>0,故不等式f (x 1)+f (x 2) <λ(x 1+x 2)等价于 f (x1)+f (x2)x1+x2<λ.所以λ的最小值为ln4-3. …12分 (22)(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)C :x25+y 2=1;l :y =x -2.…4分(Ⅱ)点P (0,-2)在l 上,l 的参数方程为⎩⎪⎨⎪⎧x = 22t ,y =-2+ 22t(t 为参数)代入x25+y 2=1整理得,3t 2-102t +15=0, …7分由题意可得|PA |+|PB |=|t 1|+|t 2|=|t 1+t 2|=1023 …10分(23)(本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)因为|x -3|+|x -m |≥|(x -3)-(x -m )|=|m -3| …2分 当3≤x ≤m ,或m ≤x ≤3时取等号,令|m -3|≥2m ,所以m -3≥2m ,或m -3≤-2m .解得m ≤-3,或m ≤1∴m 的最大值为1 …5分 (Ⅱ)由(Ⅰ)a +b +c =1.由柯西不等式,( 1 4+ 1 9+1)( 4a 2+9b 2+c 2)≥(a +b +c )2=1, …7分∴4a 2+9b 2+c 2≥ 36 49,等号当且仅当4a =9b =c ,且a +b +c =1时成立.11 / 11 即当且仅当a = 9 49,b = 4 49,c = 36 49时,4a 2+9b 2+c 2的最小值为 36 49. …10分。