CNMR核磁共振碳谱化学位移总览表医学知识课件

合集下载

核磁共振碳谱CNMR

核磁共振碳谱CNMR
13C核的天然丰度很低,分子中相邻的两个 C 原子 均为 13C 核的几率极低,因此可忽略 13C 核之间的偶 合。
13C-1H 之间偶合常数很大,高达 120~320Hz,而 13C 被偶合氢按 n+1 规律分裂为多重峰,使谱图不易 解析,为提高灵敏度和简化谱图,须去掉 1H 对 13C 的偶合,方法有如下几种:
13CNMR 的灵敏度只有 1HNMR 的1/6000。
二.宽化学位移范围 常规 1HNMR 谱的 δ 值不超过20(通常在10以内), 而且由于 1H-1H 自旋偶合裂分又使共振峰大为增宽, 因此常出现不同化学环境的核的共振峰拥挤在一起的 情况,使谱图解析起来变得困难。 13CNMR 谱的 δ 值范围大得多,超过200。每个 C 原子结构上的微小变化都可引起 δ 值的明显变化,因 此在常规宽带质子去偶谱中,每一种化学等价的核可 望显示一条独立的谱线。
二.偏共振去偶法 使用偏离1H共振的中心频率 0.5~1000Hz 的质子去
偶频率,使与 13C核直接相连的 1H 和 13C核之间还 留下一些自旋偶合作用,1JC-H 减小,而 2JCCH 和 3JCCCH消失。因此,按n+1规律,CH3显示四重峰, CH2显示三重峰,CH显示二重峰,季碳显示单峰。 用偏共振去偶法可以确定与碳原子相连的质子数目, 从而可判断各碳的类型。
羰基化合物分子内氢键的形成,使O原子上的孤对
电子移向H原子,因此羰基C原子更缺少电子,故共振
移向低场。分子间氢键的作用与分子内氢键类似。例
如:
191.5 O
196.9 O H
O
195.7 O
204.1 O H
O
6.测定条件
温度、溶剂等。
二.各类化合物的13C的化学位移 1.饱和碳的 δC

第4章 核磁共振碳谱 PPT课件

第4章 核磁共振碳谱 PPT课件

碘原子越多,作用越大,化学位移越小。如: CH2I2、 CHI3、 CI4的化学位移分别为 -54和 第 3 -140和-292.5。 章 核 • 原因:高原子序数的原子核外电子云密度大, 导致碳原子核外电子云密度同样增大,信号移 磁 共 向高场区。

2i 波 谱 分 析 第 3 章 核 磁 共 振
一、质子噪声去耦 二、偏共振去耦 三、质子选择去耦 四、门控去耦及反转 门控去耦 五、APT、INEPT、 DEPT谱
2018/11/7
一、噪音去偶谱(proton noise decoupling spectrum
wei 波 谱 分 析 第 3 章 核 磁 共 振
又叫全氢去偶(简称COM)或,13C(1H)宽带 去偶(简称BBD)。采用的脉冲系列如图3-72所 示,即在读取13C的FID信号期间,用覆盖所有
• 碳原子的化学位移杂化大小顺序与氢谱 中的顺序一致: • sp2﹥sp ﹥ sp3 • sp3 :甲基﹤亚甲基﹤次甲基﹤季碳 0--60 • sp2 :烯基碳和芳香碳:100—167 • sp2 :羰基:160—220 • sp :炔基碳:60—90
2018/11/7
2、碳核周围的电子云密度
wei 波 • 碳的化学位移与碳核周围的电子云密度有关。 谱 • 碳核周围的电子云密度越大,屏蔽效应越强, 分 信号移向高场,化学位移越小;碳核周围的电 析
2018/11/7
电负性 4.0
3.1
2.8 2.5 2.1
17
取代基的诱导效应可沿碳链延伸,α碳原子
wei 波 谱 分 析
第 三 章 核 磁 共 振 氢 谱
上的氢位移较明显,β碳原子上的氢有一定位移
,γ位以后则不明显。
CH3 —

13CNMR核磁共振碳谱化学位移总览表

13CNMR核磁共振碳谱化学位移总览表

1) INEPT法
由于核磁共振本身信号灵敏度很低,尤其是低天然丰度的核 (如13C、15N等)更为突出。INEPT法是在具有两种核自旋的系统 中,以CH为例,通过脉冲技术,把高灵敏1H核的自旋极化传递到 低灵敏的13C核上去,这样由1H到与其偶合的13C的完全极化传递可 使,13C信号强度增强4倍。

的峰的裂分应全部去除。如果还有谱线的裂分不能去除,应考虑分
子中是否含F或P等元素。 (6)从分子式和可能的结构单元,推出可能的结构式。利用化学位移 规律和经验计算式,估算各碳的化学位移,与实测值比较。 (7)综合考虑1H NMR、IR、MS和UV的分析结果,必要时进行其他 的双共振技术及τ 1测定,排除不合理者,得到正确的结构式。
δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm。
2.诱导效应
当电负性大的元素或基团与碳相连时,诱导效应使碳的核外 电子云密度降低,故具有去屏蔽作用。随着取代基电负性增强, 或取代基数目增大,去屏蔽作用也增强, δ值愈向低场位移。
3.共轭效应
共轭作用会引起电子云分布的变化,导致不同位置碳的共 振吸收峰向高场或低场移动。
5.弛豫时间τ1可作为化合物结构鉴定的波谱参数
在化合物中,处于不同环境的13C核,它们的弛豫时间τ1数
值相差较大,可达2-3个数量级,通过τ1可以指认结构归属,
窥测体系运动状况等。
4.2.1
脉冲傅里叶变换法
原理同1H NMR。
4.2.2
核磁共振碳谱中几种去偶技术
在有机化合物的13C NMR中,13C-13C之间的偶合由于13C的天然丰 度很低,可以不予考虑。但13C-1H核之间的偶合常数很大,如1JCH高达 120-320Hz,13C的谱线会被与之偶合的氢按n+1规律裂分成多重峰,这 种峰的裂分对信号的归属是有用的,但当谱图复杂时,加上2JCCH、

核磁共振碳谱 (2)课件课件精选课件

核磁共振碳谱 (2)课件课件精选课件
质 子 去 耦
偏 共 振 去 耦
第二十一页,本课件共有122页
第二十二页,本课件共有122页
通过比较宽带去耦和不完全去耦的碳谱可以:
(1) 得出各组峰的峰形, 从而可以判断分辨出各种CH
基团
(2) 利用不完全去耦技术可以在保留NOE使信号增强 的同时,仍然看到CH3四重峰,CH2三重峰和CH 二重峰,不与1H直接键合的季碳等单峰。峰的分裂数 与直接相连的氢有关, 一般也遵守n+1规律
-220ppm范围的低场端。炔碳为sp杂化的碳,由于其多重键的
贡献, 顺磁屏蔽降低,比sp2杂化碳处于较高场,δ值在60- 90ppm范围。
第三十二页,本课件共有122页
2. 碳的电子云密度
13C的化学位移与碳核外电子云密度有关,核外电子云 密度增大,屏蔽效应增大,屏蔽效应增强,δ值高场位移 。
碳正离子δ值出现在低场,碳负离子δ值出现在高场 。这是由于碳正离子电子短缺,强烈去屏蔽所致。如 :
强,噪音则越来越弱。经过成千上万次的扫描及累加计算,最后即可得到一张峰形良 好的13C-NMR谱。
第六页,本课件共有122页
3.氘锁和溶剂
使用氘代溶剂或含有一定量氘化合物的普通试剂,通过仪器操作,把磁场 锁在强而窄的氘代信号上。当发生微小的场-频变化,信号产生微小的漂移时 ,通过氘锁通道的电子线路将补偿这种微小的漂移,使场频仍保持固定值,以 保证信号频率的稳定性。即使长时间累加也不至于分辨率下降及谱峰变形。
2. 偏共振去偶 保留同一碳原子上质子的影响
3. 选择性去偶 偏共振去偶的特例
4. 门控去偶 使碳谱峰高有定量意义
5. DEPT谱 能清晰地显示碳的级数
第十页,本课件共有122页
1. 质子宽带去偶及NOE增强 质子宽带去偶(proton broad band decoupling)谱为

CNMR核磁共振碳谱化学位移总览表

CNMR核磁共振碳谱化学位移总览表
03
醇、醚、酮类化合物的碳原子的化学位移与其连接的氧原子和氢原子 数量成反比关系,即氧原子和氢原子数量越多,化学位移越低。
04
取代基对醇、醚、酮类化合物的碳原子的化学位移影响较大,例如烷 基取代会使化学位移减小,而芳基取代会使化学位移增大。
醛、酸、酯类化合物
醛、酸、酯类化合物的碳原子的化学 位移通常在200-300ppm范围内。
CNMR碳谱的优点与局限性
优点:
高灵敏度:碳原子具有高磁敏感性,使其成为核磁共振中的理想检测目标 。
结构信息丰富:碳谱能够提供丰富的化学结构信息,有助于确定有机分子 中的官能团和连接方式。
CNMR碳谱的优点与局限性
• 非破坏性:核磁共振技术对样品无破坏性,可以重复使用 。
CNMR碳谱的优点与局限性
取代基的影响
取代基的电负性
电负性强的取代基会使碳谱的化学位移向低场移 动。
取代基的电子效应
给电子取代基会使碳谱的化学位移向低场移动, 而吸电子取代基则会使化学位移向高场移动。
取代基的空间效应
空间位阻较大的取代基会使碳谱的化学位移向低 场移动。
溶剂的影响
溶剂的极性
极性溶剂会使碳谱的化学位移向低场移动,非极性溶剂则会使化 学位移向高场移动。
01自然丰度 较低,需要较高的检测灵敏度。
03
谱图解析复杂:由于碳谱的复杂性,解析 碳谱需要较高的专业知识。
04
对水质和温度敏感:水质和温度的变化可 能影响核磁共振信号的稳定性。
CNMR碳谱未来的发展方向
提高检测灵敏度
通过改进检测技术和仪器,提高碳谱 的检测灵敏度,以适应更多样品的检 测需求。
卤代烃类化合物
卤代烃类化合物的碳原子的化学位移通常在80150ppm范围内。

CNMR核磁共振碳谱化学位移总览表

CNMR核磁共振碳谱化学位移总览表

含氮化合物
含氮化合物:氮原子的化学位移范围为0-100ppm 影响因素:杂化轨道、共轭效应、溶剂等 实例:蛋白质、核酸等生物大分子中的氮原子位移 应用:用于鉴定有机化合物中的氮原子类型
其他类化合物
内容:介绍其他类化合物的化学位 移总览表包括醇、醚、酯、酸等
应用:在有机化学、药物化学等领 域有广泛应用
在药物研发中的应用
在药物研发中 CNMR核磁共振 碳谱化学位移总 览表可用于确定 药物分子的化学 结构和构型从而 指导药物设计和
合成。
通过比较不同药 物分子的化学位 移数据可以发现 它们之间的相似 性和差异性有助 于发现新的药物 靶点和候选药物
分子。
CNMR核磁共振 碳谱化学位移总 览表还可以用于 评估药物分子的 代谢和动力学性 质预测其在体内 的行为和效果。
实例分析:通过 实例分析了解不 同类型醛、酮类 化合物的碳谱位 移规律。
总结:掌握醛、 酮类化合物在 CNMR谱图中的 碳谱位移规律有 助于对化合物的 结构进行准确解 析。
酸、酯类化合物
酸类化合物:通常在10-12ppm范围内出现明显的信号峰
酯类化合物:通常在5-8ppm范围内出现明显的信号峰
化学位移概念及意义
化学位移定义:原子核在磁场中的位置变化所产生的共振频率的位移。 影响因素:原子核所处的化学环境包括周围的电子云密度和屏蔽效应。 意义:化学位移是核磁共振谱学中的重要参数用于解析分子结构、化学键和反应机理。 应用:在有机化学、药物化学、生物化学等领域中化学位移是研究分子结构和性质的重要手段。
推断有机物的结构
用于环境科学中的 污染物分析
用于药物研发中的 化合物鉴定
在其他领域的应用
化学领域:用于研 究分子结构和化学 键

CNMR核磁共振碳谱化学位移总览表医学知识课件

CNMR核磁共振碳谱化学位移总览表医学知识课件
不同环境的碳,受到的屏蔽作用不同,δ值不同,其共振频率 νC也不同。
4.3.2 影响 C化学位移的因素 13 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
1.碳杂化轨道
碳原子的杂化轨道状态(sp3、sp2、sp)很大程度上决定13C 化学位移。sp3杂化碳的共振信号在高场,sp2杂化碳的共振信号 在低场,sp杂化碳的共振信号介于前二者之间。以TMS为标准, 对于烃类化合物来说,sp3碳的δ值范围在0-60ppm;sp2杂化碳的 δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm。
20多年来核磁共振技术取得巨大发展目前13cnmr已广泛应用于有机化合物的分子结构测定反应机理研究异构体判别生物大分子研究等方面成为化学生物化学药物化学及其他相关领域的科学研究和生产部门不可缺少的分析测试手段对有关学科的发展起了极大的促进作用
4.1 核磁共振碳谱的特点 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。 13C核磁共振谱的信号是1957年由P. C. Lauterbur首先观察到
3.炔烃的化学位移值
炔基碳为sp杂化,其化学位移介于sp3与sp2杂化碳之间,为 67-92ppm。
4.芳环碳和杂芳环碳的δ 值 文档仅供参考,不能作为科C学依据,请勿模仿;如有不当之处,请联系本人改正。
芳环碳的化学位移值一般在120-160ppm范围内,峰往往出现
在较低场,这点与脂肪族季碳峰在较低场是类似的。
3
4
3 21
56
4
1 2
5 6
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
13C NMR spectrum with the protons

核磁共振碳谱 ppt课件

核磁共振碳谱  ppt课件
转移技术) ,
大大提高对13C核的观测灵敏度;
可利用异核间的偶合对13C信号进行调 制的方法,来确定碳原子的类型。
ppt课件
30
DEPT谱图:
不碳)同。类通型过的改13变C信照号射1均H呈核单第峰三(脉CH冲3、宽度CH(θ2、)的C不H及同季, 若收θ峰=,13C5°H2(为C谱向)下,的可共使振CH吸及收C峰H3,为季向碳上信的号共消振失吸。 若θ=90°(B谱),CH为向上的信号,其它信号消
5
13(41).5110.8 (2)
(1) 39.6
(6) 189.5
(3) (5) 124.8 154.0
(CH3)2N 3
1 2
5
CHO 的质子宽带去偶谱
6
4
ppt课件
6
2、质子选择去偶
该方法类似于氢谱的自旋去偶法。且有NOE效 应存在。
CH1 3
2
C2 C3
3
C4
4
芳烃质子被去偶
C1
甲苯的质子选择去偶(低场部分)
31.8 209.7
69.5
H3C C CH2 C OH
54.8
O
CH3
29.4
ppt课件
58
某含氮未知物,质谱显示分子离子峰为m/z 209,元素分析结果为C: 57.4%,H:5.3%,N:6.7%,13C NMR谱如图4-8所示。(括弧内s 表示单峰,d表示双峰,t表示三重峰,q表示四重峰),推导其化学
⒈质子的类型:说明化合物具有哪些种类的含氢 官能团。
⒉氢分布:Leabharlann 明各种类型氢的数目。⒊核间关系:氢核间的偶合关系与氢核所处的化学 环境
指核间关系可提供化合物的二级结构信息,如连结方式、 位置、距离;结构异构与立体异构(几何异构、光学异构、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.质子宽带去偶法 2.偏共振去偶法 3.门控去偶法 4.反转门控去偶法 5.选不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
13C NMR spectrum with the protons coupled
4.1 核磁共振碳谱的特点 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。 13C核磁共振谱的信号是1957年由P. C. Lauterbur首先观察到
的。碳是组成有机物分子骨架的元素,人们清楚认识到13C NMR对于化学研究的重要性。由于13C的信号很弱,加之1H 核的偶合干扰,使13C NMR信号变得很复杂,难以测得有实 用价值的谱图。20世纪70年代后期,质子去偶和傅里叶变换 技术的发展和应用,才使13C NMR的测定变成简单易得。20 多年来,核磁共振技术取得巨大发展,目前,13C NMR已广 泛应用于有机化合物的分子结构测定、反应机理研究、异构 体判别、生物大分子研究等方面,成为化学、生物化学、药 物化学及其他相关领域的科学研究和生产部门不可缺少的分 析测试手段,对有关学科的发展起了极大的促进作用。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,I请N联E系P本T人谱改正中。不出现季 碳的信号 CH3和CH为正峰,而 CH2为负峰 只出现CH的正峰
1) INEPT法
由于核磁共振本身信号灵敏度很低,尤其是低天然丰度的核( 如13C、15N等)更为突出。INEPT法是在具有两种核自旋的系统中 ,以CH为例,通过脉冲技术,把高灵敏1H核的自旋极化传递到低 灵敏的13C核上去,这样由1H到与其偶合的13C的完全极化传递可使 ,13C信号强度增强4倍。
4.不能用积分高度来计算碳的数目 13C NMR的常规谱是质子全去偶谱。对于大多数碳,尤其是
质子化碳,它们的信号强度都会由于去偶的同时产生的NOE效 应而大大增强,如甲酸的去偶谱与偶合谱相比,信号强度净增 近2倍。季碳因不与质子相连,它不能得到完全的NOE效应, 故碳谱中季碳的信号强度都比较弱。由于碳核所处的环境和弛 豫机制不同,NOE效应对不同碳原子的信号强度影响差异很大 ,因此不等价碳原子的数目不能通过常规共振谱的谱线强度来 确定。
4.2 核磁共振碳谱的测定方法 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。 1.灵敏度低 13C核的天然丰度很低,只有1.108%,而1H的天然丰度为
99.98%。13C核的旋磁比γC也很小,只有γH核翔的1/4。信号 灵敏度与核的旋磁比γC的立方成正比,因此,相同数目的1H 核和13C核,在同样的外磁场中,相同的温度下测定时,其信
3
4
3 21
56
4
1 2
5 6
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
13C NMR spectrum with the protons
decoupled
by the broadband decoupler
34
4
3 21
56
1
2
5 6
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
4.2.2 核磁共振碳谱中几种去偶技术 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
在有机化合物的13C NMR中,13C-13C之间的偶合由于13C的天然丰 度很低,可以不予考虑。但13C-1H核之间的偶合常数很大,如1JCH高达 120-320Hz,13C的谱线会被与之偶合的氢按n+1规律裂分成多重峰,这 种峰的裂分对信号的归属是有用的,但当谱图复杂时,加上2JCCH、 3JCCCH也有一定的表现,使各种谱峰交叉重叠,谱图难以解析。为了 提高灵敏度和简化谱图,人们研究了多种质子去偶测定方法,以最大 限度地获取,13C NMR信息。
谱图去偶作用对比
6.INEPT谱和DEPT谱 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
常规的13C NMR谱是指宽带质子去偶谱。在去偶的条件下 ,失去了全部C-H偶合的信息,质子偶合引起的多重谱线合并 ,每种碳原子只给出一条谱线。虽然用偏共振去偶技术可以分 辨CH3、CH2、CH及季C的归属,但由于偏共振去偶谱中偶合 常数分布不均匀,多重谱线变形和重叠,在复杂分子的研究中 仍然受到限制。随着现代脉冲技术的发展,产生了一些新的能 确定碳原子级数的新方法,如J调制法、APT法、INEPT法和 DEPT法等,其中INEPT法和DEPT法已被广泛应用。
3.能给出不连氢碳的吸收峰 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。 在1H NMR中不能直接观察到C=O、C=C、C≡C、C=N、季
碳等不连氢基团的吸收信号,只能通过相应基团的化学位移值 、分子式不饱和度等来判断这些基团是否存在。而13C NMR谱 可直接给出这些基团的特征吸收峰。由于碳原子是构成有机化 合物的基本元素,因此从13C NMR谱可以得到有关分子骨架结 构的信息。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
5.弛豫时间τ1可作为化合物结构鉴定的波谱参数 在化合物中,处于不同环境的13C核,它们的弛豫时间τ1数
值相差较大,可达2-3个数量级,通过τ1可以指认结构归属, 窥测体系运动状况等。
4.2.1 脉冲傅里叶变换法
原理同1H NMR。
噪比为11.59 × 10-4,即13C NMR的灵敏度大约只有1H NMR的
1/6000。所以,在连续波谱仪上是很难得到13C NMR谱的,这
也是13C NMR在很长时间内未能得到广泛应用的主要原因。
2.分辫能力高
1H NMR的化学位移通常在0-15ppm,而13C NMR的常用范 围为0-300ppm,约为1H谱的20倍。同时13C自身的自旋-自旋裂 分实际上不存在,虽然,13C-1H之间有偶合,但可以用质子去 偶技术进行控制。因此13C谱的分辨能力比1H谱高得多,结构 不对称的化合物、每种化学环境不同的碳原子通常可以得到特 征的谱线。
相关文档
最新文档