青岛市第二中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛市第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. ABC ∆的外接圆圆心为O ,半径为2,OA AB AC ++为零向量,且||||OA AB =,则CA 在BC 方向上的投影为( )
A .-3
B .
C .3 D
2. 以椭圆
+
=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为
(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=
,则
﹣S
( )
A .2
B .4
C .1
D .﹣1
3. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )
4. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]
5. 若实数x ,y 满足,则(x ﹣3)2+y 2
的最小值是( )
A .
B .8
C .20
D .2
6. 已知角α的终边经过点(sin15,cos15)-,则2
cos α的值为( )
A .
12+
B .12 C. 34 D .0
7. 双曲线的焦点与椭圆的焦点重合,则m 的值等于( )
A .12
B .20
C .
D .
8. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )
A .4
B .2
C .
D .2
9. 设曲线2
()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象
可以为( )
A .
B . C. D .
10.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )
A .
B .
C .
D .
11.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )
A .123S S S <<
B .123S S S >>
C .213S S S <<
D .213S S S >> 12.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .2
二、填空题
13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球
运动但不喜爱乒乓球运动的人数为 .
14.直线l :
(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围
是 .
15 加油时间
加油量(升) 加油时的累计里程(千米)
2015年5月1日 12
35000 2015年5月15日
48 35600 在这段时间内,该车每100千米平均耗油量为 升.
16.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
,若182≤+y x ,则实数m 的取值范围是___________.
【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.
17.已知,x y 满足41
y x
x y x ≥⎧⎪
+≤⎨⎪≥⎩
,则222
23y xy x x -+的取值范围为____________. 三、解答题
18.(本小题满分10分)选修4-4:坐标系与参数方程:
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐
标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2
sin 2cos (0)p p ρθθ=>.
(1)设t
为参数,若2x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2
||||||PQ MP MQ =⋅,求实数p 的值.
19.(本小题满分16分)
给出定义在()+∞,0上的两个函数2()ln f x x a x =-
,()g x x =- (1)若()f x 在1=x 处取最值.求的值;
(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.
20.已知函数f(x)=.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)当时,求f(x)的最大值,并求此时对应的x的值.
21.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;
(Ⅱ)求点D到平面AMP的距离.
22.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.
(Ⅰ)求线段AD的长;
(Ⅱ)比较∠ADC 和∠ABC 的大小.
23.(本小题满分12分)
设椭圆2222:1(0)x y C a b a b
+=>>的离心率12e =,圆22
127x y +=与直线1x y a b +=相切,O 为坐标原
点.
(1)求椭圆C 的方程;
(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.
青岛市第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题
1.【答案】B
【解析】
考点:向量的投影.
2.【答案】A
【解析】解:∵椭圆方程为+=1,
∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),
∴双曲线方程为,
设点P(x,y),记F1(﹣3,0),F2(3,0),
∵=,
∴
=
,
整理得:=5,
化简得:5x=12y﹣15,
又∵,
∴5﹣4y2=20,
解得:y=或y=(舍),
∴P(3,),
∴直线PF1方程为:5x﹣12y+15=0,
∴点M到直线PF1的距离d==1,
易知点M到x轴、直线PF2的距离都为1,
结合平面几何知识可知点M(2,1)就是△F1PF2的内心.
故﹣===2,
故选:A.
【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.
3.【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},
∴∁U M={0,1},
∴N∩(∁U M)={0,1},
故选:B.
【点评】本题主要考查集合的子交并补运算,属于基础题.
4.【答案】B
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
5.【答案】A
【解析】解:画出满足条件的平面区域,如图示:
,
由图象得P(3,0)到平面区域的最短距离d min=,
∴(x﹣3)2+y2的最小值是:.
故选:A.
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
6.【答案】B
【解析】
考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
7.【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得=4,解得m=12.
故选:A.
8. 【答案】A
【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),
∴AB 是正方体的体对角线,AB=,
设正方体的棱长为x ,
则,解得x=4.
∴正方体的棱长为4,
故选:A .
【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.
9. 【答案】A 【解析】
试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 10.【答案】A
【解析】解:由已知中几何体的直观图,
我们可得侧视图首先应该是一个正方形,故D 不正确; 中间的棱在侧视图中表现为一条对角线,故C 不正确; 而对角线的方向应该从左上到右下,故B 不正确
故A 选项正确. 故选:A . 【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问
题的关键.
11.【答案】A 【解析】
考
点:棱锥的结构特征. 12.【答案】A 【解析】
试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,
故选A.
考点:几何体的结构特征.
二、填空题
13.【答案】12.
【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,
所以15﹣x=12,
即所求人数为12人,
故答案为:12.
14.【答案】[4,16].
【解析】解:直线l:(t为参数),
化为普通方程是=,
即y=tanα•x+1;
圆C的参数方程(θ为参数),
化为普通方程是(x﹣2)2+(y﹣1)2=64;
画出图形,如图所示;
∵直线过定点(0,1),
∴直线被圆截得的弦长的最大值是2r=16,
最小值是2=2×=2×=4
∴弦长的取值范围是[4,16].
故答案为:[4,16].
【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.
15.【答案】8升.
【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8.故答案是:8.
-.
16.【答案】[3,6]
【解析】
2,6
17.【答案】[]
【解析】
考点:简单的线性规划.
【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数
的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点
(),x y与原点()
0,0的距离;(2(),x y与点(),a b间的距离;(3)y
x
可表示点
(),x y与()
0,0点连线的斜率;(4)y b
x a
-
-
表示点(),x y与点(),a b连线的斜率.
三、解答题
18.【答案】
【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.
19.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】
试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′
,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′
≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:2
41
x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数
()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,
4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数
试题解析:(1) ()2a
f x x x
=-′
由已知,(1)0f =′
即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分
因为(]0,1x ∈,所以[)1
1,x ∈+∞,所以2min
112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分
(3)函数()()()6m x f x g x =--有两个零点.因为(
)22ln 6m x x x x =--+
所以(
)
)(
)1222
221x m x x x x
=--+==′ ………12分
当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m
所以()()min 140m x m ==-<, ……………………………………14分 32
41-e)(1+e+2e )(=0e m e -<() ,8424
8
12(21))0e e e m e e -++-=>(
44
42()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:
函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,
所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】
对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 20.【答案】
【解析】解:(1)f(x)=﹣
=sin2x+sinxcosx﹣
=+sin2x﹣
=sin(2x﹣)…3分
周期T=π,
因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分
当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,
所以函数f(x)的单调递减区间为,,k∈Z…7分
(2)当,2x﹣∈,…9分
sin(2x﹣)∈(﹣,1),当x=时取最大值,
故当x=时函数f(x)取最大值为1…12分
【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.
21.【答案】
【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA
∵△PCD为正三角形
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD
∴PE⊥平面ABCD
∵四边形ABCD是矩形
∴△ADE、△ECM、△ABM均为直角三角形
由勾股定理得EM=,AM=,AE=3
∴EM2+AM2=AE2,∴∠AME=90°
∴AM⊥PM
(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM
∴
而
在Rt△PEM中,由勾股定理得PM=
∴
∴
∴,即点D到平面PAM的距离为
22.【答案】
【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,
在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,
由余弦定理可得AD==;
(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,
∴问题转化为比较∠ADE与∠EBC的大小.
在△ADE中,由正弦定理可得,
∴sin∠ADE=<=sin30°,
∴∠ADE<30°
∴∠ADC<∠ABC.
【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.
23.【答案】(1)
22
1
43
x y
+=;(2)点R在定直线1
x=-上.
【解析】
试
题解析:
(1)由12e =,∴2214e a =,∴22
34a b =
7=
,
解得2,a b ==,所以椭圆C 的方程为22
143
x y +=
.
设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--, 解得112
12
21212011224
424()
41()814
x x x x x x x x x x x x x x x λλ
++
⋅-+++=
==+-+++
+
又221212222
64123224
24()24343434k k x x x x k k k
---++=⨯+⨯=+++,
21222
3224()883434k x x k k -++=+=++,从而121201224()
1()8
x x x x x x x ++==-++, 故点R 在定直线1x =-上.
考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.。