2007年陕西省中考数学试题及答案(非课改用)--WORD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省2007年初中毕业学业考试(试卷类型A )
数学试卷
本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至10页,全卷共120分.考试时间为120分钟.
第I 卷(选择题 共30分)
注意事项: 1.答第I 卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用2B 铅笔和钢笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚.
2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案标号.把答案填在试卷上是不能得分的.
3.考试结束,本卷和答题卡一并交给监考老师收回.
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.2-的相反数为( ) A .2
B .2-
C .
12
D .12
-
2.2007年1月1日从北京天安门地区管理委员会获悉,自1991年以来近16年里,大约有1.34亿人次在天安门观看升(降)旗仪式,1.34亿用科学记数法表示为( ) A .6
1.3410⨯
B .7
1.3410⨯
C .8
1.3410⨯
D .9
1.3410⨯
3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .3cm ,3cm ,6cm C .5cm ,8cm ,2cm D .4cm ,5cm ,6cm
4.不等式组2030x x +>⎧⎨-⎩
,≥的解集是( )
A .23x -≤≤
B .2x <-,或3x ≥
C .23x -<<
D .23x -<≤
5.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( ) A .50005000 3.06%x -=⨯
B .500020%5000(1 3.06%)x +⨯=⨯+
C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+
D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯ 6.如图,圆与圆之间不同的位置关系有( ) A .2种 B .3种 C .4种 D .5种
(第6题图)
7.如图,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+
C .2y x =-
D .2y x =--
8.抛物线2
47y x x =--的顶点坐标是( ) A .(211)-,
B .(27)-,
C .(211),
D .(23)-,
9.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并
延长交BC 的延长线于点F ,则图中全等的直角三角形共有( ) A .3对 B .4对 C .5对 D .6对
10.如图,在等边ABC △中,9AC =,点O 在AC 上, 且3AO =,点P 是AB 上一动点,连结OP ,作60POD ∠=
, 使OD OP =,要使点D 恰好落在BC 上,则AP 的长是( ) A .4 B .5 C .6 D .8
陕西省2007年初中毕业学业考试(试卷类型B )
数学试卷
本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至10页,全卷共120分.考试时间为120分钟.
第I 卷(选择题 共30分)
注意事项: 1.答第I 卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用2B 铅笔和钢笔准确涂写了在答题卡上;并将本试卷左侧的项目填写清楚.
2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案标号.把答案填在试卷上是不能得分的.
3.考试结束,本卷和答题卡一并交给监考老师收回.
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.2-的相反数为( ) A .
12
B .12
-
C .2
D .2-
2.2007年1月1日从北京天安门地区管理委员会获悉,自1991年以来近16年里,大约有1.34亿人次在天安门观看升(降)旗仪式,1.34亿用科学记数法表示为( ) A .6
1.3410⨯
B .7
1.3410⨯
C .8
1.3410⨯
D .9
1.3410⨯
(第7题图)
C
(第9题图)
C
O D
P
B
A
(第10题图)
3.以下列各组线段为边,能组成三角形的是( ) A .4cm ,5cm ,6cm B .2cm ,3cm ,5cm C .3cm ,3cm ,6cm D .5cm ,8cm ,2cm 4.不等式组2030x x +>⎧⎨
-⎩
,
≥的解集是( )
A .23x -<<
B . 23x -<≤
C .23x -≤≤
D .2x <-,或3x ≥
5.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( ) A .50005000 3.06%x -=⨯
B .500020%5000(1 3.06%)x +⨯=⨯+
C . 5000 3.06%20%5000 3.06%x +⨯⨯=⨯
D .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+ 6.如图,圆与圆之间不同的位置关系有( ) A .5种 B .4种 C .3种 D .2种
7.如图,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =+ B .2y x =-+
C .2y x =-
D .2y x =--
8.抛物线2
47y x x =--的顶点坐标是( ) A .(211)-,
B .(27)-,
C .(211),
D .(23)-,
9.如图,在矩形ABCD 中,E 为CD 的中点,连接AE 并
延长交BC 的延长线于点F ,则图中全等的直角三角形共有( ) A .6对 B .5对 C .4对 D .3对
10.如图,在等边ABC △中,9AC =,点O 在AC 上, 且3AO =,点P 是AB 上一动点,连结OP ,作60POD ∠=
, 使OD OP =,要使点D 恰好落在BC 上,则AP 的长是( ) A .8 B .6 C .5 D .4
(第6题图)
(第7题图)
C
(第9题图) C
O D
P
B
A
(第10题图)
陕西省2007年初中毕业学业考试
数学试卷
二、填空题(共6小题,每小题3分,计18分) 11.计算:2
21(3)3x y xy ⎛⎫
-=
⎪⎝⎭
. 12.在ABC △的三个顶点(23)(45)(32A B C ----,,,,,中,可能在反比例函数
(0)k
y k x
=
>的图象上的点是 . 13.如图,50ABC AD ∠=
,垂直平分线段BC 于点D ABC ∠,的 平分线BE 交AD 于点E ,连结EC ,则AEC ∠的度数是 .
14.选作题...(要求在(1)、(2)中任选一题作答) (1
)用计算器计算:3sin 38≈
(结果保留三个有效数字).
(2)小明在楼顶点A 处测得对面大楼楼顶点C 处的 仰角为52
,楼底点D 处的俯角为13
.若两座楼AB 与
CD 相距60米,则楼CD 的高度约为 米.
(结果保留三个有效数字).
(sin130.2250cos130.9744tan130.2309sin520.7880cos520.6157≈≈≈≈≈
,,,,
tan52 1.2799≈ )
15.小说《达 芬奇密码》中的一个故事里出现了一串神密排列的数,将这串令人费解的数按从小到大的顺序排列为:112358,,,,,,…,则这列数的第8个数是 .
(第13题图)
(第14题图)
16.如图,要使输出值y 大于100,则输入的最小正整数x 是 .
三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 设23
111
x A B x x =
=+--,,当x 为何值时,A 与B 的值相等? 18.18.(本题满分6分)
如图,横、纵相邻格点间的距离均为1个单位.
(1)在格点中画出图形ABCD 关于点O 对称的图形A B C D '''';
(2)在图形ABCD 与圆形A B C D ''''的所有对应点连线中,写出最长线段的长度.
19.(本题满分7分) 如图,在ABC △中,90ACB ∠=
,30B ∠=
,
CD ,CE 分别是AB 边上的中线和高. (1)求证:AE ED =;
(2)若2AC =,求CDE △的周长.
(第16题图)
E
B
(第19题图)
B (第18题图)
O
20.(本题满分8分)
(1)求这10个专卖店该月销售额的平均数、众数、中位数;
(2)为了调动各专卖店经营的积极性,该厂决定实行目标管理,即确定月销售额,并以此对超额销售的专卖店进行奖励.如果想确定一个较高的销售目标,你认为月销售额定为多少合适?并说明理由.
21.(本题满分8分) 如图,在梯形ABCD 中,45AB DC DA AB B ∠=
∥,⊥,
延长CD 到点E ,使DE DA =,连接AE .
(1)求证:AE BC ∥; (2)若31AB CD ==
,,求四边形ABCE 的面积.
22.(本题满分8分)
为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y (元)是原来价格每人x (元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元. (1)求y 与x 的函数关系式(不要求写出x 的取值范围);
(2)王老师想参加该旅行社原价格为5600元的一条线路的暑期旅游,请帮王老师算出这条线路的价格. 23.(本题满分8分)
如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线交切线AC 于点C OC ,与半圆O 交于点E ,连结BE DE ,.
(1)求证:BED C ∠=∠;
(2)若58OA AD ==,,求AC 的长.
24.(本题满分10分)
如图,在直角梯形OBCD 中,8110OB BC CD ===,,. (1)求C D ,两点的坐标;
(2)若线段OB 上存在点P ,使PD PC ⊥,求过D P C ,,三点的抛物线的表达式.
(第21题图)
C
A O
B E D (第23题图) (第24题图)
25.(本题满分12分)
如图,O 的半径均为R .
(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形;
(2)如图③,在O 中,(02)AB CD m m R ==<<,且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 的面积(用含m α,的式子表示); (3)若线段AB CD ,是O 的两条弦,
且AB CD ==
,你认为在以点A B C D
,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.
陕西省2007年初中毕业学业考试
数学答案及评分参考
第I 卷(选择题 共30分)
第II 卷(非选择题 共90分)
二、填空题(共6小题,每小题3分,共18分) 11.3
3
x y - 12.B 13.115°(填115不扣分) 14.(1)0.433(2)90.6 15.21 16.21 17.解:当A B =时,
23
111
x x x =+--. 311(1)(1)
x x x x =+-+-.····································································································· 1分 方程两边同时乘以(1)(1)x x +-,得
(1)3(1)(1)x x x x +=++-. ·
······························································································· 2分 (第25题图①) (第25题图②) (第25题图③) (第25题图④)
2231x x x +=+-.
2x =. ·
·································································································································· 3分 检验:当2x =时,(1)(1)30x x +-=≠.
2x =∴是分式方程的根. ·
··································································································· 4分 因此,当2x =时,A B =. ································································································· 5分 18.解:(1)画图正确得4分.
(2
)最长线段的长是 ····················································································· 6分 19.(1)证明:90ACB ∠=
,CD C 是AB 边上的中线,
CD AD DB ∴==. ·
············································································································ 1分 30B ∠= ,
60A ∴∠= . ·
························································································································ 2分 ACD ∴△是等边三角形. ····································································································· 3分 CE 是斜边AB 上的高,
AE ED ∴=. ·
······················································································································· 4分 (2)解:由(1)得2AC CD AD ED ===,又2AC =,
21CD ED ∴==,. ·
··········································································································· 5分
CE ∴==. ········································································································ 6分
CDE ∴△
的周长213CD ED CE =++=+= ··············································· 7分 20.解:(1)这组数据的平均数:293234338248255
3910
++⨯+⨯+⨯+=; ·
··········· 3分 这组数据的中位数:
3438
362
+=; ·
··················································································· 4分 这组数据的众数是:34. ····································································································· 5分
(2)这个目标可以定为每月39万元(平均数).因为从样本数据看,在平均数、中位数和众数中,平均数最大,可以认为,月销售额定为每月39万元是一个较高目标. ·············· 8分 (说明:如果把中位数、众数作为月销售额目标,可以给1分,把其它数据作为月销售额目
(第18题答案图)
A
'
C '
O
标不给分). 21.解:(1)证明:45AB DC DA AB B ⊥∠=∵∥,,°,
135C DA DE ∠=⊥∴°,.·
································································································ 1分 又DE DA =∵,
45E ∠=∴°. ·
······················································································································ 2分 180C E ∠+∠=∴°. ·
·········································································································· 3分 AE BC ∴∥. ·
······················································································································ 4分 (2)解:AE BC CE AB ∵∥,∥,
∴四边形ABCE 是平行四边形. ·
························································································· 5分 3CE AB ==∴.
2DA DE CE CD ==-=∴. ·
···························································································· 6分 326ABCE S CE AD ==⨯= ∴·. ························································································ 7分
22.解:(1)设y 与x 的函数关系式为y kx b =+, ·························································· 1分
由题意,得2100180028002300k b k b +=⎧⎨
+=⎩,,
··························································································· 3分
解之,得57300k b ⎧
=⎪⎨⎪=⎩,
.
·
··············································································································· 5分 y ∴与x 的函数关系式为5
3007
y x =
+. ·
·········································································· 6分 (2)当5600x =时,5
560030043007
y =
⨯+=元. ·
···················································· 7分 ∴王老师旅游这条线路的价格是4300元. ·
········································································· 8分 23.(1)证明:AC ∵是O 的切线,AB 是O 直径, AB AC ⊥∴. 则1290∠+∠=°. ················································································································ 1分 又OC AD ⊥∵,
190C ∠+∠=∴°. ·············································································································· 2分 2C ∠=∠∴. ·
······················································································································ 3分 而2BED ∠=∠,
BED C ∠=∠∴. ·
················································································································ 4分 (2)解:连接BD .
AB ∵是O 直径, 90ADB ∠=∴°.
6BD ===∴.…………5分
OAC BDA ∴△∽△. ……………………………6分 ::OA BD AC DA =∴.
即5:6:8AC =.……………………………………7分
C
A
O
B
E D
(第23题答案图)
1 2
20
3
AC =
∴. ………………………………………8分 24.解:(1)过点C 作CE OD ⊥于点E ,则四边形OBCE 为矩形.
8CE OB ==∴,1OE BC ==.
6DE ===∴.
7OD DE OE =+=∴.
C D ∴,两点的坐标分别为(81)
(07)C D ,,,.…………4分 (2)PC PD ⊥∵,
1290∠+∠=∴°. 又1390∠+∠=°, 23∠=∠∴.
Rt Rt POD CBP ∴△∽△.::PO CB OD BP =∴.
即:17:(8)PO PO =-.
2870PO PO -+=∴.
1PO =∴,或7PO =.
∴点P 的坐标为(10),,或(70),. ······················································································· 6分 ①当点P 的坐标为(10),时,
设经过D P C ,,三点的抛物线表达式为2
y ax bx c =++,
则706481c a b c a b c =⎧⎪++=⎨⎪++=⎩,,. ∴2528221287a b c ⎧
=⎪⎪
⎪
=-⎨⎪
=⎪⎪⎩
,,.
∴所求抛物线的表达式为:225221
72828
y x x =
-+.
·························································· 9分 ②当点P 为(70),时,
设经过D P C ,,三点的抛物线表达式为2
y ax bx c =++,
则749706481c a b c a b c =⎧⎪++=⎨⎪++=⎩,,. ∴141147a b c ⎧=⎪⎪
⎪
=-⎨⎪
=⎪⎪⎩
,,.
(第24题答案图)
∴所求抛物线的表达式为:2111
744
y x x =
-+. ·
··························································· 10分 (说明:求出一条抛物线表达式给3分,求出两条抛物线表达式给4分)
25.解:(1)答案不唯一,如图①、②(只要满足题意,画对一个图形给2分,画对两个给3分)
················································································································································· 3分 (2)过点A B ,分别作CD 的垂线,垂足分别为M N ,.
11
sin 22ACD S CD AM CD AE α==△∵···,
11
sin 22BCD S CD BN CD BE α==△···. ·
············································································ 5分 ACD BCD ACBD S S S =+△△四边形∴
11
sin sin 22
CD AE CD BE αα=+····
1()sin 2CD AE BE α=+·· 1sin 2CD AB α=·· 21
sin 2
m α=.
··········································· 7分 (3)存在.分两种情况说明如下: ···················································································· 8分 ①当AB 与CD 相交时, 由(2
)及AB CD ==
知21
sin sin 2
ACBD S AB CD R αα=
=四边形··. ·
······················ 9分 ②当AB 与CD 不相交时,如图④.
AB CD ==∵,OC OD OA OB R ====,
90AOB COD ∠=∠=∴°,
而Rt Rt AOB OCD AOD BOC ABCD S S S S S =+++△△△△四边形
2AOD BOC R S S =++△△.……………………………………10分
(第25题答案图①) (第25题答案图②)
(第25题答案图③)
(第25题答案图④)。