【八年级】新人教版八年级上册数学全册导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【八年级】新人教版八年级上册数学全册导学案学习目标:
1、理解数的算术平方根的概念,并会用符号表示。
2、理解平方与开平方是互为逆运算。
3、会求一些非负数的算术平方根。
自学指导:
认真学习课本68�D71页的内容,完成下列要求:
1、中被开方数a的范围怎样。0的算术平方根的意义。
2、完成例1,注意例1的书写格式。
3、学习例3的内容,注意与7是怎样比较的。
4、自学后完成展示内容,20分钟后进行展示。
展示内容:
1、∵ = ∴ 4的算术平方根是即
∵ = ∴ 的算术平方根是即
2、∵正数a的算术平方根是,
∴2的算术平方根是
∵4的算术平方根是2,
∴ =
3、求下列各数的算术平方根:
⑴ 0.0025 ⑵ 121 ⑶ ⑷ ⑸ 7
4、求下列各式的值:
(1)(2)(3)
5、计算下列各式:
6、求下列各等式中的正数x
(1) = 169 (2) 4 �D 121 = 0
7、比较下列各组数的大小。
(1)与12 (2)与0.5
13.3 平方根(35课时)
一、学习目标
1、理解平方根的概念
2、了解开平方的定义
3、掌握平方根的性质
二、自学指导
认真阅读72-74页内容,完成下列要求:
1、说明:一个正数a的算术平方根有__个,平方根有__个,并且互为____,0的平方根是___。
2、负数有没有平方根,为什么?
3、注意根号前的符号
4、自学20分钟后,进行展示活动
三、展示内容
1、填表:
X8-8 -
1210.360
2、计算下列各式的值:
(1)(2)-(3)± (4)-
3、平方根起源于正方形的面积,若一个正方形的面积为A,那么这个正方形的边长为多少?
4、判断下列说法是否正确
(1)5是25的算术平方根()
(2)是的一个平方根()
(3)的平方根是-4()
(4)0的平方根与算术平方根都是0()
5、下列各式是否有意义,为什么?
(1)-(2)(3)(4)
6、求下列各式的x的值:
13.2 立方根(36课时)
学习目标:
1、理解并掌握立方根的概念,会用符号表示一个数的立方根。
2、会求一个数的立方根。
自学指导:
自学课本77�D78页内容,完成下列要求:
1、理解立方根的概念,理解立方与开立方是互为逆运算。
2、独立完成77页探究内容,组内合作交流,归纳出正数、负数、0的立方根的特点。
3、理解与�D 的相等关系。
4、自学后完成展示内容,20分钟后进行展示。
展示内容:
1、如果一个数的立方根等于,那么这个数叫做的或。
2、求一个数的的运算,叫做。与
互为逆运算。
3、正数的立方根是数,负数的立方根是数,0的立方根是。
4、符号中,3是,中的不能省略。
5、�D
6、课本79页练习1、3、4题.
7、求下列各数的立方根:
(1)�D8 (2) (3) ±125
13.3实数(37课时)
学习目标:
1、了解实数的意义,能对实数按要求进行分类。
2、了解实数范围内,相反数、倒数、绝对值的意义。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
学习重点:理解实数的概念。
学习难点:正确理解实数的概念。
一、学前准备
二、探究新知
1、归纳:任何一个有理数都可以写成_______小数或________小数的形式。反过来,任何______小数或____________小数也都是有理数
观察通过前面的探讨和学习,我们知道,很多数的_____根和______根都是
____________小数, ____________小数又叫无理数,也是无理数
结论: _______和_______统称为实数
你能举出一些无理数吗?
2、试一试把实数分类
3、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上
的点来表示呢?
(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点
由原点到达点O′,点O′的坐标是多少?
从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______
这样,无理数可以用数轴上的点表示出来
①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上
的点有些表示__________,有些表示__________
当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都
可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数
②与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表
示的实数______
4、讨论当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合
于实数吗?
数的相反数是______,这里表示任意____________。一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______
三、学以致用
例1、把下列各数分别填入相应的集合里:
正有理数{ }
负有理数{ }
正无理数{ }
负无理数{ }
2、下列实数中是无理数的为()A. 0 B. C. D.
3、的相反数是,绝对值
4、绝对值等于的数是,的平方是
5、
6、求绝对值
练习:
一、判断下列说法是否正确:
1.实数不是有理数就是无理数。()
2.无限小数都是无理数。()