离散数学模拟题一套及答案

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

离散数学模拟题及答案

离散数学模拟题及答案

一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。

2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。

3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。

4.幂集P(P(∅)) =________________。

5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。

6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。

7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。

8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。

9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。

10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。

二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。

2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。

2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。

3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。

4.证明:R是传递的⇔R*R⊆R。

5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

离散数学模拟试卷和答案

离散数学模拟试卷和答案

北京语言大学网络教育学院《离散数学》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3[B] 8[C]9[D]272、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则( )。

[A] 3,8 [B]{}3 [C]{}8 [D]{}3,83、若X 是Y 的子集,则一定有( )。

[A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X∩Y=X4、下列关系中是等价关系的是( )。

[A]不等关系 [B]空关系 [C]全关系 [D]偏序关系5、对于一个从集合A 到集合B 的映射,下列表述中错误的是( )。

[A]对A 的每个元素都要有象 [B] 对A 的每个元素都只有一个象 [C]对B 的每个元素都有原象 [D] 对B 的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A 到A 的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个8、一个连通图G具有以下何种条件时,能一笔画出:即从某结点出发,经过图中每边仅一次回到该结点()。

[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点[D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是()。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

网络学院《离散数学》模拟-答案

网络学院《离散数学》模拟-答案

网络学院离散数学模拟试题1 考试时间120 分钟考试方式:开卷专业年级姓名学号一、选择填空题(每个空格3分,共30分)1.设A,B是集合,且φA,则_____必定成立。

D-B=A.A=B B.B⊆A C.A∩B=φD.A⊆B 2.{φ,{φ}}-φ=_____;CA. φ B. {φ} C. {φ,{φ}} D. {{φ}}3.设集合A={{0}},则P(A) =_____。

DA. P(P({0}))B. P({0})∪φC. P({0})∪{{0}}D. {φ,{{0}}}4.设有集合A={1,2,3,4},则从A到{0,1}的不同的函数有____个。

EA.0 B.1 C.4 D.12 E. 16 F. 24 G. 32 5.设G=(a)为12阶循环群,则G没有____阶子群。

EA.1 B.2 C.3 D.4 E. 5 F. 66.凡_____都满足消去律。

DA. 代数系统B. 半群C. 独异点D. 群7.从无向完全图K中至少删除____条边后,所得的图将成为平面图。

B5A.0 B.1 C.2 D.38.若无向图G是有99个结点,9个连通分量,则G中的边数必_____。

C A. ≤90 B. =90 C. ≥90 D. =100 E. ≥1009.下列句子中为命题的是_____。

AA.今天不是星期六。

B.考场内禁用手机!C.今天是周末吗?D.今天真冷呀!10. 任意两个不同极大项的析取式必为______。

AA. 永真公式B. 可满足公式C. 永假公式D. 等值公式二、求出谓词公式(,)(,,)u v F u v w G u v w ∃∃→∀的前束范式。

(10分)解:(,)(,,)u v F u v w G u v w ∃∃→∀ ⇔1111(,)(,,)u u F u v w G u v w ∃∃→∀ ⇔111(,)(,,)u v F u v w G u v w ⌝∃∃∨∀ ⇔1111(,)(,,)u y F u v w G u v w ∀∀⌝∨∀⇔1111(,)(,,)u v wF u vG u v w ∀∀∀⌝∨()三、用形式证明的方法证明下列论证的有效性:“本班有些同学是有经验的C++程序员,任何C++程序员都知道对象的概念。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的运算?A. 并集B. 交集C. 差集D. 乘法2. 命题逻辑中,下列哪个命题是真命题?A. (P ∧ ¬P) → QB. (P ∨ Q) ∧ ¬(P ∧ Q)C. P → (Q → P)D. (P → Q) ∧ (Q → R) → (P → R)3. 函数f: A → B,如果f是单射,那么下列哪个选项是正确的?A. A中不同的元素在B中可能有相同的像B. B中每个元素都有原像C. A中不同的元素在B中有不同的像D. B中不同的元素在A中有不同的原像4. 在图论中,下列哪个选项不是图的基本术语?A. 顶点B. 边C. 邻接D. 矩阵5. 组合数学中,从n个不同元素中取出k个元素的组合数记作C(n, k),下列哪个选项是错误的?A. C(n, k) = C(n, n-k)B. C(n, 0) = 1C. C(n, 1) = nD. C(n, k) = C(k, n)6. 关系R是A×B上的二元关系,下列哪个选项不是关系R的性质?A. 自反性B. 对称性C. 传递性D. 可数性7. 在命题逻辑中,下列哪个命题等价于P ∨ (Q ∧ R)?A. (P ∨ Q) ∧ (P ∨ R)B. (P ∧ Q) ∨ (P ∧ R)C. (P ∨ Q) ∨ RD. (P ∨ Q) ∧ R8. 集合{1, 2, 3}的幂集含有多少个元素?A. 3B. 6C. 8D. 99. 在图论中,下列哪个选项不是树的性质?A. 无环B. 至少有两个顶点C. 任意两个顶点都由唯一路径连接D. 至少有一个环10. 在集合论中,下列哪个选项是正确的?A. 空集是任何集合的子集B. 任何集合都是其自身的超集C. 空集是任何非空集合的真子集D. 空集是其自身的并集二、简答题(每题10分,共30分)11. 简述命题逻辑中的德摩根定律,并给出一个例子。

《离散数学》模拟题

《离散数学》模拟题

《离散数学》模拟题北航10秋学期《离散数学》模拟题⼀⼀、单项选择题(本⼤题共15⼩题,每⼩题2分,共30分)1.∑中所有有限长度的串形成的集合记为∑* ,容易证得∑*上的连接运算不满⾜交换律,但满⾜( A ) A .结合律 B .分配律 C .幂等律 D .吸收律 2.Klein 群中元素a,b,c 的阶为( B )。

A .1B .2C .3D .4 3.群G 的元素x 的所有幂的集合为G 的⼦群,称由x ⽣成的⼦群。

记为( A ). A . B .(x) C .x D .[x] 4.交换环是指乘法满⾜( A )。

A .交换律B .结合律C .分配律D .吸收律 5.⾄少有( B )元素的含单位元、⽆零因⼦环称为除环。

A .⼀ B .⼆ C .三 D .四 6.∨,∧满⾜( C )的格称为分配格A .交换律B .结合律C .分配律D .幂等律 7.若L 为有限布尔代数,则( B )正整数n ,L 与含有n 个元素的集合A 的幂集同构。

A .不存在 B .存在 C .有可能存在 8.有向图D 的顶点v 作为边的始点的次数之和称为v 的出度,记为d +(v), v 作为边的终点的次数之和称为v 的⼊度,记为d -(v),v 的度数d(v)= ( A )。

A .d +(v)+d -(v)B .d +(v)C .d -(v)D .d +(v)*d -(v) 9.若通路Г=v 0e 1v 1e 2…e 1v 1 中所有顶点互不相同(所有边⾃然互不相同)时称为( B ) A .初级回路 B .路径 C .复杂通路D .迹 10.在n 阶图中,若⼀顶点存在到⾃⾝的回路,则必存在从该顶点到⾃⾝的长度不超过( B )的回路。

A .n-1 B .n C .n+1 D .2n 11.“⼈总是要死的”谓词公式表⽰为( C )。

(论域为全总个体域)M(x):x 是⼈;Mortal(x):x 是要死的。

A .)()(x Mortal x M →; B .)()(x Mortal x M ∧C .))()((x Mortal x M x →?; D .))()((x Mortal x M x ∧?12. 公式))()((x Q x P x A →?=的解释I 为:个体域D={2},P(x):x>3, Q(x):x=4则A 的真值为( A )。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学模拟试题(05年6月)

离散数学模拟试题(05年6月)

离散数学模拟试题(一)一、选择题1、由集合运算的定义,下列各式中,正确的是( )。

(A) A ∪E = A; (B) A ∩∅ = A; (C) A ⊕ ∅ = A; (D) A ⊕ A = A.2、设G 如右图:那么G 不是( ). (A)平面图; (B)完全图;(C)欧拉图; (D)哈密顿图.3、设个体域为整数,下列公式中真值为1的是( )。

(A)∀x ∀y(x + y = 1); (B)∀x ∃y(x + y = 1); (C)∃x ∀y(x + y = 1); (D) ⌝ ∃x ∃y(x + y = 1)。

4、下列命题为假的是( )。

(A) {∅}∈ρ(∅); (B) ∅ ⊆ρ({∅});(C) {∅} ⊇ρ(∅); (D)ρ(∅) ∈ρ({∅})。

5、设集合A = {1,2,3,4},A 上的关系R = {(1,1),(2,3),(2,4),(3,4)},则R 具有( ). (A)自反性; (B)传递性; (C)对称性; (D)以上都不是.6、谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )(A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q7、谓词公式∃xA (x )∧⌝∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A),(B),(C)任何类型8、设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( ) (A) ),()(y x A x xL →∀ (B) )),()(()((y x A y J y x L x ∧∃→∀(C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀9、设命题公式⌝(P ∧(Q →⌝P )),记作G ,则使G 的真值指派为0的P ,Q 的取值是( ) (A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1) 10、与命题公式P →(Q →R )等值的公式是( )(A) (P ∨Q )→R (B)(P ∧Q )→R (C) (P →Q )→R (D) P →(Q ∨R ) 二、填空题1、命题: ∅ ⊆ {{a }} ⊆ {{a },3,4,1} 的真值 = ____ .2、 设A= {a,b}, B = {x | x 2-(a+b) x+ab = 0}, 则两个集合的关系为:A____B.3、设集合A ={a ,b ,c },B ={a ,b }, 那么 ρ(B )-ρ(A )=______ .4、无孤立点的有限有向图有欧拉路的充分必要条件为: _______________________________________________.5、公式))(),(()),()((x S z y R z y x Q x P x →∃∨→∀的自由变元是 , 约束变元是 .6、设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 .7、设N (x ):x 是自然数,Z (y );y 是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为 8、设G 是n 个结点的简单图,若G 中每对结点的度数之和 ,则G 一定是哈密顿图. 9、设全集合E ={1,2,3,4,5},A ={1,2,3},B ={2,5},~A ⋃~B = .10、设集合A ={a ,b ,c },B ={a ,b },那么P (A )-P (B )= 三、计算题1、求公式 G = (P ∧Q)→R 的主析取范式和主合取范式。

离散数学习题答案精选全文完整版

离散数学习题答案精选全文完整版

可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。

(2)5是无理数。

(3)3是素数或4是素数。

(4)x2+3<5,其中x是任意实数。

(5)你去图书馆吗?(6)2与3都是偶数。

(7)刘红与魏新是同学。

(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。

(11)只有6是偶数,3才能是2的倍数。

(12)8是偶数的充分必要条件是8能被3整除。

(13)2025年元旦下大雪。

1、2、3、6、7、10、11、12、13是命题。

在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。

2.将上题中是简单命题的命题符号化。

(1)p:中国有四大发明。

(2)q:5是无理数。

(7)r:刘红与魏新是同学。

(10)s:圆的面积等于半径的平方乘π。

(1)t:2025年元旦下大雪。

3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。

“5是有理数”的否定式是“5不是有理数”。

解:原命题可符号化为:p:5是有理数。

其否定式为:非p。

非p的真值为1。

4.将下列命题符号化,并指出真值。

(1)2与5都是素数。

(2)不但π是无理数,而且自然对数的底e也是无理数。

(3)虽然2是最小的素数,但2不是最小的自然数。

(4)3是偶素数。

(5)4既不是素数,也不是偶数。

a:2是素数。

b:5是素数。

c:π是无理数。

d:e是无理数。

f:2是最小的素数。

g:2是最小的自然数。

h:3是偶数。

i:3是素数。

j:4是素数。

k:4是偶数。

解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。

这五个复合命题的真值分别为1,1,1,0,0。

5.将下列命题符号化,并指出真值。

a:2是偶数。

b:3是偶数。

c:4是偶数。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。

答案:如果x不能被2整除,则x不是偶数。

2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。

答案:6个顶点。

3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。

答案:2^4=16个元素。

4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。

答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。

5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。

答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。

离散数学卷-参考答案.doc

离散数学卷-参考答案.doc

离散数学模拟卷2参考答案一、选择题1、请指出下列选项中哪一个是错谋的:(2)(1)0C0 (2) 060 ⑶ 0C{0} (4) 0G {0}2、对任意集合下述论断正确的是:(1)(1)若恥B,B U C,则AY⑵若则AuC(3)若AuSBwC,则A* ⑷若AaB9BeC f WlJ AcC3、假设 A 二{d#,c}上的关系R = {<a y a><a,bxa,cxc,a>}f那么,R是:⑴) (1)反自反的(2)反对称的(3)可传递的(4)不可传递的4、非空集合A上的空关系/?不具备下列哪个性质:(1)(1)白反性(2)反白反性(3)对称性(4)传递性5、若f:ATB,g:BT C是满射函数,则复合函数必是:(3)(1)双射函数(2)单射函数(3)满射函数(4)不单射也不满射6、假设人二{d",c}, B = {1,2]下列哪个关系是4到〃的函数:(3)(])于={v G,1 X a,2 >< Z?,l >< b,2 >< c,l >< c,2 >}⑵ f = {< >< a,b >< b,a >< b,b >< c.a >< c,c >}(3)/ = {v d,l x b,2〉v c,l >}(4)/ = {vl,ax2,bxl,c>}7、一个无向简单图G有加条边,农个顶点,则图中顶点的总度数为:(3)(1)(2) (3) 2m(4) 2nX、一个图是哈密顿图是指:(3)(1)图小包含-•条回路经过图小每条边一次且仅一次;(2)图中包含一条路经过图中每条边一次且仅一次;(3)图中包含一条回路经过图中每个顶点一次H.仅一次;(4)图屮包含一条路经过图中每个顶点一•次且仅一次。

9、一•棵树有2个2度顶点,1个3度顶点,3个4度顶点,则其1度的顶点数为:(2)(1)5 (2) 7 (3) 8 (4) 910、完全加叉树中有/片叶,「个分支点,则有关系式是:(2)(D z = Z -1 (2)(m -1)/ +1 = / (3)(血_“ = !(4)(m -1)/ = z -1二、填空题1、假设A = {{a,b},{c}}, B = {{a}y[h},{c}}试求出:A 的幕集p(A) =2、假设A = {x\x2 <30,xe正整数}, B = (x\x是正奇数,xv20}, C = {1,3,5}(1) (C —A) IJ (3— A) = {7911,13,15,17,19};(2)(BnC)-A=0;3、假设 A = {1,2,3,4}上的关系R = {< 2,3 >}, M:(1)r(R)二{v 1,1 >,<2,2>,v2,3>,v3,3>,v4,4>};(2)s(R) = {v2,3>,v3,2>h(3)”R) = {v2,3>};4、假设A = {1,2,3},仁g、h是A到A 的函数,其中:(a) /⑴=/(2) = /(3) = 1 ;(b) g⑴=1, g⑵=3, g(3) = 2; (c) /?(1) = 3 , /z(2) = /?(3) = 1 ;则:(1)丄是满射;(2)―是双射;5、设无向图G有36条边,冇6个3度的顶点,其余顶点度数均小于3,则G中至少有辽个顶点。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学模拟题一套及答案

离散数学模拟题一套及答案

离散数学考试(试题及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:A C D,(B∧C),C D必须同时成立。

因此(A C D)∧(B∧C)∧(C D)(A∨(C∧D)∨(C∧D))∧(B∨C)∧(C∨D)(A∨(C∧D)∨(C∧D))∧((B∧C)∨(B∧D)∨C∨(C∧D))(A∧B∧C)∨(A∧B∧D)∨(A∧C)∨(A∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D)F∨F∨(A∧C)∨F∨F∨(C∧D∧B)∨F∨F∨(C∧D∧B)∨F∨(C∧D)∨F(A∧C)∨(B∧C∧D)∨(C∧D∧B)∨(C∧D)(A∧C)∨(B∧C∧D)∨(C∧D)T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x (S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x(S(x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A B⌝(B A)。

证明:A B x(x∈A→x∈B)∧x(x∈B∧x A)x(x A∨x∈B)∧x(x∈B∧x A) ⌝x(x∈A∧x B)∧⌝x(x B∨x∈A)⌝x(x∈A∧x B)∨⌝x(x∈A∨x B)⌝(x(x∈A∧x B)∧x(x∈A∨x B))⌝(x(x∈A∧x B)∧x(x∈B→x∈A))⌝(B A)。

离散数学考试模拟试题及详细参考答案共四套

离散数学考试模拟试题及详细参考答案共四套

离散模拟答案11命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.一、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)二、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学考试(试题及答案)一、(10分)某项工作需要派A、B、C和D4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:ACD,(B∧C),CD必须同时成立。

因此(ACD)∧(B∧C)∧(CD)(A∨(C∧ D)∨(C∧D))∧(B∨C)∧(C∨D)(A∨(C∧ D)∨(C∧D))∧((B∧C)∨(B∧D)∨C∨(C∧D))(A∧B∧C)∨(A∧B∧D)∨(A∧C)∨(A∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧ D∧C∧D)∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧DF∨F∨(A∧C)∨F∨F∨(C∧D∧B)∨F∨F∨(C∧D∧B)∨F∨(C∧D)∨F(A∧C)∨(B∧C∧ D)∨(C∧D∧B)∨(C∧D)(A∧C)∨(B∧C∧ D)∨(C∧D)T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

():是专家;():是工人;():是青年人;则推理化形式为:(()∧()),()(()∧())下面给出证明:(1)() P(2)(c) T(1),ES(3)(()∧()) P(4)( c)∧( c) T(3),US(5)( c) T(4),I(6)( c)∧(c) T(2)(5),I(7)(()∧()) T(6) ,EG三、(10分)设A、B和C是三个集合,则AB(BA)。

证明:ABx(x∈A→x∈B)∧x(x∈B∧xA)x(xA∨x∈B)∧x(x∈B∧xA) x(x∈A∧xB)∧x(xB∨x∈A)x(x∈A∧xB)∨x(x∈A∨xB)(x(x∈A∧xB)∧x(x∈A∨xB))(x(x∈A∧xB)∧x(x∈B→x∈A))(BA)。

四、(15分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。

解 r(R)=R∪I A={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)=R∪R-1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>}R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>}R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2t(R)=R i={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}。

五、(10分)R是非空集合A上的二元关系,若R是对称的,则r(R)和t(R)是对称的。

证明 对任意的x、y∈A,若xr(R)y,则由r(R)=R∪I A得,xRy或xI A y。

因R与I A对称,所以有yRx或yI A x,于是yr(R)x。

所以r(R)是对称的。

下证对任意正整数n,R n对称。

因R对称,则有xR2yz(xRz∧zRy)z(zRx∧yRz)yR2x,所以R2对称。

若对称,则xyz(xz∧zRy)z(zx∧yRz)yx,所以对称。

因此,对任意正整数n,对称。

对任意的x、y∈A,若xt(R)y,则存在m使得xR m y,于是有yR m x,即有yt(R)x。

因此,t(R)是对称的。

六、(10分)若f:A→B是双射,则f-1:B→A是双射。

证明 因为f:A→B是双射,则f-1是B到A的函数。

下证f-1是双射。

对任意x∈A,必存在y∈B使f(x)=y,从而f-1(y)=x,所以f-1是满射。

对任意的y1、y2∈B,若f-1(y1)=f-1(y2)=x,则f(x)=y1,f(x)=y2。

因为f:A→B是函数,则y1=y2。

所以f-1是单射。

综上可得,f-1:B→A是双射。

七、(10分)设<S,*>是一个半群,如果S是有限集,则必存在a∈S,使得a*a=a。

证明 因为<S,*>是一个半群,对任意的b∈S,由*的封闭性可知,b2=b*b∈S,b3=b2*b∈S,…,b n∈S,…。

因为S是有限集,所以必存在j>i,使得=。

令p=j-i,则=*。

所以对q≥i,有=*。

因为p≥1,所以总可找到k≥1,使得kp≥i。

对于∈S,有=*=*(*)=…=*。

令a=,则a∈S且a*a=a。

八、(20分)(1)若G是连通的平面图,且G的每个面的次数至少为l(l≥3),则G的边数m与结点数n有如下关系:m≤(n-2)。

证明 设G有r个面,则2m=≥lr。

由欧拉公式得,n-m+r=2。

于是, m≤(n-2)。

(2)设平面图G=<V,E,F>是自对偶图,则| E|=2(|V|-1)。

证明 设G*=<V*,E*>是连通平面图G=<V,E,F>的对偶图,则G*G,于是|F|=|V*|=|V|,将其代入欧拉公式|V|-|E|+|F|=2得,|E|=2(|V|-1)。

离散数学考试试题(B卷及答案)一、(10分)证明(P∨Q)∧(PR)∧(QS)S∨R证明因为S∨RRS,所以,即要证(P∨Q)∧(PR)∧(QS)RS。

(1)R附加前提(2)PR P(3)P T(1)(2),I(4)P∨Q P(5)Q T(3)(4),I(6)QS P(7)S T(5)(6),I(8)RS CP(9)S∨R T(8),E二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。

设P(e):e是考生,Q(e):e将有所作为,A(e):e是勤奋的,B(e):e 是聪明的,个体域:人的集合,则命题可符号化为:x(P(x)(A(x)∨B(x))),x(A(x)Q(x)),x(P(x)Q(x))x(P(x)∧B(x))。

(1)x(P(x)Q(x)) P(2)x(P(x)∨Q(x)) T(1),E(3)x(P(x)∧Q(x)) T(2),E(4)P(a)∧Q(a) T(3),ES(5)P(a) T(4),I(6)Q(a) T(4),I(7)x(P(x)(A(x)∨B(x)) P(8)P(a)(A(a)∨B(a)) T(7),US(9)A(a)∨B(a) T(8)(5),I(10)x(A(x)Q(x)) P(11)A(a)Q(a) T(10),US(12)A(a) T(11)(6),I(13)B(a) T(12)(9),I(14)P(a)∧B(a) T(5)(13),I(15)x(P(x)∧B(x)) T(14),EG三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。

解设A、B、C分别表示会打排球、网球和篮球的学生集合。

则:|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2,|(A∪C)∩B|=6。

因为|(A∪C)∩B|=(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=| (A∩B)|+5-2=6,所以|(A∩B)|=3。

于是|A∪B∪C|=12+6+14-6-5-3+2=20,=25-20=5。

故,不会打这三种球的共5人。

四、(10分)设A1、A2和A3是全集U的子集,则形如A i(A i为A i或)的集合称为由A1、A2和A3产生的小项。

试证由A1、A2和A3所产生的所有非空小项的集合构成全集U的一个划分。

证明小项共8个,设有r个非空小项s1、s2、…、s r(r≤8)。

对任意的a∈U,则a∈A i或a∈,两者必有一个成立,取A i为包含元素a的A i或,则a∈A i,即有a∈s i,于是Us i。

又显然有s i U,所以U=s i。

任取两个非空小项s p和s q,若s p≠s q,则必存在某个A i和分别出现在s p 和s q中,于是s p∩s q=。

综上可知,{s1,s2,…,s r}是U的一个划分。

五、(15分)设R是A上的二元关系,则:R是传递的R*RR。

证明 (5)若R是传递的,则<x,y>∈R*Rz(xRz∧zSy)xRc∧cSy,由R 是传递的得xRy,即有<x,y>∈R,所以R*RR。

反之,若R*RR,则对任意的x、y、z∈A,如果xRz且zRy,则<x,y>∈R*R,于是有<x,y>∈R,即有xRy,所以R是传递的。

六、(15分)若G为连通平面图,则n-m+r=2,其中,n、m、r 分别为G的结点数、边数和面数。

证明对G的边数m作归纳法。

当m=0时,由于G是连通图,所以G为平凡图,此时n=1,r=1,结论自然成立。

假设对边数小于m的连通平面图结论成立。

下面考虑连通平面图G的边数为m的情况。

设e是G的一条边,从G中删去e后得到的图记为G,并设其结点数、边数和面数分别为n、m和r。

对e分为下列情况来讨论:若e为割边,则G有两个连通分支G1和G2。

G i的结点数、边数和面数分别为n i、m i和r i。

显然n1+n2=n=n,m1+m2=m=m-1,r1+r2=r +1=r+1。

由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。

相关文档
最新文档