数学培优9.12-9.18试题

合集下载

北师大版2023-2024学年数学九年级上册期末培优检测试题A卷(含答案)

北师大版2023-2024学年数学九年级上册期末培优检测试题A卷(含答案)

2023-2024学年北师大版数学九年级上册期末培优检测试题(A)一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,选出符合题目要求的一项。

1.已知a4=b5=c6,且a―b+c=10,则a+b―c的值为( )A. 6B. 5C. 4D. 32.如图,在△ABC中,如果DE与BC不平行,那么下列条件中,不能判断△ADE∽△ACB的是( )A. ∠ADE=∠CB. ∠AED=∠BC. ADAB =DEBCD. ADAC=AEAB3.2023年,理化生实验操作将纳入中考.某校为提高学生的动手实验能力,特举行物理实验操作测试.共准备了三项不同的实验,要求每位学生只参加其中一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和小明恰好做同一项实验的概率是( )A. 12B. 13C. 23D. 164.如图,菱形ABCD的对角线相交于点O,AC=8,BD=6,点P为边AB上一点,且点P不与点A,B重合.过点P作PE⊥AC于点E,PF⊥BD于点F,连接EF,则EF的最小值为( )A. 2B. 2.4C. 2.5D. 35.如右上图,点E、F、G、H是任意四边形ABCD中AD、BD、BC、CA的中点,若四边形EFGH是矩形,则四边形ABCD需要满足的条件是( )A. AB⊥CDB. AC=BDC. AC⊥BDD. AB=CD6.用配方法解方程x2―3x―14=0时,配方后所得的方程为( )A. (x+3)2=52B. (x―3)2=52C. (x+32)2=52D. (x―32)2=527.若α、β是方程x2+2x―2023=0的两个实数根,则a2+3α+β的值为( )A. 2021B. 2023C. 2025D. 40468.如图,在平面直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,的位似图形△OCD,则点C的坐标为在第三象限内得到与△OAB的位似比为13( )A. (―1,―1)B. (―4,―1)3C. (―1,―4) D. (―2,―1)39.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为a,最多需要正方体个数为b,则a+b的值为( )A. 14B. 15C. 16D. 1710.如图,点P是函数y=6图象上的一点,过点P作PA//x轴,PB//y轴,并分别交x函数y=3的图象于A、B两点,则四边形OAPB的面积为( )xA. 2B. 3C. 6D. 911.近几年,手机支付用户规模增长迅速,据统计2020年手机支付用户约为3.58亿人,连续两年增长后,2022年手机支付用户达到约5.27亿人,已知第二年的增长率是第一年的增长率的2倍,如果设手机支付用户的第一年的增长率为x,则根据题意可以列出方程为( )A. 3.58(1+x)=5.27B. 3.58(1+2x)=5.27C. 3.58(1+x)(1+2x)=5.27D. 3.58(1+x)2=5.2712.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0<x<10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数的一部分.下列结论正确的是( )A. 当0<x<10时,y与x成正比例关系B. 点A对应的学生注意力指标y=25C. 当10≤x<20时,y是x的一次函数D. 当20<x≤45时,函数解析式为y=900x二、填空题:本题共5小题,每小题3分,共15分。

最新人教版九年级下册数学培优训练十八 解直角三角形

最新人教版九年级下册数学培优训练十八 解直角三角形

【解析】作 AD⊥BC,垂足为点 D,
在 Rt△ABD 中,∠B=45°,
∴BD=AD=AB·sin 45°=
6
2 ×2

3.
在 Rt△ACD 中,AD= 3 ,AC= 15 ,
∴CD= AC2-AD2 =2 3 , ∴BC=BD+CD=3 3 ,
∴S△ABC=12 BC·AD=21 ×3 3 × 3 =92 .
十八 解直角三角形
已知两边解直角三角形
1.在 Rt△ABC 中,∠C=90°,AC= 2 ,BC= 10 ,则 AB 边上的中线长是( D )
A. 10 B.2 2 C. 2 D. 3
2.在 Rt△ABC 中,∠C=90°,BD 为 AC 边上的中线,已知 BC=4,BD=2 7 ,
则∠A=___3_0_°__.
3.在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为 a,b,c,已知 a=5, b=7,解这个直角三角形.(角度精确到 1″) 【解析】∵在 Rt△ABC 中,∠C=90°,a=5,b=7, ∴c= a2+b2 = 25+49 = 74 , tan A=75 ,tan B=75 , 则∠A≈35°32′16″,∠B≈54°27′44″. 答:c= 74 ,∠A≈35°32′16″,∠B≈54°27′44″.
5.如图,在 Rt△ABC 中,∠C=90°,边 AB 的垂直平分线分别交边 BC,AB 于 25
点 D,E,如果 BC=8,tan A=43 ,那么 BD=____4___.
6.在△ABC 中,若∠B=45°,AB=10 2 ,AC=5 5 ,
则△ABC 的面积是__7_5_或__2_5__.
4.在△ABC 中,AB=AC=4,BC=4 3 ,求∠BAC. 【解析】过点 A 作 AD⊥BC 于点 D,

初三数学培优班练习卷参考答案(因动点产生的线段和差问题)

初三数学培优班练习卷参考答案(因动点产生的线段和差问题)

2018—2018 学年度初三数学培优班练习卷参照答案(因动点产生的线段和差问题)班级座号姓名一、选择题 .题号 1 2 3 45 6 7 8 9 10 答案 D B E B D C B C D A 题号11 12 13 14 15 16 17 18 19 20 答案DBCDBDCACB二、填空题 .1.4 52. ,3. 164. 4.85. 56. 3cm 或41 cm 7. 8.7-1 9. 4 10.8或211.1212. 2π cm 13. 4 14. 15. 5 ,( 2, 3 ) 5316. 3x-y-9=0 , 6x-2y-9=0( 2≤ x ≤ 5 ) 17.318. -12 2 19. ( 1) y1 x2 x 。

( 2) 4 2 . 20. 32221. ( 1) 8 , 2cm/s ( 2) 4 , 6 ( 3 ) 42 , 17 22. 3 三、计算题1. 解答2.解答3.解答4.解答5.解答6.解答7.解答8. 解答( 1)由∠ OAE =∠ OBA ,∠ AOE =∠ BOA ,得△ AOE ∽△ BOA .所以AOBO.所以2 4 .OE OAOE 2解得= 1.所以(0,1) .OEE( 2)①如图 3,在 Rt △ A ′ OB 中, OB = 4, OA ′= 2- m ,所以 A ′ B 2= 16+(2 - m ) 2.22在 Rt △ BEE ′中, BE = 3, EE ′= m ,所以 BE ′ = 9+m .所以 ′ 2+′2=16+ (2 - ) 2+ 9+ 2=2( -1) 2 +27.A B BE m m m所以当 m = 1 时, A ′ B 2+ BE ′ 2 获得最小值,最小值为27.此时点 ′是的中点,点 ′向右平移了 1 个单位,所以 ′ (1,1) .AAOEE②如图 4,当 A ′ B + BE ′获得最小值时,求点E ′的坐标为 ( 8,1) .79. 解答( 1)由 y =- x 2+ 2x + 3=- ( x + 1)( x - 3) =- ( x - 1) 2+ 4,得 A ( -1, 0) 、B (3, 0) 、 C (0, 3) 、 D (1, 4) .直线 AC 的解读式是 y = 3x + 3.( 2) Q 1(2, 3) ,Q 2(1 7, 3),Q 3(1 7, 3).( 3)设点 B 对于直线 AC 的对称点为 B ′,联络 BB ′交 AC 于 F .联络 B ′ D , B ′D 与交 AC 的交点就是要探究的点 M .作 B ′ E ⊥ x 轴于 E ,那么△ BB ′ E ∽△ BAF ∽△ CAO .在 Rt △ BAF 中,AFBF AB, AB = 4,所以 BF12 .131010在 Rt △′ 中, B'EBE BB' , BB ' 2BF24,所以12 , BE 36 .BB E131010B ' E55所以 OEBE OB36 3 21.所以点 B ′的坐标为 ( 21 ,12) .555 5因为点 M 在直线 y = 3 x +3 上,设点 M 的坐标为 ( x , 3 x + 3) .由 DD'MM ' ,得 yDyB'yM yB' 4 123x 312.所以55 . B'D 'B'M 'xD xB'xM xB '1 21x2155解得 x9.所以点 M 的坐标为 ( 9 , 132) .3535 35图2图3 10.解:( 1)过点 P 作 PG⊥ AB 于 G, PH⊥ BC 于 H。

初中数学培优训练试题题库 数学 009(附答案解析)

初中数学培优训练试题题库 数学 009(附答案解析)

题库数学09一、选择题(本题14个小题,每小题3分,共42分;每题中只有一个答案符合要求)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a63.(3分)将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°4.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()每天阅读时间(小时)0.51 1.52人数89103A.2,1B.1,1.5C.1,2D.1,15.(3分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm 和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(3分)图中所示几何体的主视图是()A.B.C.D.7.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.8.(3分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.(3分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.1510.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°11.(3分)如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值为()A.4B.﹣4C.7D.﹣712.(3分)观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23B.75C.77D.13913.(3分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2B.BE=DF C.∠EDF=60°D.AB=AF14.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤a+b+c=0,其中,正确结论的个数是()A.1B.2C.3D.4二、填空题(本题5个小题,每小题3分,共15分)15.(3分)计算:2﹣1×+2cos30°=.16.(3分)不等式组的解集是.17.(3分)如图,在平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,CE=2,DF=1,∠EBF=60°,则平行四边形ABCD的面积为.18.(3分)如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是.19.(3分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.例如,已知ab=1,求的值.解:∵ab=1,∴a2b2=1,∴原式=波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第.个发现后,再四处看看,他们总是成群生长”.请类比以上方法解答:已知ab=1,求得的结果是.三、解答题(本题7个小题,共63分)20.(7分)先化简,再求值:(1﹣)÷,其中m=2+.21.(7分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对八年级甲,乙两班各60名学生进行了垃极分类相关知识的测试,并分别抽取了15份成绩,整理分析过程如下,请补充完整.【收集数据】甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:《满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83【整理数据】(1)按如下分数段整理、描述这两组样本数据组别频数65.5~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲224511乙11a b20在表中,a=,b=.(2)补全甲班15名学生测试成绩频数分布直方图:【分析数据】(3)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲80x8047.6乙8080y26.2在表中:x=,y=.(4)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃极分类及投放相关知识合格的学生有人.(5)你认为哪个班的学生掌握垃圾分类相关知识的整体水平较好,说明理由.22.(7分)两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部?23.(9分)如图,已知AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°.过点C作CE∥AB交DB的延长线于点E.(1)求证:CE是⊙O的切线;(2)若cos∠CED=,BD=6,求⊙O的直径.24.(9分)某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;甲(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?25.(11分)问题情境如图1,已知矩形ABCD中,点E,F是AD,BC的中点,连接EF,将矩形ABCD沿FF 剪开,得到四边形ABFE和四边形EPCD.(1)求证:四边形EPCD是矩形;操作探究保持矩形EPCD位置不变,将矩形ABFE从图1的位置开始,绕点E按逆时针方向旋转.设旋转角为α(O°<α<360°)操作中,提出了如下问题,请你解答.(2)如图2,当矩形ABFE旋转到点A落在线段EP上时,线段EF恰好经过点D,设DC与AB相交于点G.判断四边形EAGD的形状,并说明理由.(3)在矩形ABFE旋转过程中连接线段AP和BP,当AP=BP时,求旋转角α的度数.26.(13分)如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.参考答案一、选择题(本题14个小题,每小题3分,共42分;每题中只有一个答案符合要求)1.【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可.【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.【点评】本题考查了正数和负数,能用正数和负数表示题目中的数是解此题的关键.2.【分析】直接利用幂的乘方运算法则化简,再利用单项式乘以单项式、合并同类项法则计算得出答案.【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.【点评】此题主要考查了幂的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.3.【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【解答】解:由题意可得:∠1=∠3=∠4=40°,则∠2=∠5==70°.故选:D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.4.【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.【点评】本题考查众数、加权平均数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.5.【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.6.【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为:故选:A.【点评】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.7.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.【点评】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.【分析】根据等腰三角形性质知∠CBA=∠BCA=65°,∠A=50°,由平行线的性质及圆周角定理得∠ABD=∠ACD=∠A=50°,从而得出答案.【解答】解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.【点评】本题主要考查圆周角定理,解题的关键是掌握等腰三角形的性质、圆周角定理、平行线的性质.11.【分析】设点A(a,3),根据题意可得:a=,即可求点A坐标,代入解析式可求k 的值.【解答】解:∵AB∥x轴,若点B的坐标为(1,3),∴设点A(a,3)∵S△ABC=(a﹣1)×3=2∴a=∴点A(,3)∵点A在反比例函数y=(x>0)的图象上,∴k=7故选:C.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,熟练运用反比例函数的性质解决问题是本题的关键.12.【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选:B.【点评】此题考查数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.13.【分析】由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,∴四边形BEDF是菱形.【解答】解:由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF,∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选:B.【点评】本题利用了全等三角形的判定和性质,及菱形的判定.14.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线交y轴的正半轴,∴c>0,故①正确;∵对称轴为直线x=﹣1,∴点B(﹣,y1)距离对称轴较近,∵抛物线开口向下,∴y1>y2,故②错误;∵对称轴为直线x=﹣1,∴﹣=﹣1,即2a﹣b=0,故③正确;由函数图象可知抛物线与x轴有2个交点,∴b2﹣4ac>0即4ac﹣b2<0,∵a<0,∴>0,故④错误;由图象过点A(﹣3,0),对称轴为直线x=﹣1可知:抛物线的另一个交点为(1,0),即当x=1时y=0,∴a+b+c=0;故⑤正确;综上,正确的结论是:①③⑤,故选:C.【点评】此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本题5个小题,每小题3分,共15分)15.【分析】根据特殊角的三角函数值和实数的乘法和加法法则可以解答本题.【解答】解:2﹣1×+2cos30°===2,故答案为:2.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.16.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>0.5,解不等式②得:x≥1,∴不等式组的解集为x≥1,故答案为;x≥1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.17.【分析】根据四边形的内角和等于360°,求出∠D=120°,根据平行四边形的性质得到∠A=∠C=60°,进一步求出∠ABF=∠EBC=30°,根据CE=2,DF=1,求出BC、AB的长,根据勾股定理求出BE的长,根据平行四边形的面积公式即可求出答案.【解答】解:∵BE⊥CD,BF⊥AD,∴∠BEC=∠BFD=90°,∵∠EBF=60°,∵∠D+∠BED+∠BFD+∠EBF=360°,∴∠D=120°,∵平行四边形ABCD,∴DC∥AB,AD∥BC,∠A=∠C∴∠A=∠C=180°﹣120°=60°,∴∠ABF=∠EBC=30°,∴AD=BC=2EC=4在△BEC中由勾股定理得:BE=2,在△ABF中AF=4﹣1=3,∵∠ABF=30,∴AB=6,∴平行四边形ABCD的面积是AB•BE=6×2=12.故答案为:12.【点评】本题主要考查了平行四边形的性质,三角形的内角和定理,四边形的内角和定理,勾股定理,含30°角的直角三角形的性质等知识点,解此题的关键是综合运用性质求出BE和AB的长.18.【分析】分类讨论:当CD=DE时;当DE=CE时;当EC=CD时;然后利用等腰三角形的性质和三角形的内角和定理进行计算.【解答】解:分三种情况:①当CD=DE时,∵∠CDE=40°,∴∠DCE=∠DEC=70°,∴∠ADC=∠B+∠DCE=110°,②当DE=CE时,∵∠CDE=40°,∴∠DCE=∠CDE=40°,∴∠ADC=∠DCE+∠B=80°.③当EC=CD时,∠BCD=180°﹣∠CED﹣∠CDE=180°﹣40°﹣40°=100°,∵∠ACB=100°,∴此时,点D与点A重合,不合题意.综上所述,若△ADC是等腰三角形,则∠ADC的度数为80°或110°.故答案为:80°或110°.【点评】本题主要考查了等腰三角形的性质,解决问题的关键是学会用分类讨论的思想解决问题.19.【分析】根据题中材料可类比得到a2019b2019=1,将原式中第一项中的2019和1均替换为2019a2019b2019和a2019b2019,化简即可求解.【解答】解:∵ab=1,∴a2019b2019=1,∴原式=+=+==2019故答案为:2019.【点评】本题考查了分式的加减法:同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.三、解答题(本题7个小题,共63分)20.【分析】先计算括号内分式的减法、将除式分子、分母因式分解,再约分即可化简原式,继而将m的值代入计算可得.【解答】解:原式=÷=•=,当m=2+时,原式===+1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.【分析】(1)由收集的数据即可得;(2)根据题意不全频数分布直方图即可;(3)根据众数和中位数的定义求解可得;(4)用总人数乘以乙班样本中合格人数所占比例可得;(5)甲、乙两班的方差判定即可.【解答】解:(1)乙班75.5~80.5分数段的学生数为4,80.5~85.5分数段的学生数为5,故a=7,b=4,故答案为:7,4;(2)补全甲班15名学生测试成绩频数分布直方图如图所示,(3)甲班15名学生测试成绩中85出现的次数最多,故x=85;把乙班学生测试成绩按从小到大排列为:67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,处在中间位置的数为80,故y=80;故答案为:85,80;(4)60××100%=40(人),答:乙班60名学生中垃极分类及投放相关知识合格的学生有40人;故答案为:40;(5)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点评】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.22.【分析】(1)延长BG,交AC于点F,过F作FH⊥BD于H,利用直角三角形的性质和三角函数解答即可;(2)连接BC,利用利用直角三角形的性质和三角函数解答即可.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m,∵∠BFH=∠α=30°,在Rt△BFH中,BH=,,FC=30﹣17.32=12.68,再用12.68÷3≈4.23,所以在四层的上面,即第五层,答:此刻B楼的影子落在A楼的第5层;(2)连接BC,∵BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是利用利用直角三角形的性质和三角函数解答.23.【分析】(1)要证CE是⊙O的切线,只要证明∠OCE=90°,根据,∠CDB=45°,CE∥AB可以求得∠OCE=90°,从而可以解答本题;(2)要求⊙O的直径,根据CE∥AB,cos∠CED=,BD=6,可以求得AB的长,本题得以解决.【解答】(1)证明:连接BC、CO,如右图所示,∵AB是⊙O的直径,C,D是⊙O上两点,∠CDB=45°,∴∠COB=2∠CDB=90°,∵CE∥AB,∴∠COB+∠OCE=180°,∴∠OCE=90°,即CE是⊙O的切线;(2)连接AD,如右上图所示,∵CE∥AB,∴∠CED=∠ABD,∵cos∠CED=,BD=6,AB是⊙O的直径,∴∠ADB=90°,cos∠ABD=,∴,∴AB=18,即⊙O的直径是18.【点评】本题考查切线的判定、圆周角定理、解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【分析】(1)设y甲=k1x(k1≠0),把x=600,y甲=480代入即可;当0≤x≤200时,设y乙=k2x(k2≠0),把x=200,y乙=400代入即可;当x>200时,设y乙=k3x+b(k3≠0),把x=200,y乙=400和x=600,y乙=480代入即可;(2)当x=800时求出y甲,当x=400时求出y乙,即可求出答案.【解答】解:(1)设y甲=k1x(k1≠0),由图象可知:当x=600时,y甲=480,代入得:480=600k1,解得:k1=0.8,所以y甲=0.8x;当0≤x≤200时,设y乙=k2x(k2≠0),由图象可知:当x=200时,y乙=400,代入得:400=200k2,解得:k2=2,所以y乙=2x;当x>200时,设y乙=k3x+b(k3≠0),由图象可知:由图象可知:当x=200时,y乙=400,当x=600时,y乙=480,代入得:,解得:k3=0.2,b=360,所以y乙=0.2x+360;即y乙=;(2)∵当x=800时,y甲=0.8×800=640;当x=400时,y乙=0.2×400+360=440,∴640+440=1080,答:厂家可获得总利润是1080元.【点评】本题考查了一次函数图象和性质,用待定系数法求一次函数的解析式的应用,能正确用待定系数法求出函数解析式是解此题的关键.25.【分析】(1)证明四边形EPCD是平行四边形,再证明有一个角是直角即可.(2)结论:四边形EAGD是正方形,根据邻边相等的矩形是正方形即可证明.(3)分两种情形:①如图3,P A=PB,连接PF,②如图4,P A=PB,连接PF,分别求解即可.【解答】(1)证明:如图1,∵四边形ABCD是矩形,∴AD∥BC,∠C=90°,AD=BC,∵点E,F是AD,BC的中点,∴ED=PC,∴四边形EPCD是平行四边形,∵∠C=90°,∴四边形EPCD是矩形;(2)解:结论:四边形EAGD是正方形,理由:如图2中,∵EF∥AB,AE∥GD,∴四边形EAGD是平行四边形,∵E是AD的中点,∴ED=AE,∵∠EAG=90°,∴四边形EAGD是正方形;(3)解:如图3,连接PF,∵四边形AEFB是矩形,∴AE=BF,∠EAB=∠FBA,∵P A=PB,∴∠P AB=∠PBA,∴∠EAP=∠FBP,∴△EAP≌△FBP(SAS),∴EP=PF,由旋转得:EP=EF,∴EP=PF=EF,∴△EFP是等边三角形,∴α=∠PEF=60°;如图4,连接PF,∵四边形AEFB是矩形,∴AE=BF,∠EAB=∠FBA=90°,∵P A=PB,∴∠P AB=∠PBA,∴∠EAP=∠FBP,∴△EAP≌△FBP(SAS),∴EP=PF,由旋转得:EP=EF,∴EP=PF=EF,∴△EFP是等边三角形,∴∠PEF=60°,∴α=360°∠PEF=300°;综上,当AP=BP时,旋转角α的度数是60°或300°.【点评】本题属于四边形综合题,考查了正方形的性质,旋转变换,等腰三角形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.【分析】(1)利用待定系数法即可得出结论;(2)先确定出点E的坐标,利用待定系数法得出直线BD的解析式,利用PC=PE建立方程即可求出a即可得出结论;(3)设出点M的坐标,进而得出点G,N的坐标,利用FM=MG建立方程求解即可得出结论.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣2x﹣6,设点P(a,﹣2a﹣6),∵C(0,﹣3),E(﹣1,0),根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,PC2=a2+(﹣2a﹣6+3)2,∵PC=PE,∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,∴P(﹣2,﹣2),(3)如图,作PF⊥x轴于F,∴F(﹣2,0),设M(d,0),∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),∵以点F,N,G,M四点为顶点的四边形为正方形,必有FM=MG,∴|d+2|=|d2+2d﹣3|,∴d=或d=,∴点M的坐标为(,0),(,0),(,0),(,0).【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线的顶点坐标,勾股定理,正方形的性质,解(2)的关键是用PC=PE建立方程求解,解(3)的关键是解绝对值方程,是一道中等难度的中考常考题.。

九年级数学培优试题1215.doc

九年级数学培优试题1215.doc

九年级数学培优测试题一、选择题:1. D 是RtAABC 直角边AC 上一点,若过点D 的直线交AB 或BC 于点E,使得到的三角 形与原三角形相似,则这样的直线有()条・A. 1B. 2C. 3D. 42. 已知在半径为5的中,有两条平行的弦长度分别为6和8,则为两条弦的距离为( )A. 1B. 7C. 1 或 7D. 3 或 43圆锥的侧面积恰好等于其底面积的2倍,求该圆锥侧面展开图所对应扇形圆心角的度 数. A. 60°B. 90°C. 120°D. 180°4.如图,二次函数= ax 2+ /?% + c 的图像与y 轴正半轴相交,其顶点坐标为(丄,1),下 列结论:①ac<0 : ®a + b = 0;③4ac-b 2 = 4a ;④a + b + cVO.其中正确结论的个-1 + V5 27.如图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点0为 圆心的OO 与弧AE,边AD, DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面 圆恰好是OO,则AD 的长为( )9 11 A. 4 B. — C.—・ D. 52 2 数是( )A ・1 B.2 C.3 D.4 9.如图,00是AABC 的外接圆,D 为弧BC 的中点,DE 切。

0于D,交 AC 的延长线于E,则下列论断①BC 〃DE ②DE=DC ③ZBCD=ZDAE ④OA 平分ZBAD 其中正确的个数有( )A ・1个 B. 2个 C. 3个 D. 4个10.如图,OI 是AABC 的内切圆,点D 、E 分别为边AC 、BC ±的点,且 DE 为OI 的切线,若AABC 的周长为25, BC 的长是9,则厶ADE 的周长是(B. 8C. 9D. 165•如图,在AABC 中,AB=10, AC=8, BC=6,经过点C 且与边AB 相切的动圆与CB, CA 分别相交于点E, F,则线段EF 长度的最小值是( )B. SC. -1D. 18.如图所示,在梯形ABCD中,AB//CD, E是的中点,EFLAD于点F, AD=4, EF=5,则梯形ABCD的而积是()A. 40 B. 30 C. 20 D・1011.如图,四边形ABCD 的对角线CA 平分ZBCD 且AD=AB, CE±CB 于E,点0为四边形ABCD的外接圆的圆心,下列结论:①OA 丄DB ; ②CD+CB=2CE ;③ZCBA —ZDAC=ZACB ;④若ZDAB=90°,则CD+CB=73CA.其屮正确的结论是(二、填空题:13.如图,等边△ ABC 的边长为3, P 为上一点,且BP = 1, D 为AC 上一点,若ZAPD = 60°,则CD 的长为 ________________、 ,一[a b(a>b,a 0) 14-对买数d 、b ,定义运算☆如下:«☆/? = < / , [er h (a<b,a^0),例如 2*3= 2-3 =-.i+ 算▽☆(-4)]X[(—4)^ (-2)]= ______________ . 815. 如图,在以O 为圆心的两个同心圆中,大圆的弦AB 和AC 分别和小圆相切于点D 和E 若 S AADE =3,贝U S AABC = ____________16. 如图,点A, B 是OO 上两点,AB = \0,点P 是OO 上的动点(P 与A, B 不重合), 连结AP, PB,过点O 分别作OE 丄AP 于E, OF 丄PB 于F,则EF 二 __________________ ・ 17. 如图,把面积为1的正方形纸片ABCD 放在平面直角坐标系中,点B 、C 在兀轴上,A 、 D 和B 、C 关于y 轴对称将C 点折叠到y 轴上的C 处,折痕为BP,现有一反比例函数的图 象经过P 点,则该反比例函数的解析式为 ______________________ •三、解答题: 18. “三等分任意角”是数学史上一个著名问题.已知一个角ZMAN,设Za = -ZMAN . 3 (1 )当ZMAN=69°时,Za 的大小为 _______________ (度);A.①③④B.①②④D.①②③12. 己知方程X 2+3X +1=0的两个根为aA的值为(2 )如图,将/MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺, 请你在图中作出Za ,并简要说明做法(不要求证明) ______________________________ .19.如图,PA是圆0的切线,切点为A,割线PCB交圆0于C、B两点,半径0D丄BC, 垂足为E, AD交PB于点F.(1)求证:PA=PF;(2)若F是PB的中点,CF=1.5,求切线PA的长.20.如果一条抛物线〉=仮2+加+«0工0)与兀轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形"•(1)_____________________________ “抛物线三角形”(2)若抛物线y=-x2-^bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,是抛物线y=-x2+^(//>0)的“抛物线三角形”,是否存在以原点O为对称屮心的矩形ABCD ?若存在,求出过0、C、D三点的抛物线的表达式;若不存在,说明理由.(3)如图3,连接PD,当P 点在运动时(不与B 、C 两点重合),给出下列两个结论:①-个是正确的,并求其值. PC+PD ~~PA的值不变,② PA+PC+PD PO 的值不变,其屮有且只有一个是正确的,请你判断哪 (2) 如图2,连接PA, PC 、若CQ 平分ZPCD 交PA 于Q 点,当P 点在运动时,线段AQ 的长度是否发生变化;若不变求出其值,若发生变化,求出变化的范围; 21. 如图,E 点为x 轴正半轴上一点,G>E 交x 轴于A 、B 两点,交y 轴于C 、D 两点,P 点为劣弧3C±一个动点,且A (-1, 0), E (1, 0)(1) 如图1,求点C 的坐标;。

(完整版)七年级(下)数学培优试题(九)含答案,推荐文档

(完整版)七年级(下)数学培优试题(九)含答案,推荐文档

七年级(下)数学培优试题(九)含答案(考试时间:120分钟满分:150分)题号一二三四五总分总分人得分一、选择题:(本大题10个小题,每小题4分,共40分)每个小题都给出了代号为 A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号中.1.数学考试中,每一个选择题都给出了代号为 A、B、C、D的四个答案,但其中只有一个是正确的.如果同学们不加思考就在四个答案中随便选一个,则()A.选对的可能性大 B.选错的可能性大C.选对、选错的可能性一样大 D.说不清楚2.下列几何体属于柱体的个数是()A.3B.4C.5D.63.下列几个事件中,不确定事件的个数是()①抛出的蓝球会下落②掷一枚均匀的骰子,骰子停止转动后偶数点朝上③在正常情况下,将水加热1000C到时,水会沸腾④任意买一张电影票,座位号是奇数A.1 B.2 C.3 D.44.袋中装有4只红球、3只黑球、2只白球、1只黄球,这些球除颜色外都相同.现从袋中任意摸出一球,则摸到可能性最大的是()A.红球B.黑球C.白球D.黄球5.下列说法正确的是()A.若两个数的绝对值相等,则这两个数相等 B.有理数的绝对值一定比0大C.互为相反数的两个数的绝对值相等D.有理数的相反数一定比0小6.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()得分评卷人7.某班共有x 个学生,其中女生人数占%45,则男生人数是( )A .x %45B .%45xC .x %)451(-D .%451-x8.下列计算正确的是( )A .x x x 257=-B .xy y x 633=+C .971622=-y yD .1091922=-ab b a9. 信用卡上的号码由14位数字组成,每一位数字写在下面的方格中,如果任何相邻的 三个数字之和都等于20,则x 的值等于( )A.3B.4C.5D.6 10.下列各式一定成立的个数是( )①22)(a a -= ②33)(a a -= ③22a a -=- ④33a a = A. 4 B. 3 C.2 D. 1二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案直接填写在题中的横线上.11.如果零上5ºC 记作+5ºC ,那么零下3ºC 记作 . 12.已知5=x 是方程a ax +=-208的解,则=a . 13.用科学记数法表示:1300000000= .14.如图,若D 是AB 的中点,E 是BC 的中点,且8=AC ,3=EC ,则AD =_____.15.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号 (1)(2)(3)…n火柴根数得分 评卷人14题图EDCB A16.从3-,2-,1-,4,5中任意取出三个不同的数,将其可能得到的最小乘积填在下面的□中,可能得到的最大乘积填在下面的○中,并将下式计算的结果填在等号右边的横线上: .三、解答题:(本大题4个小题,每小题6分,共24分) 下列各题解答时必须给出必要的演算过程或推理步骤.17.计算:)43(27)56(13-++-+ 18.化简:)2()35(b a b a a ---+19.如图,已知A 、B 、C 、D 是平面内四个点,请根据下列要求在所给图中作图. ①画直线AB ; ②画射线AC ; ③画线段AD ; ④画DBC ∠; ⑤线段AD 与DBC ∠的边BC 交于点O ; ⑥过点O 作线段BD OE ⊥于E .20.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.主视图 左视图四、解答题:(本大题4个小题,每小题10分,共40分) 下列各题解答时必须给出必要的演算过程或推理步骤.21.解下列方程(每小题5分,共10分)(1)3)20(34=--x x ; (2)1615312=--+x x . 得分 评卷人得分 评卷人19题图22.先化简,再求值(每小题5分,共10分) (1))32(36922x x x x --+,其中2-=x ;(2))1(2)1(2)(22222+---+ab b a ab b a ,其中2,2=-=b a .23.一所中学准备搬迁到新校舍,在迁入新校舍之前,同学们就该校300名学生如何到校问题进行了一次调查,并得到以下数据:请根据以上数据在如下指定的图中分别制作条形统计图、折线统计图、扇形统计图,并填写扇形统计图相关数据表.步行 骑自行车 坐公共汽车 其他 60人100人130人10人24.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票每张8元,学生票每张5元,筹得票款6950元.求成人票与学生票各售出多少张?(请按下列两种不同的设未知数方法,完成后续解题过程,每种解法5分)解法1:设售出的成人票为x张,则根据题意列方程:解法2:设所得的成人票款为y元,那么所得的学生票款为()元,则根据题意列方程:得分评卷人五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤.25. 利用正方形、圆、三角形、平行四边形设计一个图案,并说明你想表现什么.(要求:每种图形都要用到,且其中两种及两种以上图形要用到2次及2次以上)3⨯方阵图,每行的三个数、每列的三个数,每斜对角的三个数相加的26.图1是一个3和均相等.的和均相等,是我们祖先早就在研究的问题.古代的“洛书”、汉朝徐岳的“九宫算”就揭示出祖先们得到的神奇填写方法.图1显示出把4-,3-,2-,1-,0,1,2,3,4填入一个33⨯方阵,使每行、每列、每斜对角的三个数相加的和均相等的一种方法.同学们,你能正确填写吗?马上试一试:(1)请观察图1中数字的填写规律,然后将下列各数组中的9个数分别填入图2 、图3、图4所示的9个空格中,使得每行的三个数、每列的三个数,每斜对角的三个数相加的和均相等;(图2、3、4填对一个得2分,共6分) ①6,5,4,3,2,1,0,1-,2- ②9,8,7,6,5,4,3,2,1 ③8-,6-,4-,2-,0,2,4,6,8(2)拓展探究:在图5所示 9个空格中,填入5个2和4个2-,使得每行、每列、每斜对角的三个数的乘积都是8;(3分)(3)拓展再探究:将25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1这25个数分别填入图 6所示25个空格中,使得每行、每列、每斜对角的五个数相加的和均相等.(3分)七年级数学试题参考答案及评分意见一、选择题:BDB A C ,DCABD试题出处:2题(课本P5)、3题(课本P204)、4题(课本P240)、5题(课本P50)、7题(课本P109)、8题(课本P119)、10题(课本P100)二、填空题: 11. C ︒-3(填3-扣1分)12.7=a 13.9103.1⨯ 14.1;15. 7,12,17,25+n 16.-60,30,-2. 试题出处:11题(课本P40)、12题(课本P196)、13题(课本P200)、14题(课本P141改)15题(课本P105) 三、解答题:(共24分)17.(课本P58)解:原式=)]43()56[()2713(-+-++-----------2分 =)99(40-+-----------------------4分 =59-.------------- ----------- ---6分 18.(课本P121)解:原式=b a b a a 235+--+-----------2分=)23()5(b b a a a +-+-+------4分 =b a -5.-----------------------6分19.画对一个得1分,共6分.20.(课本P26)画对主视图和左视图各3分共6分 四、解答题:(本大题4个小题,每小题10分,共40分) 21.解下列方程:20题左视图20题主视图(1)(课本P175)解:去括号得:33604=+-x x .-----------------2分 移项得:60334+=+x x .-----------------3分合并同类项得:637=x .------------------------4分 两边同除以7得:9=x .------------------------5分(2)(课本P178)解:去分母得:6)15()12(2=--+x x .----------1分去括号得:61524=+-+x x .--------------2分移项得:21654--=-x x .-------------3分合并同类项得:3=-x .-----------------------4分 两边同除以1-得:3-=x .--------------------5分22.(1)(课本P130) 解:原式=222369x x x x +-+-----------------1分 =286x x +.--------------------------2分当2-=x 时,原式=2)2(8)2(6-⨯+-⨯----------------3分=3212+--------------------------4分=20.----------------------- -------5分(2)(课本P130) 解:原式=2222222222--+-+ab b a ab b a ------------2分 =)22()22()22(2222-+-+-ab ab b a b a -----3分=0. ---------------------4分 当2,2=-=b a 时,原式=0.--------------------5分 23.(课本P212)图如下.条形统计图3分,折线统计图3分;扇形统计图有关数据表2分,扇形统计图2分. (所作条形统计图、折线统计图、扇形统计图中无“步行、骑自行车、坐公共汽车和其他”说明,每个图扣1分)24.(课本P189)解法1:设售出的成人票为x 张,则根据题意列方程: 了 69508)1000(5=+-x x .------------2分 解这个方程得:650=x .3501000=-x .----------------4分答:售出成人票650张,学生票350张.----------5分解法2:设所得的成人票款为y 元,则根据题意列方程:1000856950=+-yy .--------------2分 解这个方程得:5200=y .6508=y , 35056950=-y.----4分 答:售出成人票650张,学生票350张.----------5分25. (课本P242)本题属于开放性试题,可根据美观程度和与欲表现吻合程度参照以下标准给分:优秀:四种图形都用到,且其中有两种及两种以上图形用到2次及以上,图案与欲表现意图非常吻合,图案漂亮、美观、大气.---------10分良好:四种图形都用到,且其中只有一种图形用到2次及以上,图案与欲表现意图吻合,图案简洁、漂亮、美观.-----------------8分及格:四种图形都用到且只用到1次,图案与欲表现意图吻合,图案简洁、漂亮、美观.-----------------------------6分 不合格:四种图形未用完.-----0分 26.(1)(课本P60、P65、P65)图2填写过程如下:(填法不唯一,图3中只要按由小到大,斜角填写均可)图3、4填写过程如下:(填法不唯一,在图3中只要按由小到大,斜角填写均可)(2)图5填写如图:(3)图6填写过程如下:(填法不唯一,图3中只要按由小到大,斜角填写均可)。

2024-2025学年北师大版九年级上学期数学期中培优训练卷

2024-2025学年北师大版九年级上学期数学期中培优训练卷

2024-2025学年北师大版九年级上学期数学期中培优训练卷1.若一元二次方程的一个根为2,则的值为()A.1B.2C.D.2.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.6左右,则袋子中红球的个数最有可能是()A.5B.8C.12D.153.矩形中,对角线相交于点O,如果,那么的度数是()A.B.C.D.4.如图,中,,,,动点P从点A出发沿边以秒的速度向点B移动,点Q从点B出发,沿边以秒的速度向点C移动,如果点P,Q分别从点A,B同时出发,当有一个点到达终点时另一个点也停止运动,在运动过程中,设点P的运动时间为t,则当的面积为时,t的值()A.2或3B.2或4C.1或3D.1或45.下列说法中,正确的是()A.有一个角是直角的平行四边形是正方形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.一组对边平行,另一组对边相等的四边形是平行四边形6.要组织一次篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排15场比赛,如果设邀请个球队参加比赛,那么根据题意可以列方程为()A.B.C.D.7.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB=3m,BC=7m,则建筑物CD的高是()mA.3.5B.4C.4.5D.8.近年来某县大力发展柑橘产业,某柑橘生产企业在两年内的销售额从20万元增加到80万元,设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.B.C.D.9.在一个不透明的口袋中,放置2个黄球,1个白球,1个红球和个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则的值最可能是()A.4B.5C.6D.710.如图,直线AB的解析式为y=﹣2x+2,点E为正方形ABCD中CD边的五等分点,且CE=CD,双曲线y=(k≠0,x⟩0)的图象过点E,则k为()A.B.C.D.11.若关于的一元二次方程的一根为,则的值是______.12.已知,,c是a、b的比例中项,则______.13.如图,△ABC为等边三角形,点D、E分别在边BC、AC上,∠ADE=60°,如果BD:DC=1:2,AD=2,那么DE的长等于________.14.在一个不透明的袋子中有3个红球和个黑球,它们除颜色外其他均相同.从中任意摸出一个球,若摸出黑球的概率是,则的值是________.15.如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;=3.6.其中正确结论是________.②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC16.解方程:解方程:(1);(2)17.某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题:(1)表中________,________;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.18.如图和都是等腰直角三角形,,,顶点在的斜边上,求证:.19.百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?20.有一块三角形的草坪,其中一边的长为10m.在这块草坪的图纸上,这条边的长为5cm.已知图纸上的三角形的周长为15cm,则这块草坪的周长为______m.21.如图,点在线段上,等腰的顶角,点是矩形的对角线的中点,连接,若,,则的最小值为为______.22.已知y1=2x2+3x,y2=﹣5x+10.x为何值时,y1与y2的值相等?23.如图,四边形ABCD为菱形,E为对角线AC上的一个动点(不与点A,C重合),连接DE并延长交射线AB于点F,连接BE.(1)求证:;(2)求证:.24.如图,在△ABC中,点D,F,E分别在AB,BC,AC边上,DF AC,EF AB.(1)求证:△BDF∽△FEC.(2)设.①若BC=15,求线段BF的长;②若△FEC的面积是16,求△ABC的面积.25.如图,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC关于x轴对称的△,点的坐标是;(2)以原点O为位似中心,在原点的另一侧画出△,使=,点坐标是.26.某中学为了了解本校学生喜爱的球类运动,在本校范围内随机抽查了部分学生,将收集的数据统计整理,绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次一共调查了________名学生;(2)补全条形统计图;(3)“足球”在扇形统计图中所占圆心角的度数为________;(4)若已知该校有1000名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?27.在学习完北师大教材九年级上册第四章第6节“利用相似三角形测高”后,数学兴趣小组的3名同学利用课余时间想要测量学校里两棵树的高度.在同一时刻的阳光下,他们合作完成了以下工作:①测得一根长为l米的竹竿的影长为0.8米,甲树的影长为4.08米(如图l).②测量的乙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图2),测得落在地面上的影长为4.4米,一级台阶高为0.3米,落在第一级台阶的影子长为0.2米.(1)在横线上直接填写甲树的高度为_____________米.(2)图3为图2的示意图,请利用图3求出乙树的高度.28.已知:为钝角,是的两条高.(1)如图,若,求证:;(2)如图,若,延长相交于点,连接,当时,求的长;(3)如图,若,延长相交于点,连接,当时,求的值.。

初三培优数学试题(九)含答案

初三培优数学试题(九)含答案

A B D C初三培优数学试题(九)含答案全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题意.1.2-的相反数是 A .2B .12-C .2-D .122.下列事件为必然事件的是A .小王参加本次数学考试,成绩是150分B .某射击运动员射靶一次,正中靶心C .打开电视机,CCTV 第一套节目正在播放新闻D .口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球 3.如图是一个正方体被截去一角后得到的几何体,它的俯视图是4.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有A .1种B .2种C .3种D .4种5.下列计算或化简正确的是 A .235a a a +=B .11453833+= C .93=±D .1111x x -=-+- 6.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误..的是 A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米7.如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是(第3题图)8.如图,△ABC 是等腰三角形,点D 是底边BC 上异于BC 中点的一个点,∠ADE =∠DAC ,DE =AC .运用这个图(不添加辅助线)可以 说明下列哪一个命题是假命题?A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边平行的四边形是梯形C .一组对边相等,一组对角相等的四边形是平行四边形D .对角线相等的四边形是矩形9.如图是二次函数2y ax bx c =++的部分图象,由图象可知 不等式20ax bx c ++<的解集是A .15x -<<B .5x >C .15x x <->且D .15x x <->或 10.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB , MC =6,NC =23,则四边形MABN 的面积是A .63B .123C .183D .243E DCBA(第8题图) (第9题图)yx(第10题图)NMD ACB第Ⅱ卷(非选择题 共90分)题号 二 三 总 分 总分人 17 18 19 20 21 22 23 24 25 得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接填在题中横线上.11.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为 毫克/千瓦时.12.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 .13.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是 .14.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A 、B 、C 三个级别,其中A 级30棵, B 级60棵, C 级10棵,然后从A 、B 、C 三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是 千克. 苹果树长势 A 级B 级C 级随机抽取棵数(棵)36 1 所抽取果树的平均产量(千克)80 75 7015.如图,O 为矩形ABCD 的中心,M 为BC 边上一点,N 为DC 边上一点,ON ⊥OM ,若AB =6,AD =4,设OM =x ,ON =y ,则y 与x 的函数关系式为 .16.观察分析下列方程:①32=+x x ,②56=+x x ,③712=+xx ;请利用它们所蕴含的规律,求关于x 的方程2243n nx n x ++=+-(n 为正整数)的根,你的答案是: . (第15题图)MNOD C三、解答题:本大题共9个小题,共72分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程62=-x x 的根.18.(本小题满分7分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.(1)(4分)运用列表或画树状图求甲得1分的概率; (2)(3分)这个游戏是否公平?请说明理由.19.(本小题满分8分) 已知:一次函数23-=x y 的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)(3分)求该反比例函数的解析式;(2)(3分)将一次函数23-=x y 的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)(2分)请直接写出一个同时满足如下条件的函数解析式:①函数的图象能由一次函数23-=x y 的图象绕点)2,0(-旋转一定角度得到; ②函数的图象与反比例函数的图象没有公共点.20.(本小题满分8分) 小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部AD 的距离,小强测得办公大楼M PA顶部点A 的仰角为45°,测得办公大楼底部点B 的俯角为60°,已知办公大楼高46米,CD =10米.求点P 到AD 的距离(用含根号的式子表示).21.(本小题满分8分) 已知a 、b 是正实数,那么,2a bab +≥是恒成立的. (1)(3分)由20a b (-)≥恒成立,说明2a b ab +≥恒成立;(2)(3分)填空:已知a 、b 、c 是正实数,由2a b ab +≥恒成立,猜测:3a b c ++ ≥ 也恒成立;(3)(2分)如图,已知AB 是直径,点P 是弧上异于点A 和点B 的一点,PC ⊥AB ,垂足为C ,AC=a ,BC =b ,由此图说明2a b ab +≥BP(第21题图)22.(本小题满分8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)(3分)一套课桌凳和一套办公桌椅的价格分别为多少元? (2)(5分)求出课桌凳和办公桌椅的购买方案.23.(本小题满分8分)(1)(3分)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD ∶GC ∶EB 的结果(不必写计算过程);(2)(3分)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD ∶GC ∶EB ; (3)(2分)把图(2)中的正方形都换成矩形,如图(3),且已知DA ∶AB =HA ∶AE =m :n ,此时HD ∶GC ∶EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).GH E DC B A (1) A B CDE GH(3) (2) D CB A G HE (第23题图)24.(本小题满分9分)如图,在△ABC 中,AB =AC ,∠A =30°,以AB 为直径的⊙O 交B C于点D ,交AC 于点E ,连结DE ,过点B 作BP 平行于DE ,交⊙O 于点P ,连结EP 、CP 、OP .(1)(3分)BD =DC 吗?说明理由; (2)(3分)求∠BOP 的度数;(3)(3分)求证:CP 是⊙O 的切线;如果你解答这个问题有困难,可以参考如下信息: 为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP 交AC 于点G ,证△AOG ∽△CPG ”;小强说:“过点C 作CH ⊥AB 于点H ,证四边形CHOP 是矩形”.(第24题图)ABCDEP O25.(本小题满分9分)抛物线214y x x m =++的顶点在直线3y x =+上,过点F (2,2)-的直线交该抛物线于点M 、N 两点(点M 在点N 的左边),MA ⊥x 轴于点A ,NB ⊥x 轴于点B .(1)(3分)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)(3分)设点N 的横坐标为a ,试用含a 的代数式表示点N 的纵坐标,并说明NF =NB ;(3)(3分)若射线NM 交x 轴于点P ,且P A ×PB =1009,求点M 的坐标.数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案(第25题图)及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分) 1-5.ADABD ;6-10.BCCDC .二、填空题(每小题3分,共6个小题,满分18分)11.53.3010⨯;12.10或8(填正确一个答案得2分,填两个正确答案得3分);13.14k < 且0k ≠;14.7600;15.23yx ;16.3x n =+或4x n =+(填正确一个答案得2分,填两个正确答案得3分). 三、解答题(共9个小题,满分72分)17.原式=22(1)(1)(21)11a a a a a a -+---÷-+………………………………………………………1分=222211a a a a a --÷-+…………………………………………………………………………………2分 =21(1)(1)(2)a a a a a a -+⨯+--…………………………………………………………………………4分=21a a-……………………………………………………………………………………………5分 ∵a 是方程62=-x x 的根,∴62=-a a ………………………………………………6分∴原式=61………………………………………………………………………………………7分18. (1)列表或树状图如下:…………………………………………………………………3分P (甲得1分)=61122=……………………………………………………………………………4分 (2)不公平.……………………………………………………………………………………5分 ∵P (乙得1分)=14……………………………………………………………………………6分 1 2 3 4 1 1分 1分 0分2 1分 1分 0分3 1分 1分 0分4 0分 0分 0分000001110111得分第1次第2次开始4321123124134432第 2次 得 分第 1次∴P (甲得1分)≠P (乙得1分),∴不公平.………………………………………………7分 19.(1)把1x =代入32y x =-,得1y =……………………………………………………1分设反比例函数的解析式为k y x =,把1x =,1y =代入得,1k = …………………………2分∴该反比例函数的解析式为1y x=…………………………………………………………3分 (2)平移后的图象对应的解析式为32y x =+…………………………………………………4分解方程组 ,得 或 …………………………………………………………5分∴平移后的图象与反比例函数图象的交点坐标为(13,3)和(-1, -1) …………………6分 (3)22y x =--…………………………………………………8分 (结论开放,常数项为-2,一次项系数小于-1的一次函数均可)20.连结P A 、PB ,过点P 作PM ⊥AD 于点M ;延长BC ,交PM 于点N则∠APM =45°,∠BPM =60°,NM =10米……………………………1分 设PM =x 米在Rt △PMA 中,AM =PM ×tan ∠APM =x tan 45°=x (米)……3分 在Rt △PNB 中,BN =PN ×tan ∠BPM =(x -10)tan 60°=(x -10)3(米)………5分由AM +BN =46米,得x +(x -10)3 =46………………………6分 解得,4610313x +=+ ,∴点P 到AD 的距离为4610313++米.(结果分母有理化为()1838-米也可)………………………8分21.(1)由20a b (-)≥得,20a ab b -+≥………1分 于是 2a b ab +≥………………………………2分∴2a bab +≥……………………………………3分 (2)3abc ……………………………………6分(3)连结OP ,∵AB 是直径,∴∠APB =90°,又∵PC ⊥AB ,∴Rt △APC ∽Rt △PBC ,∴PC CB AC PC=,2PC AC CB ab =⨯=,PC ab =……………………………………………………………7分又∵2a b PO +=,由垂线段最短,得PO PC ≥,∴2a b ab +≥…………………………8分22.(1)设一套课桌凳和一套办公桌椅的价格分别为x 元、y 元,得…………………………………………………………………………………2分解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元………………………………3分 (2)设购买办公桌椅m 套,则购买课桌凳20m 套,由题意有16000800001202020024000m m ≤-⨯-⨯≤ ……………………………………………………5分解得,7821241313m ≤≤ ………………………………………………………………………………6分 ∵m 为整数,∴m =22、23、24,有三种购买方案:………………………………………7分{801042000y x x y =++={120200x y =={11x y =-=-{132y x y x ==+133x y =={PABCDPN M方案一 方案二 方案三课桌凳(套)440 460 480 办公桌椅(套) 2223 24 ……………………………………………………………………………………………………………8分23.(1)HD :GC :EB =1:2 :1……………………………3分(2)连结AG 、AC ,∵△ADC 和△AHG 都是等腰直角三角形,∴AD :AC =AH :AG =1:2 ∠DAC =∠HAG =45°,∴∠DAH =∠CAG …………………………………………………………4分 ∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:2 ……………………………………………5分 ∵∠DAB =∠HAE =90°,∴∠DAH =∠BAE ,又∵AD =AB ,AH =AE ,∴△DAH ≌△BAE ,∴HD =EB ∴HD :GC :EB =1:2 :1………………………………………………………………………6分 (3)有变化,HD :GC :EB =22::m m n n +……………………………………………………8分 24.(1)BD =DC ……………………………………1分连结AD ,∵AB 是直径,∴∠ADB =90°……………………………………………2分 ∵AB =AC ,∴BD =DC ……………………………………………………………3分(2)∵AD 是等腰三角形ABC 底边上的中线 ∴∠BAD =∠CAD ∴弧BD 与弧DE 是等弧, ∴BD =DE ……………4分 ∴BD =DE =DC ,∴∠DEC =∠DCE ∵△AB C 中,AB =AC ,∠A =30° ∴∠DCE =∠ABC =12(180°-30°)=75°,∴∠DEC =75° ∴∠EDC =180°-75°-75°=30°∵BP ∥DE ,∴∠PBC =∠EDC =30°……………………………5分 ∴∠ABP =∠ABC -∠PBC =75°-30°=45° ∵OB =OP ,∴∠OBP =∠OPB =45°,∴∠BOP =90° …………6分 (3)证法一:设OP 交AC 于点G ,则∠AOG =∠BOP =90°在Rt △AOG 中,∵∠OAG =30°,∴12OG AG =………………7分 又∵12OP OP AC AB ==,∴OP OG AC AG =,∴OG GP AG GC=又∵∠AGO =∠CGP∴△AOG ∽△CPG …………………………………8分 ∴∠GPC =∠AOG =90°∴CP 是⊙O 的切线………………………9分 证法二:过点C 作CH ⊥AB 于点H ,则∠BOP =∠BHC =90°,∴PO ∥CH在Rt △AHC 中,∵∠HAC =30°,∴12CH AC =………………7分又∵1122PO AB AC ==,∴PO =CH ,∴四边形CHOP 是平行四边形∴四边形CHOP 是矩形……………………………8分 ∴∠OPC =90°,∴CP 是⊙O 的切线………………………9分(1) A B C D E H G (3) H GE DC B A(2)D C BA GH EGOP ED CBA HABCDEPO25.(1)2211(2)(1)44y x x m x m =++=++-…1分 ∴顶点坐标为(-2 , 1m -)…………………2分 ∵顶点在直线3y x =+上,∴-2+3=1m -,得m =2…………………3分(2)∵点N 在抛物线上, ∴点N 的纵坐标为2124a a ++…………………………4分 即点N (a ,2124a a ++) 过点F 作FC ⊥NB 于点C ,在Rt △FCN 中,FC =a +2,NC =NB -CB =214a a +,∴2NF =22NC FC +=2221()(2)4a a a +++=2221()(4)44a a a a ++++………………………………………………5分 而2NB =221(2)4a a ++=2221()(4)44a a a a ++++∴2NF =2NB ,NF =NB ………………………………………………………………………6分(3)连结AF 、BF由NF =NB ,得∠NFB =∠NBF ,由(2)的结论知,MF =MA ,∴∠MAF =∠MF A ,∵MA ⊥x 轴,NB ⊥x 轴,∴MA ∥NB ,∴∠AMF +∠BNF =180°∵△MAF 和△NFB 的内角总和为360°,∴2∠MAF +2∠NBF =180°,∠MAF +∠NBF =90°, ∵∠MAB +∠NBA =180°,∴∠FBA +∠F AB =90°又∵∠F AB +∠MAF =90° ∴∠FBA =∠MAF =∠MF A又∵∠FP A =∠BPF ,∴△PF A ∽△PBF ,∴PF PB PA PF =,2PF PA PB =⨯=1009……………7分过点F 作FG ⊥x 轴于点G ,在Rt △PFG 中,PG 83,∴PO =PG +GO =143,∴P (-143, 0)设直线PF :y kx b =+,把点F (-2 , 2)、点P (-143 , 0)代入y kx b =+解得k =34,b =72,∴直线PF :3742y x =+……………………………………………………8分解方程21372442x x x ++=+,得x =-3或x =2(不合题意,舍去)当x =-3时,y =54,∴M (-3 ,54)……………………………9分。

九年级数学培优题含详细答案

九年级数学培优题含详细答案

九年级培优竞赛1.在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB 绕点A 按逆时针方向旋转90°至AC .(1)求点C 的坐标;(2)若抛物线y =-14x 2+ax +4经过点C . ①求抛物线的解析式;②在抛物线上是否存在点P(点C 除外)使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】C 的坐标为(3,﹣1);(2)①抛物线的解析式为y=﹣12x 2+12x+2; ②存在点P ,△ABP 是以AB 为直角边的等腰直角三角形,符合条件的点有P 1(﹣1,1),P 2(﹣2,﹣1)两点.【解析】试题分析:(1)过点C 作CD 垂直于x 轴,由线段AB 绕点A 按逆时针方向旋转90°至AC ,根据旋转的旋转得到AB=AC ,且∠BAC 为直角,可得∠OAB 与∠CAD 互余,由∠AOB 为直角,可得∠OAB 与∠ABO 互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA 可证明三角形ACD 与三角形AOB 全等,根据全等三角形的对应边相等可得AD=OB ,CD=OA ,由A 和B 的坐标及位置特点求出OA 及OB 的长,可得出OD 及CD 的长,根据C 在第四象限得出C 的坐标;(2)①由已知的抛物线经过点C ,把第一问求出C 的坐标代入抛物线解析式,列出关于a 的方程,求出方程的解得到a 的值,确定出抛物线的解析式;②假设存在点P 使△ABP 是以AB 为直角边的等腰直角三角形,分三种情况考虑:(i )A 为直角顶点,过A 作AP 1垂直于AB ,且AP 1=AB ,过P 1作P 1M 垂直于x 轴,如图所示,根据一对对顶角相等,一对直角相等,AB=AP 1,利用AAS 可证明三角形AP 1M 与三角形ACD 全等,得出AP 1与P 1M 的长,再由P 1为第二象限的点,得出此时P 1的坐标,代入抛物线解析式中检验满足;(ii )当B 为直角顶点,过B 作BP 2垂直于BA ,且BP 2=BA ,过P 2作P 2N 垂直于y 轴,如图所示,同理证明三角形BP 2N 与三角形AOB 全等,得出P 2N 与BN 的长,由P 2为第三象限的点,写出P 2的坐标,代入抛物线解析式中检验满足;(iii )当B 为直角顶点,过B 作BP 3垂直于BA ,且BP 3=BA ,如图所示,过P 3作P 3H 垂直于y 轴,同理可证明三角形P 3BH 全等于三角形AOB ,可得出P 3H 与BH 的长,由P 3为第四象限的点,写出P 3的坐标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P 的坐标. 试题解析:(1)过C 作CD ⊥x 轴,垂足为D ,∵BA⊥AC,∴∠OAB+∠CAD=90°,又∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,∴△AOB≌△CDA,又A(1,0),B(0,﹣2),∴OA=CD=1,OB=AD=2,∴OD=OA+AD=3,又C为第四象限的点,∴C的坐标为(3,﹣1);(2)①∵抛物线y=﹣12x2+ax+2经过点C,且C(3,﹣1),∴把C的坐标代入得:﹣1=﹣92+3a+2,解得:a=12,则抛物线的解析式为y=﹣12x2+12x+2;②存在点P,△ABP是以AB为直角边的等腰直角三角形,(i)若以AB为直角边,点A为直角顶点,则延长CA至点P1使得P1A=CA,得到等腰直角三角形ABP1,过点P1作P1M⊥x轴,如图所示,∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,∴△AMP1≌△ADC,∴AM=AD=2,P1M=CD=1,∴P1(﹣1,1),经检验点P1在抛物线y=﹣12x2+12x+2上;(ii)若以AB为直角边,点B为直角顶点,则过点B作BP2⊥BA,且使得BP2=AB,得到等腰直角三角形ABP2,过点P2作P2N⊥y轴,如图,同理可证△BP2N≌△ABO,∴NP2=OB=2,BN=OA=1,∴P2(﹣2,﹣1),经检验P2(﹣2,﹣1)也在抛物线y=﹣12x2+12x+2上;(iii)若以AB为直角边,点B为直角顶点,则过点B作BP3⊥BA,且使得BP3=AB,得到等腰直角三角形ABP3,过点P3作P3H⊥y轴,如图,同理可证△BP3H≌△BAO,∴HP3=OB=2,BH=OA=1,∴P3(2,﹣3),经检验P3(2,﹣3)不在抛物线y=﹣12x2+12x+2上;则符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.考点:1.二次函数综合题2.点的坐标3.等腰直角三角形.2.在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD 沿PD翻拆,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=2CD;(2)设DE交AC于G,若53PEEF=,CD=6,求FG的长【答案】(1)证明见解析;(2)FG的长为152 14.【解析】试题分析:.(1)连接CE,根据三角形的角边关系可以得到∠FCE=∠FEC,从而FC=FE,△PCF的周长=2CD;(2) 由.(1)结论CP+PF+CF=2CD,和PF5EF3=,CD=6,求出CF=EF=322,作GK⊥EF于点K,易得FG的长为152 14.试题解析:.(1)连接CE,∵CA=CB,D 为AB 中点,∴∠BCD=∠ACD=45°,由翻折可知∠B=∠DEP=45°,∴∠DCF=∠DEF=45°,CD=BD=DE ,∴∠DCE=∠DEC ,∴∠DCE-∠DCA=∠DEC-∠DEF ,即∠FCE=∠FEC ,∴FC=FE ,∴CF+PF=PE=BP ,∴,∴△PCF;(2)∴设PF=5x,EF=CF=3x ,在Rt △FCP 中,PF 2=CP 2+CF 2,∴CP=4x ,∵,∴作GK ⊥EF 于点K ,∵tan ∠GFE=tan ∠ 设GK=4a,FK=3a,EK=4a , G F D AB PC KFDAB PC∴EF=7a=322, a=3214, FG=5a=15214, ∴FG 的长为15214. 考点:三角形综合.3.如图,抛物线y=-x 2+4x+5交x 轴于A 、B (以A 左B 右)两点,交y 轴于点C.(1)求直线BC 的解析式;(2)点P 为抛物线第一象限函数图象上一点,设P 点的横坐标为m ,△PBC 的面积为S ,求S 与m 的函数关系式;(3)在(2)的条件下,连接AP ,抛物线上是否存在这样的点P ,使得线段PA 被BC 平分,如果不存在,请说明理由;如果存在,求点P 的坐标.【答案】(1) y=5x -+ (2) S=252522m m -+ (3)存在,P(2,9)或P(3,8) 【解析】试题分析:(1)令y=0,解关于x 的一元二次方程即可得到点A 、B 的坐标,再令x=0求出点C 的坐标,设直线BC 解析式为y=kx+b (k≠0),利用待定系数法求一次函数解析式解答;(2)过点P 作PH ⊥x 轴于H ,交BC 于F ,根据抛物线和直线BC 的解析式表示出PF ,再根据S △PBC =S △PCF +S △PBF 整理即可得解;(3)设AP 、BC 的交点为E ,过点E 作EG ⊥x 轴于G ,根据垂直于同一直线的两直线平行可得EG ∥PH ,然后判断出△AGE 和△AHP 相似,根据相似三角形对应边成比例可表示出EG 、HG ,然后表示出BG ,根据OB=OC 可得∠OCB=∠OBC=45°,再根据等角对等边可得EG=BG ,然后列出方程求出m 的值,再根据抛物线解析式求出点P 的纵坐标,即可得解.试题解析:(1)当y=0时,x 1=5,x 2=-1,∵A 左B 右,∴A(-1,0),B(5,O)当x=0时,y=5,∴C (0,5),设直线BC 解析式为y=kx+b,∴5005k b k b +=⎧⎨⨯+=⎩ ∴15k b =-⎧⎨=⎩∴直线BC 解析式为:y=5x -+;(2)作PH ⊥x 轴于H ,交BC 于点F ,P(m ,-m 2+4m+5),F(m,-m+5)PF=-m 2+5m ,S △PBC =S △PCF +S △PBF(3)存在点P ,作EG ⊥AB 于G,PH ⊥AB 于H ,∴EG ∥PH ,∴△AGE ∽△AHP ,∵P(m ,-m +4m+5),AH=m-(-1)=m+1,HB=5-m ,GB=152mm ++-,∵OC=OB=5,∴∠OCB=∠OBC=45°,∴EG=BG,∴2452m m-++=152mm++-,∴m1=2m2=3,当m=2时,P(2,9),当m=3时,P(3,8),∴存在这样的点P, 使得线段PA被BC平分,P(2,9)或P(3,8).考点:二次函数综合题.4.如图:在等腰△ABC中,AB=AC,AD上BC,垂足为D,以AD为直径作⊙0,⊙0分别交AB、AC于E、F.(1)求证:BE=CF;(2)设AD、EF相交于G,若EF=8,BC=10,求⊙0的半径.【答案】(1)证明见解析;(2)⊙O的半径为5.【解析】试题分析:(1)连接DE,DF,由AB=AC,且AD为BC边上的高,利用三线合一得到D为BC的中点,AD为顶角平分线,再由AD为圆O的直径,利用直角所对的角为直角得到一对直角相等,利用AAS得到三角形EBD与三角形FCD全等,由全等三角形的对应边相等得到BE=CF,得证;(2)由EB=CF,AB=AC,得出AE=AF,确定出AE:AB=AF:AC,且夹角相等,得到三角形AEF与三角形ABC相似,由相似三角形的对应边成比例得到AG:AD=8:10,设AG=8x,AD=10x,连接OE,在直角三角形OEG中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆O的半径.试题解析:(1)连接DE、DF,∵AB=AC,AD⊥BC,∴∠B=∠C,BD=CD,∵AD为⊙O的直径,∴∠DEA=∠DFA=90°,∴△DBE≌△DCF,∴BE=CF;(2)∵BE=CF,∴AE=AF,AE AFAB AC=且∠BAC=∠BAC,∴△AEF∽△ABC,∴设AG=8x,AD=10x,连接EO,在Rt△OEG中,∴OE2=OG2+EG2,∴(5x)2=(3x)2+42,x=1,∴5x=5,∴⊙O的半径为5.考点:1.相似三角形的判定与性质,2.全等三角形的判定与性质,3.勾股定理,4.圆周角定理.5.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(1)见解析(2)见解析【解析】思路分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;(2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;选择图3同理可证.解:(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE-GE=OE-BF ,∴AF-OE=OE-BF ,∴AF+BF=2OE ;(2)图2结论:AF-BF=2OE ,图3结论:AF-BF=2OE .对图2证明:过点B 作BG ⊥OE 交OE 的延长线于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE+GE=OE+BF ,∴AF-OE=OE+BF ,∴AF-BF=2OE ;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.6.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(-4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF .90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.【答案】(1)y=-x+4 (2)①见解析x (3)存在,点P的坐标为(2,2)或(8,-4)【解析】解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=-1,则直线AB的函数解析式为y=-x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BDO≌△COD,∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②如图,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,第11页,总68页∵DF 是⊙Q 的直径, ∴∠DEF=90°,∴△DEF 是等腰直角三角形, ∴DE ,即x ; (3)当BD :BF=2:1时,如图,过点F 作FH ⊥OB 于点H ,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°, ∴∠DBO=∠BFH ,又∵∠DOB=∠BHF=90°, ∴△BOD ∽△FHB , ∴=2, ∴FH=2,OD=2BH ,∵∠FHO=∠EOH=∠OEF=90°, ∴四边形OEFH 是矩形, ∴OE=FH=2, ∴EF=OH=4-OD , ∵DE=EF , ∴2+OD=4-OD , 解得:OD=,∴点D 的坐标为(0,), ∴直线CD 的解析式为y=x+, 由,得:, 则点P 的坐标为(2,2); 当时, 连结EB ,同(2)①可得:∠ADB=∠EDP ,OB OD BDHF HB FB==12124343134314334y x y x ⎧=+⎪⎨⎪=-+⎩22x y =⎧⎨=⎩12BD BF =试卷第12页,总68页而∠ADB=∠DEB+∠DBE ,∠EDP=∠DAP+∠DPA , ∵∠DEP=∠DPA ,∴∠DBE=∠DAP=45°,∴△DEF 是等腰直角三角形, 如图,过点F 作FG ⊥OB 于点G ,同理可得:△BOD ∽△FGB , ∴, ∴FG=8,OD=BG , ∵∠FGO=∠GOE=∠OEF=90°, ∴四边形OEFG 是矩形, ∴OE=FG=8, ∴EF=OG=4+2OD , ∵DE=EF ,∴8-OD=4+2OD , OD=, ∴点D 的坐标为(0,-), 直线CD 的解析式为:, 由,得:, ∴点P 的坐标为(8,-4),综上所述,点P 的坐标为(2,2)或(8,-4).7.如图,在Rt △ABC 中,∠ACB=90°,AC=6cm ,BC=8cm .点D 、E 、F 分别是边AB ,BC ,AC 的中点,连接DE ,DF ,动点P ,Q 分别从点A 、B 同时出发,运动速度均为1cm/s ,点P 沿AFD 的方向运动到点D 停止;点Q 沿BC 的方向运动,当点P 停止运动时,点Q 也停止运动.在运动过程中,过点Q 作BC 的垂线交AB 于点M ,以点P ,M ,Q 为顶点作12OB OD BD GF GB FB ===1243431433y x =--14334y x y x ⎧=--⎪⎨⎪=-+⎩84x y =⎧⎨=-⎩第13页,总68页平行四边形PMQN .设平行四边形边形PMQN 与矩形FDEC 重叠部分的面积为y (cm 2)(这里规定线段是面积为0有几何图形),点P 运动的时间为x (s )(1)当点P 运动到点F 时,CQ= cm ;(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式. 【答案】(1)5 (2)(cm ) (3)当3≤x<4时,y=-x 2+x 当4≤x<时,y=-6x+33 当≤x≤7时,y=6x-33 【解析】 解:(1)当点P 运动到点F 时, ∵F 为AC 的中点,AC=6cm , ∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s , ∴BQ=AF=3cm ,∴CQ=8cm-3cm=5cm , 故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t-3=8, t=, 11234214112112112试卷第14页,总68页BQ 的长度为×1=(cm ); (3)∵D 、E 、F 分别是AB 、BC 、AC 的中点, ∴DE=AC=×6=3, DF=BC=×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°, ∵∠QBM=∠CBA , ∴△MBQ ∽△ABC , ∴, ∴, MQ=x , 分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD =x (7-x ) 即y=-x 2+x ; ②当4≤x<时,重叠部分为矩形,如图3, 11211212121212BQ MQBC AC =86x MQ =343434214112第15页,总68页y=3[(8-X )-(X-3))] 即y=-6x+33; ③当≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x )] 即y=6x-33.8.已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平行四边形ABCD 的内部作Rt △AED ,∠EAD=30°,∠AED=90°.(1)求△AED 的周长;(2)若△AED 以每秒2个单位长度的速度沿DC 向右平行移动,得到△A 0E 0D 0,当A 0D 0与BC 重合时停止移动,设运动时间为t 秒,△A 0E 0D 0与△BDC 重叠的面积为S ,请直接写出S 与t 之间的函数关系式,并写出t 的取值范围;(3)如图②,在(2)中,当△AED 停止移动后得到△BEC ,将△BEC 绕点C 按顺时针方向旋转α(0°<α<180°),在旋转过程中,B 的对应点为B 1,E 的对应点为E 1,设直线B 1E 1与直线BE 交于点P 、与直线CB 交于点Q .是否存在这样的α,使△BPQ 为等腰三角形?若存在,求出α的度数;若不存在,请说明理由. 【答案】(1)(2)S 与t 之间的函数关系式为:112试卷第16页,总68页S= (3)存在,α=75°【解析】 解:(1)∵四边形ABCD 是平行四边形, ∴AD=BC=6.在Rt △ADE 中,AD=6,∠EAD=30°,∴AE=AD•cos30°=3,DE=AD•sin30°=3, ∴△AED 的周长为:6+3+3=9+3.(2)在△AED 向右平移的过程中:(I )当0≤t≤1.5时,如答图1所示,此时重叠部分为△D 0NK .∵DD 0=2t ,∴ND 0=DD 0•sin30°=t,NK=ND 0•tan30°=t ,∴S=S △D0NK =ND 0•NK=t•t=t 2;(II )当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D 0E 0KN .∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t , ∴A 0N=A 0B=6-t ,NK=A 06-t ).∴S=S 四边形D0E0KN =S △ADE -S △A0NK =×(6-t )×(6-t )=-t 2;(III )当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D 0IJKN .222(0 1.5) 4.5)--6)6t S t t ≤≤⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩333312123321231231233363332第17页,总68页∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t=D 0C , ∴A 0N=A 0B=6-t ,D 0N=6-(6-t )=t ,BN=A 0B•cos30°=(6-t ); 易知CI=BJ=A 0B=D 0C=12-2t ,∴BI=BC-CI=2t-6, S=S 梯形BND0I -S △BKJ =[t+(2t-6)]• (6-t )-•(12-2t )•(12-2t )=-t 2+20t-42.综上所述,S 与t 之间的函数关系式为:S=. (3)存在α,使△BPQ 为等腰三角形.理由如下:经探究,得△BPQ ∽△B 1QC ,故当△BPQ 为等腰三角形时,△B 1QC 也为等腰三角形. (I )当QB=QP 时(如答图4),则QB 1=QC ,∴∠B 1CQ=∠B 1=30°, 即∠BCB 1=30°, ∴α=30°;(II )当BQ=BP 时,则B 1Q=B 1C ,若点Q 在线段B 1E 1的延长线上时(如答图5),∵∠B 1=30°,∴∠B 1CQ=∠B 1QC=75°,12312312331336332223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t t S t t t t t t ⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩试卷第18页,总68页即∠BCB 1=75°, ∴α=75°.9.如图1,已知直线y=x+3与x 轴交于点A ,与y 轴交于点B ,抛物线y=-x 2+bx+c 经过A 、B 两点,与x 轴交于另一个点C ,对称轴与直线AB 交于点E ,抛物线顶点为D .(1)求抛物线的解析式;(2)在第三象限内,F 为抛物线上一点,以A 、E 、F 为顶点的三角形面积为3,求点F 的坐标;(3)点P 从点D 出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t 秒,当t 为何值时,以P 、B 、C 为顶点的三角形是直角三角形?直接写出所有符合条件的t 值.【答案】(1)y=-x 2-2x+3;(2)(3212--,3212--) (3)当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形 【解析】 试题分析:(1)先由直线AB 的解析式为y=x+3,求出它与x 轴的交点A 、与y 轴的交点B 的坐标,再将A 、B 两点的坐标代入y=-x 2+bx+c ,运用待定系数法即可求出抛物线的解析式;(2)设第三象限内的点F 的坐标为(m ,-m 2-2m+3),运用配方法求出抛物线的对称轴及顶点D 的坐标,再设抛物线的对称轴与x 轴交于点G ,连接FG ,根据S △AEF =S △AEG +S △AFG -S △EFG =3,列出关于m 的方程,解方程求出m 的值,进而得出点F 的坐标;(3)设P 点坐标为(-1,n ).先由B 、C 两点坐标,运用勾股定理求出BC 2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB 2+BC 2=PC 2,据此列出关于n 的方程,求出n 的值,再计算出PD 的长度,然后根据时间=路程÷速度,即可求出此时对应的t 值;②∠BPC=90°,同①可求出对应的t 值;③∠BCP=90°,同①可求出对应的t 值.试题解析:(1)∵y=x+3与x 轴交于点A ,与y 轴交于点B , ∴当y=0时,x=-3,即A 点坐标为(-3,0), 当x=0时,y=3,即B 点坐标为(0,3),将A (-3,0),B (0,3)代入y=-x 2+bx+c ,得930c 3b c --+==⎧⎨⎩, 解得23b c =-⎧⎨=⎩, ∴抛物线的解析式为y=-x 2-2x+3; (2)如图1,设第三象限内的点F的坐标为(m,-m2-2m+3),则m<0,-m2-2m+3<0.∵y=-x2-2x+3=-(x+1)2+4,∴对称轴为直线x=-1,顶点D的坐标为(-1,4),设抛物线的对称轴与x轴交于点G,连接FG,则G(-1,0),AG=2.∵直线AB的解析式为y=x+3,∴当x=-1时,y=-1+3=2,∴E点坐标为(-1,2).∵S△AEF=S △AEG+S△AFG-S△EFG=12×2×2+12×2×(m2+2m-3)-12×2×(-1-m)=m2+3m,∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,解得:1321 2m--=,23212m-+=(舍去),当3212m--=时,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=3212--,∴点F的坐标为(3212--,3212--);(3)设P点坐标为(-1,n).∵B(0,3),C(1,0),∴BC2=12+32=10.分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2,即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2,第19页,总68页化简整理得6n=16,解得n=83,∴P点坐标为(-1,83),∵顶点D的坐标为(-1,4),∴PD=4-83=43,∵点P的速度为每秒1个单位长度,∴t1=43;②如图3,如果∠BPC=90°,那么PB2+PC2=BC2,即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,化简整理得n2-3n+2=0,解得n=2或1,∴P点坐标为(-1,2)或(-1,1),∵顶点D的坐标为(-1,4),∴PD=4-2=2或PD=4-1=3,∵点P的速度为每秒1个单位长度,∴t2=2,t3=3;③如图4,如果∠BCP=90°,那么BC2+PC2=PB2,即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,化简整理得6n=-4,解得n=-23,∴P点坐标为(-1,-23),试卷第20页,总68页第21页,总68页 ∵顶点D 的坐标为(-1,4), ∴PD=4+23=143, ∵点P 的速度为每秒1个单位长度,∴t 4=143; 综上可知,当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形.考点: 二次函数综合题.10.如图,在正方形ABCD 中,2AB =,点P 是边BC 上的任意一点,E 是BC 延长线上一点,联结AP ,作PF AP ⊥交DCE ∠的平分线CF 上一点F ,联结AF 交边CD 于点G .(1)求证:AP PF =;(2)设点P 到点B 的距离为x ,线段DG 的长为y ,试求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当点P 是线段BC 延长线上一动点,那么(2)式中y 与x 的函数关系式保持不变吗?如改变,试直接写出函数关系式.【答案】(1)证明见解析;(2)()42022x y x x -=≤≤+;(3)改变,()24>22x y x x -=+. 【解析】试题分析:(1)欲证AP PF =利用原图无法证明,需构建三角形且使之全等,因此在边AB 上截取线段AH ,使AH PC =,连接PH ,证明AHP ∆与PCF ∆全等即可.(2)由APM ∆∽GAN ∆列式化简即可得.(3)在AD 延长线上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===+ .同理,2,2PM x AM x ==- ,∵45,45APM PAM NAG PMA ANG ∠=︒+∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y yx -=+. 整理,得()24>22x y x x -=+.试卷第22页,总68页 试题解析:(1)在边AB 上截取线段AH ,使AH PC =,连接PH ,由正方形ABCD ,得90B BCD D AB BC AD ∠=∠=∠=︒==,,∵90APF ∠=︒,∴APF B ∠=∠.∵APC B BAP APF FPC ∠=∠+∠=∠+∠,∴PAH FPC ∠=∠.又∵90BCD DCE ∠=∠=︒,CF 平分DCE ∠,∴45FCE ∠=︒.∴135PCF ∠=︒. 又∵AB BC AH PC ==,,∴BH BP =,即得45BPH BHP ∠=∠=︒.∴135AHP ∠=︒,即得AHP PCF ∠=∠.在AHP ∆和PCF ∆中,PAH FPC AH PC AHP PCF ∠=∠=∠=∠,,,∴AHP ∆≌PCF ∆,∴AP PF =.(2)在AD 上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===- .同理,2,2PM x AM x ==- ,∵45,135APM PAM NAG PMA ANG ∠=︒-∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y y x-=-. 整理,得()42022x y x x -=≤≤+. (3)改变,()24>22x y x x -=+. 考点:1.正方形的性质;2. 等腰直角三角形的判定和性质;3.全等三角形的判定与性质;4.由实际问题列函数关系式.11.如图,已知直线y =-2x +4与x 轴、y 轴分别相交于A 、C 两点,抛物线y=-2x 2+bx+c(a ≠0)经过点A 、C.(1)求抛物线的解析式;(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.【答案】(1)y=-2x2+2x+4;(2)Q(0,4)或(1,4)-4)或-4);(3)存在,点F坐标为(0M,点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).【解析】试题分析:1)根据直线y=-2x+4求出点A、C的坐标,再利用待定系数法求二次函数解析式解答即可;(2)根据抛物线解析式求出点P的坐标,过点P作PD⊥y轴于D,根据点P、C的坐标求出PD、CD,然后根据S△APC=S梯形APDO-S△AOC-S△PCD,列式求出△APC的面积,再根据抛物线解析式求出点B的坐标,从而得到AB的长度,然后利用三角形的面积公式求出△ABQ 的点Q的纵坐标的值,然后代入抛物线求解即可得到点Q的坐标;(3)根据点E在x轴上,根据点M在直线y=-2x+4上,设点M的坐标为(a,-2a+4),然后分①∠EMF=90°时,利用点M到坐标轴的距离相等列式求解即可;②∠MFE=90°时,根据等腰直角三角形的性质,点M的横坐标的长度等于纵坐标长度的一半,然后列式进行计算即可得解.试题解析:(1)令x=0,则y=4,令y=0,则-2x+4=0,解得x=2,所以,点A(2,0),C(0,4),∵抛物线y=-2x2+bx+c经过点A、C,∴24204b cc-⨯++=⎧⎨⎩=,解得24bc=⎧⎨=⎩,∴抛物线的解析式为:y=-2x2+2x+4;(2)∵y=-2x2+2x+4=-2(2第23页,总68页∴点P的坐标为(12,92),如图,过点P作PD⊥y轴于D,又∵C(0,4),∴PD=12,CD=91422-=,∴S△APC=S梯形APDO-S△AOC-S△PCD,=12×(12+2)×92-12×2×4-12×12×12=4514 88--=32,令y=0,则-2x2+2x+4=0,解得x1=-1,x2=2,∴点B的坐标为(-1,0),∴AB=2-(-1)=3,设△ABQ的边AB上的高为h,∵△ABQ的面积等于△APC面积的4倍,∴12×3h=4×32,解得h=4,∵4<92,∴点Q可以在x轴的上方也可以在x轴的下方,即点Q的纵坐标为4或-4,当点Q的纵坐标为4时,-2x2+2x+4=4,解得x1=0,x2=1,此时,点Q的坐标为(0,4)或(1,4),当点Q的纵坐标为-4时,-2x2+2x+4=-4,解得x1=1172+,x2=1172-,试卷第24页,总68页此时点Q的坐标为(1172+,-4)或(1172-,-4)综上所述,存在点Q(0,4)或(1,4)或(1172+,-4)或(1172-,-4);(3)存在.理由如下:如图,∵点M在直线y=-2x+4上,∴设点M的坐标为(a,-2a+4),①∠EMF=90°时,∵△MEF是等腰直角三角形,∴|a|=|-2a+4|,即a=-2a+4或a=-(-2a+4),解得a=43或a=4,∴点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);②∠MFE=90°时,∵△MEF是等腰直角三角形,∴|a|=12|-2a+4|,即a=12(-2a+4),解得a=1,-2a+4=2×1=2,此时,点F坐标为(0,1),点M的坐标为(1,2),或a=12-(-2a+4),此时无解,综上所述,点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).考点: 二次函数综合题.12.已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.点M从A开始,以每秒1个第25页,总68页试卷第26页,总68页单位的速度向点B 运动;点N 从点C 出发,沿C →D →A 方向,以每秒1个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也停止运动.运动时间为t 秒,过点N 作NQ ⊥CD 交AC 于点Q . (1)设△AMQ 的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.(2)在梯形ABCD 的对称轴上是否存在点P ,使△PAD 为直角三角形?若存在,求点P 到AB 的距离;若不存在,说明理由.(3)在点M 、N 运动过程中,是否存在t 值,使△AMQ 为等腰三角形?若存在,求出t 值;若不存在,说明理由.【答案】(1)233=-62S t t +(0<t ≤2),233=-123S t t +(2≤t <4);(2)233;(3)t=65,12-63,2. 【解析】试题分析:(1)求出t 的临界点t=2,分别求出当0<t ≤2时和2≤t <4时,S 与t 的函数关系式即可,(2)作梯形对称轴交CD 于K ,交AB 于L ,分3种情况进行讨论,①取AD 的中点G ,②以D 为直角顶点,③以A 为直角顶点,(3)当0<t ≤2时,若△AMQ 为等腰三角形,则MA=MQ 或者AQ=AM ,分别求出t 的值,然后判断t 是否符合题意.试题解析:(1)当0<t ≤2时,如图:过点Q 作QF ⊥AB 于F ,过点C 作CE ⊥AB 于E ,∵AB ∥CD ,∴QF ⊥CD ,∵NQ ⊥CD ,∴N ,Q ,F 共线,∴△CQN ∽△AFQ ,∴ CN NQ AF QF=, ∵CN=t ,AF=AE-CN=3-t ,∵NF=3,∴QF=33t 3-,第27页,总68页 13(323t - 23362t + 当2≤t <4时,如图:△FQC ∽△PQA ,∵DN=t-2,∴FD=DN •cos ∠FDN=DN •t-2), ∴t-2) ∴FQ=FC •tan ∠FCQ=FC •tan30°=t+2), ∴ 13[326t -23=-123t + (2)作梯形对称轴交CD 于K ,交AB 于L ,情况一:取AD 的中点G ,GD=1,过G 作GH ⊥对称轴于H ,GH=1.5,∵1.5>1,∴以P 为直角顶点的Rt △PAD 不存在,情况二:以D 为直角顶点:KP1 ∴P 1情况三:以A 为直角顶点,LP 2综上:P 到AB PAD 为Rt △, (3)0<t ≤2时, 若MA=MQ ,∴试卷第28页,总68页若AQ=AM ,则t=23233t -, 解得t=12-63, 若QA=QM ,则∠QMA=30°而0<t ≤2时,∠QMA >90°,∴QA=QM 不存在;2≤t <4(图中)若QA=QM ,AP :AD=3:2,∴t=2,若AQ=AM ,23-33(t+2)=t , ∴t=23-2,∵23-2<2,∴此情况不存在若MA=MQ ,则∠AQM=30°,而∠AQM >60°不存在.综上:t=65,12-63,2时,△AMQ 是等腰三角形. 考点: 1.等腰梯形的性质;2.等腰三角形的判定;3.直角三角形的性质. 13.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,3-)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP’C,那么是否存在点P ,使四边形POP’C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】(1)y=x 2﹣2x ﹣3;(2)存在,(2102+,32-);(3)(32,-154),758. 【解析】试题分析:(1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;第29页,总68页(2)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;(3) 由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析 式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.试题解析:(1)将B 、C 两点的坐标代入得 9303b c c ++=-⎧⎨⎩=解得:23b c =-⎧⎨=-⎩; 所以二次函数的表达式为:y=x 2﹣2x ﹣3.(2)存在点P ,使四边形POPC 为菱形;设P 点坐标为(x ,x 2﹣2x ﹣3),PP′交CO 于E若四边形POP′C 是菱形,则有PC=PO ;连接PP′,则PE ⊥CO 于E ,∴OE=EC=32∴y=32-; ∴x 2﹣2x ﹣3=32- 解得:12102x +=,22102x -=(不合题意,舍去) ∴P 点的坐标为(2102+,32-) (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣2x ﹣3),易得,直线BC 的解析式为y=x ﹣3则Q 点的坐标为(x ,x ﹣3);S 四边形ABPC=S △ABC+S △BPQ+S △CPQ=12AB•OC+12QP•OF+12QP•BF 21143(3)322x x =⨯⨯+-+⨯试卷第30页,总68页 23375()228x =--+ 当32x =时,四边形ABPC 的面积最大 此时P 点坐标为(32,-154)四边形ABPC 的面积的最大值为758. 考点: 二次函数综合题.14.如图,直角坐标系中Rt △ABO ,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O 逆时针旋转90°,得到Rt △A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.【答案】(1)y=-x 2+x+2;(2)P (1,2);(4)四边形PB′A′B 为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等.【解析】试题分析:(1)利用旋转的性质得出A ′(-1,0),B ′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可;(3)利用P 点坐标以及B 点坐标即可得出四边形PB′A′B 为等腰梯形,利用等腰梯形性质得出答案即可.试题解析:(1)(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的, 又A (0,1),B (2,0),O (0,0),∴A′(-1,0),B′(0,2)设抛物线的解析式为:y=ax 2+bx+c (a≠0),∵抛物线经过点A′、B′、B ,∴0=2=c 042a b c a b c ⎧-+=++⎪⎨⎪⎩,解得:112a b c =-⎧⎪=⎨⎪=⎩,∴满足条件的抛物线的解析式为y=-x 2+x+2.(2)∵P 为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=-x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,12×1×2+1212-x2+x+2)+1=-x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:12×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=-x2+2x+3,即x2-2x+1=0,解得:x1=x2=1,此时y=-12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.考点: 二次函数综合题.15.已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。

2021年九年级数学培优提高班全册

2021年九年级数学培优提高班全册

培优提高班九年级数学(全册)已知函数y=y 1-y 2.,其中y 1与x 成正比例,y 2与x - 2成反比例,目当=x =1时,Y=1;当x =3时,y=5求当x = -2时,y 值类题演习 按例5办法进行计算,则在个函数值中y 1,y 2,y 3,…y 中,值为2状况共浮现 次A 组1.(1)下列函数中是反比例函数是 ( ) A. Y=x 1+2 B. y= k x (k ≠0) C. y=x1 D. y=x 24 (2)矩形面积是40 cm 2,设它一边长为x cm ,则矩形另一边长y cm 与x 函数是系是( ) A. Y=20 -2x B. y= 40x C. y=x40 D. y=40x 2.判断下列说法与否对的(对打“√”,错打“×”)(1)直角一角形面积为20 cm 2,两条直角边长分别为z cm 和y cm ,变量y 是变量x 反比例函数.( )(2)圆面积公式S =πr 2中,S 与r 成正比例.(3)矩形长为a ,宽为b,周长为C,当C 为常量时,a 是B 反比例函数. ( ) (4)一种长方体底面正方形边长为x ,高为y ,当其体积V 为常数时,V 是x 反比例函数.( )(5)当被除数(不为零)一定期,商和除数成反比例. ( )(6)筹划修建铁路1200 km ,则铺轨天数y,是每日铺轨量x 反比例函数. ( )3. 近视眼镜度数y(度)与镜片焦距x (米)成反比例已知400度近视眼镜镜片焦距为0.25米,则眼镜度数y 与镜片焦距x 之间函数关系式是 .4. 有一面积为60梯形,其上底长是下底长31.设梯形下底长为x ,高为y ,则y 关于 x 函数关系式为 .5已知y-2与x 成反比例,当x =3时,y=1,则y 与x 之间函数关系式为 .6.y 是x 反比例函数,下表给出x 与y 某些值;(1)写出这个反比例函数解析式(2)依照函数解析式完毕上表B 组7.下列函数中,y 是x 反比例函数是 ( )A. x (y-1) =1B. y=11 xC. y=x 1D. y =x31 8如果函数y= -x 2m-2为反此例函数,则m 值是 ( )A . -1 B. 0 C.21 D. 1 9关于y=x k,下列说法中对的有 ( )(l)一定层反比例函数(2)k 为常数时,是反比例函数(3)当k ≠0时,自变量x 可为切实数(4)当k ≠0时,y 取值范畴足一切实数A. 0个 B 1个 C 2个 D 3个10如果y 是m 反比例函数,m 是x 反比例函数,那么y 是x ( )A. 反比例函数B.正比例函数C. 一次函数D.反比例或正比例函数11如果y 与 -3x 成正比例,x 与z4成反比例,那么y 是z ( ) A .正比例函数 B. 反比例函数 C. 一次函数 D. 不能拟定12.已知y 是x 反比例函数,且比例系数k>0,当x 增长20%时,函数值y 将( )A .约减少17% B. 增长20%C .增长80% D. 约减少83%13(1)兄弟两人分吃一碗饺子,每人吃饺子个数如下表①写出兄吃饺子数y 与弟吃饺子数x 之间函数关系式.②虽然当弟吃饺子数增多时,兄吃饺子数(y)在减少,但y 与x 成反比例吗?(2)水池中有水若干吨,若单开一种出水口,水流速度v 与全池水放光所用时间t 见下表① 写出放光池中水用时t(h)与放水速度v (t/h)之间函数关系式② 这是个反比例函数吗?14. 已知a 与b 成反比例,当b=4时,a=5,求当a=54当时,a 值15. 如图,一种圆台形物体上底面积是下底面积32,将它放 在桌上,它对桌面压强是200Pa ,如果将它翻过来放置,它对桌面压强是多少?J6收音机通上电就能放m 优美音乐,咱们可以通过转动旋钮来调节声音大小,这样效果就是通过变化电阻来制电流变化实现,电流越小,声音越小;反之,电流越大,声音越大.咱们懂得.电流J 、电阻R 、电压U 满足关系式U =IR..当U=220V 时,(1)当用含R 代数式来表达I 时,I 是R 反比例函数吗?如果是,请写出关系式.(2)当电阻为22Ω 时,电流是多少?17.假设x ,y 都是正数并且成反比例关系.若x 增长了p%,求y 减少比例18.水产公司有一种海产品共2104公斤,为谋求适当销售价格,进行了 8天试销,试销状况如下:观测表中数据,发现可以用反比例函数刻画这种海产品每天销售量y (公斤)与销售价格x (元/公斤)之间关系,现假定在这批海产品销售中,每天销售量y (公斤)与销售价格x (元/公斤)之间都满足这一关系(l)写出这个反比例函数解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品销售价格定为150元/公斤,并且每天部按这个价格销售,那么余下这些海产品预测再用多少天可以所有售出?(3)在按(2)中定价继续销售15天后,公司发现剩余这些海产品必要在不超过2天内所有售卅,此时需要重新拟定一种销售价格,使背面两天都按新价格销售,那么新拟定价格最高不超过每公斤多少元才干完毕销售任务?1.2反比例函数图像和性质类题演习 如图1-5,在反比例函数y=x2(x >0) 图像上,有点P 1,P 2,P 3,P 4,它们横坐标依次为1 2,3,4分别过这些点作x 轴与y 轴垂线,图中所构成阴影某些面积从左到什依次为S 1,S 2,S 3,则S 1+S 2+S 3= .A 组1某数学课外兴趣小组同窗每人制作个面积为200cm 2矩形学具进行展示.设矩形宽为x cm ,长为y cm .,那么这些同窗所制作矩形长y(cm)与宽x (cm)之间函数关系图像大体是 ( )2.如图,点P 在反比例函数y=x1(x >0)图像上, 且横坐标为2.若将点P 先向右平移两个单位,再向上平移一种单位后所得像为点P ′. 7则在第一象限内,经过点P ′反比例函数图像解析式是 ( )A. y= -x 5(x >0) B. y= x5(x >0) C. y= -x 6(x >0) D. y= x6 (x >0) 3(1)若反比例函数,y= x m 12 图像在第二、四象限,则m 取值范畴是 . x(2)若函数y=xk 图像在第一、三象限,则函数y=k x +3图像通过 ( ) A 第二、三、四象限 B 第一、二、三象限c 第一、二、四象限 D 第一、三、四象限(3)若函数y=xk 图像过点(3,一7),那么它一定还通过点 ( ) A .(3,7) B .(-3 ,-7)C .(-3,7)D . ( 2,7 )4一张正方形纸片,剪去两个同样小矩形得到一种“E ”图案,如图所示,设小矩形长和宽分别为x ,y ,剪去某些面积为20,若2≤x ≤10.则y 与x 函数图像是 ( )5如图,已知双曲线y =xk (k>0)与直角三角形OAB 斜边 OB 相交于点D ,与直角边AB 相交于点C 若BC :CA=3:1,△OAB 面积为8,则k=____.6如图,直线y=k x +b 与反比例函数y =xk (x <0)图像相交于点A ,B ,与x 轴交于点C .其中点A坐标为(-2,4),点B 横坐标为一4 .(l)试拟定反比例函数关系武,(2)求△AOC 面积B 组7(1)如下各图表达正比例函数y=k x 与反比例函数y=-xk 大体图像,其中正 确是 ( )(2)已知一次函数y=a x -b 图像通过第一、二、四象限,则函数y=xab 图像在第____.象限. 8(1)下列面数中,y 随x 增大而减小有 ( ) ①y=x 3,②y= 2x -1,③y=-x +5,④y=3 4x ,⑤y=x 1(x >0),⑥y=x3(x <0)A. 2个 B .3个 C .4个 D. 5个(2)若反比例函数y=xm 21-图像通过点A (x 1,y 1)和点B (x 2,y 2).且0<x 1<x 2时, y 1>y 2>0,则m 取值范畴是 ( )A. m<0B. m>0C. m<21 D. m>21 9在函数,y=xa 12--(a 为常数)图像上有三点( -1,y 1),(-4 1,y 2),( 2 1,y 3) 则函数值y 1,y 2,y 3大小关系是____.(用“<”号连接).10.如图,直线y=m x 与双曲线y=xk 交于A.B 两点,过点A 作A M ⊥ x 轴,垂足为M .连结BM ,若S △ABM =2,则k 值是( )A . 2 B. m-2C. mD. 411如图,点A ,B 是双曲线y=x上点,分别通过A ,B 两点向 x 轴、y 轴作垂线段,若S 阴影=1,刚S 1+S 2=____. (S 1,S 2指空白某些面积).12.函数y 1= x (x ≥0).y 2= x4 (x >0)图像如图所示,则下列结论:①两函数图像交点坐标为(2,2);②当x >2时,y 2>y 1;③当x =1时,BC=3;④当x 逐渐增大时,y 1随着x 增大而增大,y 2随着x 增大而减小.其中断确结论序号是____.13.如图,过原点直线l 与反比例函数y=-x 1图像交于M ,N 两点,依照图像猜想 线段MN 长最小值是____.14如图,矩形AOCB 两边OC ,OA 分别位于x 轴,y 轴上,点B 坐标为( 320 ,5),D 是AB 边上一点.将△ADO 沿 直线OD 翻折,使A 点正好落在对角线OB 上点E 处,若点E 在一反比例函数图像上,求该函数解析式15当x =6时,反比例函数y=x k 和一次函数y= 23x -7 值相等(l)求反比例函数解析式(2)若等腰梯形ABCD 顶点A ,B 在这个一次函数图像上,顶点C ,D 在这个反比例函数图像上,且BC ∥AD ∥y 轴,A .B 两点横坐标分别是a 和a +2(a>0),求a 值16如图,已知A(-4.n),B(2,4)是一次函数y=k x +b图像和反比例函数y =mx 图像两个交点 (l)求反比例函数和一次函数解析式;(2)求直线AB 与x 轴交点C 坐标丑△AOB 面积;(3)求由程k x +b mx -=0解(请直接写出答案); (4)求不等式k x +b m x -=0解集(请直接写出答案). 课外拓展17.两个反比例函数y =x k 导和y= x1在第一象限内图像如图 所示,点P 在y =x k 图像上,PC ⊥x 轴于点C ,交y=x1图像于 点A .PD ⊥y 轴于点D .交y=x 1图像于点B ,当点P 在y =x k 图像上运动时,如下结论:①△ODB 与△OCA 面积相等;②四边 形 PAOB 面积不会发生变化;③PA 与PB 始终相等;④当点A 星 PC 中点时,点B 一定足PD 中点其中定对的是____(把你以为对的结论序号都填上).18如图,已知正方形OABC 面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数y =x k (k>0,x >0) 图像上,点P(m,n)为其双曲线上任意一点,过点P分别作x 轴、y 轴垂线,垂足分别为E ,F ,并没矩形OFPE 和正方形OABC 不重叠某些面积为S(l)求B 点坐标和k 值;(2)当S= 29时,求P 点坐标; (3)写出S 关于m 函数关系式.减少,其数据如下表(l)请你认真分析表中数据,从你所学习过一次函数和反比例函数中拟定哪个函数能表 示其变化规律,阐明拟定是这种函数而不是其她函数理由,并求出它解析式; (2)按照这种变化规律,若已投入技改资金5万元 ①预测生产成本每件比减少多少万元?②如果打算7 把每件产品成本减少到3. 2万元,则还需投入技改资金多少万元,(成果精准到0.01万元). 同步反馈A 组1.有x 个小朋友平均分20个苹果,每人分得苹果y(个/人)与x (个)之间函数是 ____.函数,其函数关系式是____. 当人数增多时,每人分得苹果就会减少,这正符合函数y=xk(k>0).当x >0时,y 随x 增大而____性质. 2.收音机刻度盘波长l 和频率f 分别是用米(m)和千赫兹(kHz)为单位,波长l 和频率f 满足关系式f =l300000,这阐明波长l 越小,频率f 就越____.3.(1)已知力F 所做功是15焦,则力F 与物体在力方向上通过距离S 图像大 致是( )(2)已知圆柱侧面积是10πcm 2,若圆柱底面半径为r cm ,高为h cm ,则h 与r 函数图像大体是图中4. 某玩具厂筹划生产一种玩具熊猫,已知每只玩具熊猫成本为y 元,若该厂每月生产 x 只(x 取正整数).这个月总成本为5000元,则y 与x 之间满足关系式为 ( ) A. y =5000 x B. y =x 3 5000 C. y =x 5000 D. y =x5000 35. 面积一定梯形,其上底长是下底长21,设下底长x =10cm 时,高y=6 cm(l)求y 与x 函数关系式, (2)求当y=5cm 时,下底长多少?6一定质量二氧化碳.当它体积V=6m 3时,它密度ρ=1. 65 kg/m 3 (1)求ρ与V 函数关系式(2)当气体体积是1m 3时,密度是多少? (3)当密度为1.98kg/m 3时,气体体积是多少?B 组7如图,在直角坐标系中,点A 是x 轴正半轴上一种定点,点B 是双曲线y=x3( x >0) 上一种动点,当点B 横坐标逐渐增大时,△OAB 面积将会 ( )A 逐渐增大B .不变C 逐渐减小D 先增大后减小8. 如图,在x 轴正半轴上依次截取OA 1=A 1A 2=A 2A 3=A 3A 4=A 4A 5,过点A 1,A 2, A 3,A 4,A 5分别作x 轴垂线与反比例函数y =x2(x ≠o )图像相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1 ,A 1P 2A 1 ,A 2P 3A 3 ,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S1,S2,S3,S4,S5则S5值为 .9完毕某项工程时间x (天)与参加施工人数y (人)成反比例关系如果参加这项工程施工人数为4人,10天能完毕这项工程,现规定8天完毕这项工程,需要多少人参加施工?10学校准备在校园内修建一种矩形绿化带,矩形面积为定 直,它一边y 与另一边x 之间函数关系如右图所示 (1)绿化带面积是多少?你能写出这一函数表达式吗?(2)完毕下表,并回答问题:如果该绿化带长不得超过40m .那 么它宽应控制在什么范畴内?11.小华爸爸开车送小华去外婆家,她们速度是48krn/h ,用了20分钟赶到. (1)小华家到外婆家距离是多少?x (m)10 20 30 40 Y(m)(2)如果回来时,让小华坐汽车,汽车速度为v km /h(v>8),那么回家时间t 将如何 变化?(3).写出t 与v 之间关系式;(4)如果准备0.5h 内赶到家,那么汽车速度至少为多少?1 2. 为了研究某合金材料体积V( cm3)随温度t(℃)变化规律,对一种用这种合金制 成圆球测得有关数据如下:能否据此求出V 和t 函数关系式?13.已知等腰三角形OAB 在直角坐标系中位置如图所 示,点A 坐标为(33 ,3),点B 坐标为(- 6,0) (1) 若△OAB 关于y 轴轴对称图形是△0A'B ' ,请直接 写出A ,B 对称点A',B'坐标,(2)若将△OAB 沿x 轴向右平移a 个单位,此时点A 正好落在反比例函数y =x36 图像上,求a 值;( 3)若△OAB 绕点O 按逆时针方向旋转角度为α(00<α<900). 当α=300正好落在反比例函数y =xk图像上,求k 值问点A ,B 能否同步落在①中反比例函数图像上,若能求α值;若不能.请阐明理由14若一次函数y=2 x - 1和反比例函数y=xk2图像都通过点(1,1)(1)求反比例函数解析式;(Z)已知点A 在第三象限,且同步在两个函数图像上,求点A 坐标,(3)运用(2)成果,若点B 坐标为(2,0),且以点A ,O .B ,P 为顶点四边形是平行四边形,请你直接写出点P 坐标.15如图,已知正比例函数y=a x 图像与反比例函数y =xk图像交于点A(3.2)(1)试拟定上述正比例函数和反比例幽数表达式;(2)依照图像回答,在第一象限内,当x 取何值时,反比例函数值不不大于正比例函数值?(3)M(m ,n)是反比例函数图像上一动点,其中0<m<3,过点M 作直线MB ∥x 轴.交y 轴于B 点;过点A 作直线AC ∥y 轴交x 轴于点C .交直线BM延长线于点D.当四边形OADM 面积为6时,请判断线段BM 与 DM 大小关系.并阐明理由16如图,帆船A 和帆船B 在太湖湖面上训练.O 为湖而上一 个定点,教练船静候于O,点训练时规定A ,B 两船始终关于0 点对称,以O 为原点,建立如图所示坐标系,x 轴,y 轴正 方向分别表达正东、正北方向设A ,B 两船可近似当作在双曲 线y =x4上运动,湖面风平浪静,双帆远影优美训练中当教练一船与A .B 两船正好在直线y= x 上时,三船同步发现湖面上有 一遇险船C ,此时教练船测得C 船在东南4 50方向上,A 船 测得AC 与AB 夹角为600,B 船也同步测得C 船位置(假 设C 船位置不再变化,A ,B ,C 三船可分别用A .B .C 三点表 示)(l)发现C 船时.A ,B .C 三船所在位置坐标分别为A( , ),B ( , )和C( , ); (2)发现C 船,三船及时停止训练,并分别从A ,O ,B 三点出发沿最短路线同步前去救援, 设A .只两船速度相等,教练船与A 船速度之比为3:4,问教练船与否最先赶到?请阐明理由. 课外拓展17如图,点A (m ,m-l ),B (m+3,m-l )都在反比例函 数y=xk图像上 (1)求m ,k 值,(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B . M ,N 为顶点四边形是平行四边形,试求直线MN 函数表 达式18阅读理解;对于任意正实数a ,b ,由于(a ,b ).因此 a 一2ab +b ≥0,因此a+ b ≥2ab 只有当a=b 时,等号成立 结论:在+b ≥2ab (a ,b 均为正实数)中,若ab 定值p ,则 a+ b ≥2p ,只有当a=b 时,a+ b 有最小值2p依照上述内容,回答下列问题:若m>0,只有当m =时.m+m1有最小值 . 摸索应用:如图,已知A(-3,0).B(0,-4) P 为双曲线y=x12 (x >0)上任意一点.过点P 作PC ⊥x 轴于点C ,PD ⊥y 轴于点D 求四边形ABCD 面积最小值,并阐明此时四边形ABCD 形状 (25)A 组 A 组l.下列函数中,不是二次函数是 ( )A. y=1-2x 2B. y=2(x -1)2+4C. y=23(x -1)(x +4) D. y=(x -2)2-x 2 2.若y=m x m2+3m-2是二次函数,则m 值为 ( )A. 0,- 3 B 0,3 C . 0 D – 33.在边长为4m 正方形中间挖去一种边长为x m 小正方形,剩余四方框形面积 y ,则y 关于x 函数解析式为 .4.已知二次函数y=x 2+c ,当x =2时,y=0,则当x =一2时,y=________. 5.已知正方形边长是10 cm ,假设边长增长x cm 时,正方形面积增长y cm 2. (l)写出 y 关于x 函数解析式 2)当正方形边长分别增长1 cm ,2cm ,2 cm 时,正方形面积增长多少?6.已知二次函数y -=3x 2+b x +c ,当x = - 2时,函数值星0;当x =l 时.函数值是6,求这个二次函数解析式B 组7.设矩形窗户周长为6m,则窗户面积S(m2)与窗宽x(m)之间函数关系式是.白变量x取值范畴是.8如图,在一幅长80cm,宽50cm矩形风景画四周镶一条金色纸边,制成一幅矩形挂画.设整个挂面总面积为ycm2,金色纸边宽为x cm,则y与x函数关系式是_____.9对于二次函数y=a x2已知当x由1增长到2时,幽数值减少4,则常数a值是.10如图,水渠横断面是等腰梯形,底宽CD=2m,坡角α=450,AB表达水面线,求等腰梯形ABCD面积S关于水深h函数解析式11. 某工厂筹划给一批长方体形状产品涂上油漆.已知长方体长和宽相等,高比长多0.5m(1)长方体长和宽用x(m)表达,长方体需要涂漆表面积为S(m2),求S关于x函数解析式;(2)如果每平方米所需涂漆费用是5元,每个长方体所需涂漆费用为y(元),求y关于x函数解析式12已知y与x2成正比例,并且当x=1时,y=2求:(l)y关于x函数解析式;(2)当x= - 3时,y值;(3)当y=8时,x值13. 既有铝合金窗框材料8m.准备用它做一种如图所示长方形窗架(窗架宽度AB必要不大于窗户高度BC)已知窗台距离房屋天花板2 .2m设AB为x m.窗户总面积为S m2(l)试写出S关于x函数解析式;(2)求自变量x取值范同14.某水果批发商场经销一种高档水果,如果每公斤赚钱10元,每天可售出500公斤,经市场调查发现,在进货价小变状况下.若每公斤涨价1元,日销售量将减少20公斤(1)设每公斤涨价x元,商场获得利润为y元,试写y与x函数关系式:(2)现要保证每天赚钱6000元,同步又要让顾客得到实惠,每公斤应涨价多少元?(31)15如图(单位:m),等腰直角三角形ABC以2m/s速度沿直线l向正方形移动,直到AB与DC重叠,设x s时三角形与正方形重叠某些面积为y m2求:(I)y关于x函数解析式;(2)当x=2,3 .5时,y分别是多少?(3)当重叠某些面积是正方形面积一半时,三角形移动了多长时间?16如图,在△ABC中,∠B=900,AB=l. 2 cm,BC=2 4cm,动点P从电A开始沿边AB向点B以2 mm/s速度移动,动点Q从B开始沿边BC向点C以4 mm/s速度移动,如果P.Q分别从A,B两点同步出发,设△PBQ面积为S(c m2),出发时间为t,(1)求S关于t函数解析式和t取值范畴;(2)填写下表t(s) 0 1 2 3 4 5 6s(c m2)课外拓展17.已知直角三角形两条直角边之和为2,设其中一条直角边长为x,斜边长为y,则y 关于x函数关系式是当x= 时,斜边最小,最小值是18已知二次函数y=a x2+b x+c系数a,b,c都是整数,目当x=19或x=99时y=999,|c|<1000求c值2.2二次函数图象和性质类题演习某校围墙上端由一段段相似凹曲拱形栅栏构成,如图2-7所示,其拱形图形为抛物线一某些,栅栏跨径AB间,按相似间距0. 2 m用5根立柱加固,拱高OC为0. 6rn(1)以O为原点,OC所在直线为Y轴建立平面直角坐标系,请依照以上数据,求出抛物线y=a x2解析式;(2)计算这段栅栏所需立柱总长度(精准到0.1m)同步反馈A组I二次函数y=x2+4x+5图象顶点坐标是( )A (1,2) B(一2,- 1) C(2.1) D(一2,1)2小明、小亮、小梅、小花四人共同探讨代数式x2-4x+5值状况她们作了如下分工:小明负责找其值为l时x值,小亮负责找其值为0时x值,小梅负责找最小值小花负责找最大值,几分钟后,各自通报探究结论,其中错误是()A小明以为只有当x=2时,x2-4x+5值为1B小亮以为找不到实数x,使x2-4x+5值为0C 小梅发现丁x 2-4x +5值随x 变化而变化,因而以为没有最小值D 小花发现当x 取不不大于2实数时,x 2-4x +5值随x 增大而增大,因而以为没有 最大值3如图,ʘO 半径为2,C1是函数y=21x 2,C2是 函数y= -21图象.则阴影某些面积是 4在平面直角坐标系中,先将抛物线y=x 2+x -2关于x ,轴作轴对称变换,再将所得抛物线关于y 轴作轴对称变换,那么经两次变换后所得新抛物线解析式为 ( )A. y= -x 2-x +2B. y= -x 2+x -2C. y= -x 2+x -2D. y=x 2+x +25.如图,已知图中每个小方格都是边长为1小正方形,每个小正方形顶点称为格点,若在图中任意画一条抛物线,则所画抛物线最多能通过81个格点中 ( )A. 6个B. 7个 C 8个 D 9个386如图是用长为18 m 篱笆(虚线某些),两面靠墙围成矩形苗圃(1)设矩形一边为x m .面积为ym 2.求y 关于x 函数解析式,并写出自变量x 取值范畴;(2)当x 为什么值时,所围苗圃面积最大,最大面积是多少?7.已知二次函数y=x 2-b x +1(一1≤b<l ),当b 从 - 1逐渐变化到l 过程中,它所相应抛物线位置也随之变动下列关于抛物线移动方向描述中,对的是 ( )A 先往左上方移动,再往左下方移动R 先往左下方移动,再往左上方移动c 先往右下方移动,再往右上方移动D 先往右上方移动,再往右下方移动8 一种函数图象如图,给出如下结论:①当x =0时,函数值最大;②当0<x <2时,函数值y 随x 增大而减小③存在O<x 0<l ,当x =x 0时,函数值为0。

2024-2025学年人教版九年级数学上册期中培优训练试题

2024-2025学年人教版九年级数学上册期中培优训练试题

期中培优训练2024-2025年度人教版九年级上册一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .菱形C .平行四边形D .正五边形2.已知点(﹣1,y 1)、(﹣2,y 2)、(2,y 3)都在二次函数y=﹣3ax 2﹣6ax+12(a >0)上,则y 1、y 2、y 3的大小关系为( )A .y 1>y 3>y 2B .y 3>y 2>y 1C .y 3>y 1>y 2D .y 1>y 2>y 33.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上, 30AOB B ∠=∠=︒ , 2OA = ,将 AOB ∆ 绕点O 逆时针旋转 90︒ ,点B 的对应点B 的坐标是( )A .(1,23-B .()3,3C .(3,23-+D .(3- 4.将方程 x 2+2x?5=0 配方后,原方程变形为( )A .(x +2)2=9B .(x?2)2=9C .(x +1)2=6D .(x?1)2=6 5.已知抛物线23(2)y x =-上的两点1122(,),)A x y x y ,(,如果12x x <<2,那么下列结论成立的是( )A .120y y <<B .120y y <<C .210y y <<D .210y y <<6.已知三角形两边长为4和7,第三边的长是方程 x 2−16x +55=0 的一个根,则第三边长是 ( )A .5B .5或11C .6D .117.二次函数 y 1=ax 2+bx +c 与一次函数 y 2=mx +n 的图象如图所示,则满足 ax 2+bx +c >mx +n 的 x 的取值范围是 ( )A . −3<x <0B . x <−3 或 x >0B . x <−3 D . 0<x <3 8.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共18分) 1.二次函数2(1)4y x =-+,当1x <时,y 随x 的增大而 .(填“增大”或“减小”)2.已知a ,b 是方程x 2-2x -1=0的两根,且a 2-2b 2-2a +4b +m=0,则m= .3.小磊要制作一个三角形的钢架模型,在这个三角形中,一边与这条边上的高之和为40cm ,则这个三角形的最大面积是_______________cm ².4.在小华的某个微信群中,若每人给其他成员都发一个红包,该微信群共发了90个红包,那么这个微信群共有 人.5.一个两位数,十位上的数字比个位上的数字的平方小3,如果把这个数的个位数字与十位数字交换,那么所得到的两位数比原来的数小27,则原来的两位数是___.6.如图,中,,,点为边上一点(不与点,重合),连接,将线段绕点逆时针旋转得到,连接.下列结论:①≌;②四边形的面积是;③若,则;④.其中正确的结论是_____.(填写所有正确结论的序号)三、解答题( 共52分)1.用适当的方法解方程:(1)2x 2﹣4x+1=0;(2)(x ﹣2)(x ﹣3)=12;2. 如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点B 的坐标为()10,. ABC 90ACB ∠=︒AC BC a ==D AB A B CD CD C 90︒CE AE BDC ∆AEC ∆AECD 2a105BDC ∠=︒3AD BD =2222AD BD CD +=①画出ABC 关于x 轴对称的111A B C ,写出1B 点的坐标;②画出将ABC 绕原点O 按逆时针旋转90︒所得的222A B C ,写出2B 点的坐标.3.如图将 ABC 绕点A 逆时针旋转得到 ADE ,点C 和点E 是对应点,若 90CAE ∠=︒ , 1AB = ,求BD 的长.4.某商店分别花2000元和3000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多50千克.(1)该商品每千克的进价是多少元?(2)若该商品每天的销售量y (千克)与销售单价x (元/千克)之间的函数关系式为:10500y x =-+,商品的售价定为多少元时,商店每天可以获利2000元?5.如图,在 △ABC 中,∠ACB =90∘,∠A =30∘,将 △ABC 绕点 C 逆时针旋转 45∘ 得 △A 1B 1C ,边 A 1C 与 AB 相交于点 P ,A 1B 1 与 BC 相交于点 Q .(1) 求证:CP =CQ .(2) 已知 AP =2,求 CQ 的长.6.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:千克)之间的函数关系.(1)求折线ABD 所表示的,1y 与x 之间的函数表达式.(2)若产品产量不超过70千克,求产量x 为多少千克时,获得的利润最大?最大利润是多少? 7.综合与探究:如图,抛物线233384y x x =--与x 轴交于A ,B 两点,与y 轴交于点C .(1)求点,,A B C 的坐标;(2)在抛物线的对称轴上是否存在一点P ,使得PA PC +的值最小.若存在,求出点P 的坐标;若不存在,请说明理由;(3)是抛物线上异于点的动点,若的面积与的面积相等,求点的坐标.。

初三数学培优习题

初三数学培优习题

初三数学培优习题4.5.若a=2,b=6,c=4,且a ,b ,c ,d 成比例,则d= ;6.8、在直角梯形ABCD 中, AD//BC,∠B=900, AD=2,BC=4, AB=9,P 为AB 上一动点,求PB 等于多少时能使△APD 与△PBC 相似?9:如图,已知一次函数 的图像与X 轴和y 轴分别相交于A 、B 两点,点C 在AB 上以1个单位/s 的速度从点B 向A 运动,同时点D 在线段AO 上以同样的速度从点A 向O 运动,运动时间用t (s )表示。

(1)当t 为何值时,△ACD 和△AOB 相似,并直接写出D 点的坐标。

(2)是否存在t 使△ACD 的面积为 ,请说明理由?10、如图,在Rt △ABC 中,∠C=90°,AC=4cm ,BC=3cm .动点M ,N 从点C 同时出发,均以每秒1cm 的速度分别沿CA 、CB 向终点A ,B 移动,同时动点P 从点B 出发,以每秒2cm 的速度沿BA 向终点A 移动,连接PM ,PN ,设移动时间为t (单位:秒,0<t <2.5).(1)当t 为何值时,以A ,P ,M为顶点的三角形与△ABC 相似?(2)令四边形APNC 的面积为S ,求S 与t 的函数关系式?是否存在某一时刻t ,使有S 有最小值?343+-=x y 591.2,0,,222.,a c a c b d b d b d a b c k y kx k b c a c a b +==+≠+====++++已知求的值已知则直线32453.,5245a c e a c e b df b d f -+====-+若则231_______.22x y y x y x -==+如果,那么4.22____;(2(2____.cm cm +- 两线段、的比例中项是_______.457x y z y z x +==≠=如果0,则若存在,求出S的最小值;若不存在,请说明理由.11.已知如图,在△ABC中,BE⊥AC,DC⊥AB.(1)求证:△ABE∽△ACD(2)求证:△ADE∽△ACB(3)若A=600,求DE:BC的值.12.在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t 秒.是否存在时间t,使得△APQ与△AOB相似?13、如图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.1)点C坐标是________;当点D运动8.5秒时所在位置的坐标是_________.2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t 为何值时,S最大。

九数培优练习(七)

九数培优练习(七)

C ' 2九年级数学培优练习(七)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1.方程 4x 2-x +2=3 中二次项系数、一次项系数、常数项分别是( ) A .4、-1、-1 B .4、-1、2 C .4、-1、3 D .4、-1、5 2.方程 x (x -1)=2 的解是( )A. x =-1 B .x =-2 C .x =1 或 -2 D .-1 或 23.若 x , x 是一元二次方程 x 2+4x +3=0 的两个根,则 x + x 的值是( )1212A. 4 B .3 C .-4 D .-3 4.抛物线 y =2 ( x + 3)2-5 的顶点坐标是( )A .(-3,-5)B .(-3,5)C .(3,-5)D .(3,5) 5.如图,△ABC 中,∠C =65°,将△ABC 绕点 A 顺时针旋转后,可以得到△ AB 'C ',且C ' 在边 BC 上,则∠ B 'C 'B 的度数为( )A .56°B .50°C .46°D .40°B 'B 'ABC'C第5题BC第8题l第10题6.若关于x 的一元二次方程为a x 2+bx +5=0(a ≠0)的解是x =1,则2014-a -b 的值是( ) A. 9 B .2009 C .2015 D .20137.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅 2017 年月退休金为 1500 元,2019 年达到 2160 元.设李师傅的月退休金从 2017 年到 2019年的年平均增长率为 x ,可列方程为( ) A .2016 (1- x )2 =1500 B .1500 (1+ x )2=2160C .1500 (1- x )2 =2160D .1500+1500(1+x )+1500 (1+ x )2=21608.如图,己知△ABC 中,∠C =90°,AC =BC = ,将△ABC 绕点 A 顺时针方向旋转 60° 到△ AB 'C '的位置,连接C 'B .则C 'B 的长为( )A .2-B .3 C . 3 -1 D .129.已知 a 是一元二次方程 2 x 2-2x -3=0 的两个根中较大的根,则下面对 a 的估计正确的是 ( ) A .0<a <1B . 1 <a <1C .1<a <8D . 8<a <22 2 5 5A210.如图,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,AC 在直线l 上,将△ABC 绕点 A 顺时针旋转到位置①,可得到点 P 1 ,此时 AP 1 =2;将位置①的三角形绕点 P 1 顺时针旋转到位 置②,可得到点 P 2 ,此时 AP 2 =2 + 3 ;将位置②的三角形绕点 P 2 顺时针旋转到位置③,可得到点 P 3 ,此时 AP 3 =3+ 3 ;……,按此规律继续旋转,直到得到点 P 2015 为止,则 AP 2015 =( )A .2015+672 3B .2013+671 3C .2013+672D .2015+671 3 二、填空题(共 6 小题,每小题 3 分,共 18 分)11.在平面直角坐标系中,点 P (2,-3)关于原点对称点 P ′的坐标是 .12.如果二次函数y =(1-2k )x 2-3x +1 的图象开口向上,那么常数k 的取值范围是 .13.关于 x 的一元二次方程(p -1)x 2-x +p 2-1=0 一个根为 0,则实数 p 的值是 . 14.明德小学为了美化校园,准备在一块长 32 米,宽 20 米的长方形场地上修筑两条宽度相同的道路,余下部分作草坪,现在有一位学生设计了如图所示的方案,求图中道路的宽是米时,草坪面积为 540 平方米.15.如图,抛物线 y =a x 2+bx +c 分别交坐标轴于 A (--2,0)、B (6,0)、C (0,4),则 0≤a x 2+bx +c <4 的解集是.ABDEC F 第14题第15题第16题16.如图所示,在菱形 ABCD 中,AB =4,∠BAD =120°,△AEF 为正三角形,点 E 、F 分别在菱形的边 BC 、CD 上滑动,且 E 、F 不与 B 、C 、D 重合,当点 E 、F 在 BC 、CD 上滑动时,则△CEF 的面积最大值是 . 三、解答题(共 8 小题,共 72 分) 17.解方程:x 2+5x =-218.己知抛物线 y =x 2-4x +5.求抛物线的开口方向、对称轴和顶点坐标。

2017-2018学年九年级上学期第12周数学培优卷9

2017-2018学年九年级上学期第12周数学培优卷9

2017-2018学年九年级数学培优卷9A 组题 等可能事件的概率1. 下列事件是随机事件的是( )A .购买一张福利彩票,中奖B .在一个标准大气压下,加热到100℃,水沸腾C .有一名运动员奔跑的速度是80米/秒D .在一个仅装着白球和黑球的袋中摸球,摸出红球2. 一个密码锁有五位数字组成,每一位数字都是0,1,2,3,4,5,6,7,8,9之中的一个,小明只记得其中的三个数字,则他一次就能打开锁的概率3. 六个面上分别标有1,1,2,3,4,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则得到的坐标落在抛物线y=2x2-x4. 将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组⎩⎨⎧=+=+22y x by ax 5. 把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数y=x 2+mx+n 的B 组题知识点1:用直接列举法求概率6. 如图,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问知识点2:用树状图求概率7. 如图,一个长方形花坛中有一水沙子,要在四个梯形花池内分别和种红、黄、蓝三颜色的花(每个花池内只栽一种颜色的花),但相同颜色的花不许相邻,那么,知识点3:几何概率;扇形面积的计算8. 如图,在圆心角为直角的扇形OAB 中,分别以OA 、OB为直径作两个半圆,向直角扇形OABC 组题9. 从-1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形的面积为0.25,且使关于x 的不等式组⎩⎨⎧2a ≤x-1a≤2+x10.某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1m的值(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.11. 如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用树状图或列表的方法,求M点落在正方形ABCD面上(含内部与边界)的概率;(2)将正方形ABCD平移整数个单位,则是否存在某种平移,使点M落在正请说明理由.。

创界学校九年级数学下学期培优作业18 试题

创界学校九年级数学下学期培优作业18  试题

智才艺州攀枝花市创界学校九年级下册数学培优作业18一、选择题 1、二次函数2(12)12y x k x =--+,当1x >时,y 随着x 的增大而增大,当1x <时,y 随着x 的增大而减小,那么k 的值是〔〕 A .12B .11C .10D .92、把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为235y x x =-+,那么〔〕 A .3b=,7c = B .6b =,3c =C .9b =-,5c =-D .9b =-,21c =3、二次函数2y ax bx c =++的图象如下列图,那么一次函数y bx ac =-与反比例函数a b cy x-+=在同一坐标系内的图象大致为〔〕2x 2-C .221219y x x =-+-D .221220y x x =-+-5、抛物线2y ax bx c =++(0)a <过A 〔2-,0〕、O 〔0,0〕、B 〔3-,1y 〕、C 〔3,2y 〕四点,那么1y 与2y 的大小关系是〔〕 A .1y >2yB .1y =2yC .1y <2yD .不能确定二、填空题1、223y x bx =-+的对称轴是直线1x =,那么b 的值是__________;2、将抛物线212y x =-向上平移2个单位,再向右平移1个单位后,得到的抛物线的解析式为_______________;3、某同学利用描点法画二次函数的图象时,列出的局部数据如下表:〔第3题图〕x(B)x(A)x(C)(D)第5题xOAB yx 0 1 2 3 4 y3-23经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解 析式为_______________; 4、实数2,330,x y xx y x y ++-=+满足则的最大值为__________;5、如图,⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为____________________; 三、解答题1、反比例函数y =的图象与二次函数y =ax 2+x -1的图象相交于点〔2,2〕〔1〕求a 和k 的值;〔2〕反比例函数的图象是否经过二次函数图象的顶点,为什么?2、二次函数32412---=x x y〔1〕求抛物线和x 轴的交点坐标、和y 轴的交点坐标。

九年级18周数学培优试卷

九年级18周数学培优试卷

上学期(18周)九年级数学试题一、填空题(本大题共6小题,每小题3分,共18分) 1.一元二次方程y 2=2y 的解为 .2.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x 相同,则可列出方程为 .3.已知二次函数y=2x 2﹣6x+m 的图象与x 轴没有交点,则m 的值为 . 4.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n = .5.已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心,AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .(第5题) (第6题) (第11题) (第12题) 6.如图是反比例函数与在x 轴上方的图象,点C 是y 轴正半轴上的一点,过点C 作AB ∥x 轴分别交这两个图象于点A ,B .若点P 在x 轴上运动,则△ABP 的面积等于 .二、选择题(本大题共8小题,每小题4分,共32分)7.下面的图形中,既是轴对称图形又是中心对称图形的是( )A.B .C .D .8.已知反比例函数y=(k ≠0)的图象经过点M (﹣2,2),则k 的值是( ) A .﹣4B .﹣1C .1D .49.抛物线y=x 2+2x+3的对称轴是( )A .直线x=1B .直线x=﹣1C .直线x=﹣2D .直线x=210.用配方法解方程x 2+4x+1=0,配方后的方程是( ) A .(x ﹣2)2=5B .(x+2)2=5C .(x+2)2=3D .(x ﹣2)2=311.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是( ) A .88°B .92°C .106°D .136°12.如图,正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,连接DM ,若⊙O 的半径为2,则MD 的长度为( )A .B .C .2D .113.一次函数y=ax ﹣a 与反比例函数y=(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .14.如图,把直角△ABC 的斜边AC 放在直线l 上,按顺 时针的方向在直线l 上转动两次,使它转到△A 2B 1C 2的位置, 设AB=,∠BAC=30°,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( ) A .( +)πB .(+)πC .2πD .π三、解答题(本大题共9小题,共70分)15.(本题共2个小题,每小题4分,共8分)解方程: (1)4(x ﹣5)2=16 (2)3x 2+2x ﹣3=016.(本题6分)如上图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm ,求此光盘的直径.17.(本题5分)已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.18.(本题5分))如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,﹣1)、B(1,﹣3)、C(4,﹣4),(1)作出△ABC关于原点O对称的△A1B1C1;(2)写出点A1、B1、C1的坐标.19.(本题8分)驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?20.(7分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.21.(本题9分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.22.(本题10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?22.(本小题12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.
2、如图,在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系并证明.
3、如图,CB、CD分别是钝角△AEC和锐角△ABC中线,且AC=AB,∠ACB=∠ABC.求证CE=2CD.
4、如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD 的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.
5、如图1,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.
(1)过点C作直线DE,分别交AM、BN于点D、E.求证:AB=AD+BE;
(2)如图2,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.
6、如图,在△ABC中,AD交边BC于点D,∠BAD=15°,∠ADC=4∠BAD,DC=2BD.
(1)求∠B的度数;(2)求证:∠CAD=∠B.
7、如图,三角形ABC为正三角形,边长为1,∠MDN=60º,∠BDC=120º,BD=DC 证∶MN
=BM+CN
8、如图,在△ABC中,∠ABC=46°,D是边BC上的一点,DC=AB,∠DAB=21°,试确定∠CAD 的度数.
9、如图,已知在等腰△ABC中,AB=AC,顶角∠A=20°,在AB边上取D点,使得AD=BC,
求∠BDC的度数.
10、在△ABC中,∠ABC=60°,∠ACB=40°,P为∠ABC的平分线与∠ACB的平分线的交点,求证:AB=PC。

相关文档
最新文档