高中数学三角函数公式及推导公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角
直角三角形
三角函数
倒数关系:
平方关系:
诱导公式
公式一:设
为任意角,终边相同的角的同一三角函数的值相等:
公式二:设
为任意角,
与的三角函数值之间的关系:
公式三:任意角
与的三角函数值之间的关系:
公式四:
与的三角函数值之间的关系:
公式五:
与的三角函数值之间的关系:
公式六:
及
与
的三角函数值之间的关系:
记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如
2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:
记忆方法二:无论α是多大的角,都将α看成锐角.
以诱导公式二为例:
若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.以诱导公式四为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.
诱导公式的应用:
二角和差公式
过程与tan(α+β)相同.
证明正切的和差角公式
证明正弦、余弦的和差角公式
三角和公式
倍角公式
二倍角公式
三倍角公式
证明:
sin3a
=sin(a+2a)
=sin^2a·cosa+cos^2a·sina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos^2acosa-sin^2asina
=(2cos^2a-1)cosa-2(1-cos^2a)cosa
=4cos^3a-3cosa
sin3a
=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)-sina][(√3/2)+sina]
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a
=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cosa-cos30°)(cosa+cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得:
tan3a=tana·tan(60°-a)·tan(60°+a)
四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)]
cos4a=1+(-8*cosa^2+8*cosa^4)
tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
五倍角公式
n倍角公式
应用欧拉公式:
.
上式用于求n倍角的三角函数时,可变形为:
所以,
其中,Re表示取实数部分,Im表示取虚数部分.而
所以,
n倍角的三角函数
(正负由所在的象限决定)
由于
,显然
,且
故有:
三角形定理
正弦定理
详见词条:正弦定理
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有:
正弦定理变形可得:
余弦定理
详见词条:余弦定理
在如图所示的在△ABC中,有
余弦定理
或
每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!