数学九年级上册《概率初步》单元测试题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摸球的次数n
100
150
200
500
800
1 000
摸到白球 次数m
28
34
48
130
197
251
摸到白球的频率
0.28
0.23
0.24
0.26
0.246
0.251
(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);
(2)试估算口袋中白种颜色的球有多少只?
(3)请根据估算的结果思考从口袋中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?画出树状图(或列表)表示所有可能的结果,并计算概率.
【答案】A
【解析】
试题解析:红红和娜娜玩”石头、剪刀、布”游戏,所有可能出现的结果列表如下:
红红
娜娜
石头
剪刀

石头
(石头,石头)
(石头,剪刀)
(石头,布)
剪刀
(剪刀,石头)
(剪刀,剪刀)
(剪刀,布)

(布,石头)
(布,剪刀)
(布,布)
由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
16.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件”两次操作过程中,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.
3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )
A. B. C. D.
4.一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是( )
C. 再摸三次球,一定有一次是白球
D. 再摸1000次,摸出白球的次数会接近330次
【答案】D
【解析】
【分析】
观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一常数附近,可以用此常数表示白球出现的概率,从而确定正确的选项.
【详解】∵观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一33%附近,
2.如图中任意画一个点,落在黑色区域的概率是( )
A. B. C. πD. 50
【答案】B
【解析】
【分析】
抓住黑白面积相等,根据概率公式可求出概率.
【详解】因为,黑白区域面积相等,
所以,点落在黑色区域的概率是 .
故选B
【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.
3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )
故选D.
考点:列表法与树状图法;三角形三边关系.
6.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转、一辆右转的概率是( )
A. B. C. D.
【答案】C
【解析】
画”树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:
∴这两辆汽车行驶方向共有9种可能 结果;
A. B. C. D.
【答案】C
【解析】
【分析】
列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.
A. B. C. D.
7.红红和娜娜按如图所示的规则玩一次”锤子、剪刀、布”游戏,下列命题中错误的是()
A.红红不是胜就是输,所以红红胜 概率为
B.红红胜或娜娜胜的概率相等
C.两人出相同手势的概率为
D.娜娜胜的概率和两人出相同手势的概率一样
8.某商店为吸引顾客设计了促销活动:在一不透明的箱子里放有4个相同的小球,球上分别标有”0元”“10元”“20元”“30元”的字样.规定:顾客一次性消费满400元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),某顾客刚好消费400元,则该顾客获得的金额不低于30元的概率是( )
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
46
487
2506
5008
24996
50007
根据列表,可以估计出n的值是.
11.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.
12.如图,在2×3的正方形网格格点上有两点A,B,在其他格点上随机取一点记为C,能使以A,B,C三点为顶点的三角形是等腰三角形的概率为__.
17.从﹣2,1,3这三个数中任取两个不同的数,作为点的坐标.
(1)写出该点所有可能的坐标____________;
(2)求该点在第一象限的概率_____________.
18.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共4只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:
(1)三辆车按出现 先后顺序共有哪几种可能?
(2)请列表分析哪种方案乘坐优等车的可能性大?为什么?
22.小南、小铭和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层楼出电梯.
(1)用列表或画树状图求出甲、乙两人在同一层楼出电梯的概率;
(2)小南和小铭比赛,规则是:若甲、乙在同一层或相邻楼层出电梯,则小南胜,否则小铭胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.
13.小王与小陈两个玩掷骰子游戏,如果小王掷出的点数是偶数,则小王获胜,如果掷出的点数是3的倍数,则小陈获胜,那么这个游戏__(填”公平”或”不公平”)
14.从﹣2,﹣1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是.
三、解答题
15.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:
(1)这种树苗成活的频率稳定在,成活的概率估计值为;
(2)该地区已经移植这种树苗4万棵.
①求这种树苗成活的大约棵数;
②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?
21.我市长途客运站每天 开往某县的三辆班车,票价相同,但车的舒适程度不同.小张和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序.两人采用不同的乘车方案:小张无论如何决定乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题:
参考答案
一、选择题
1.指出下列事件中是随机事件的个数( )
①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是560°;④购买一张彩票中奖.
A.0B.1C.2D.3
【答案】C
【解析】
解:掷一枚硬币正面朝上是随机事件;明天太阳从东方升起是必然事件;五边形的内角和是560°是不可能事件;购买一张彩票中奖是随机事件;所以随机事件是2个.故选C.
人教版数学九年级上学期
《概率初步》单元测试
(满分120分,考试用时120分钟)
一、选择题
1.指出下列事件中是随机事件 个数( )
①投掷一枚硬币正面朝上;②明天太阳从东方升起;③五边形的内角和是560°;④购买一张彩票中奖.
A.0B.1C.2D.3
2.如图中任意画一个点,落在黑色区域的概率是( )
A. B. C. πD. 50
4.一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是( )
A. 袋子一定有三个白球
B. 袋子中白球占小球总数的十分之三
【答案】D
【解析】
试题分析:根据三角形的三边关系求出共有几种情况,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.∵长度为2cm、3cm、4cm、7cm的四条线段,从中任取三条线段共有2.3.4,2.3.7,3.4.7,2.4.7四种情况,而能组成三角形的有2、3、4;共有1种情况,所以能组成三角形的概率是 .
两辆汽车一辆左转,一辆右转的结果有2种,且所有结果的可能性相等,
∴P(两辆汽车一辆左转,一辆右转)= .
故选C.
7.红红和娜娜按如图所示的规则玩一次”锤子、剪刀、布”游戏,下列命题中错误的是()
A.红红不是胜就是输,所以红红胜的概率为
B.红红胜或娜娜胜的概率相等
C.两人出相同手势的概率为
D.娜娜胜 概率和两人出相同手势的概率一样
A. B. C. D.
二、填空题
9.下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必然事件是,不可能事件是.(将事件的序号填上即可)
10.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
因此,红红和娜娜两人出相同手势的概率为 ,两人获胜的概率都为 ,
红红不是胜就是输,所以红红胜的概率为 ,错误,故选项A符合题意,
故选项B,C,D不合题意;
故选A.
考点:1.列表法与树状图法;2.命题与定理.
8.某商店为吸引顾客设计了促销活动:在一不透明的箱子里放有4个相同的小球,球上分别标有”0元”“10元”“20元”“30元”的字样.规定:顾客一次性消费满400元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),某顾客刚好消费400元,则该顾客获得的金额不低于30元的概率是( )
19.如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
A. B. C. D.
【答案】B【解析】【分】先求出题的总号数及8号的个数,再根据概率公式解答即可.
【详解】前两位选手抽走2号、7号题,第3位选手从1、3、4、5、6、8、9、10共8位中抽一个号,共有8种可能,每个数字被抽到的机会相等,所以抽中8号的概率为 .
故选B
【点睛】考查概率的求法,关键是真正理解概率的意义,正确认识到本题是八选一的问题,不受前面叙述的影响.
20.某班在元旦游戏活动中,有一个摸奖游戏,规则如下:不透明的盒子内有4个除颜色外完全相同的球,其中有2个红球,2个白球,摇匀后让同学们去盒子内摸球,摸到红球的就获奖,摸到白球的不获奖.
(1)现小颖有一次摸球机会,她从盒子中随机摸出1个球,求小颖获奖的概率;
(2)如果小颖、小明都有两次摸球的机会,小颖先摸出1个球,放回后再摸出1个球;小明同时摸出2个球;他们摸出的2个球中只要有红球就获奖,他们获奖的机会相等吗?请用树状图(或列表)的方法说明理由.
∴白球出现的概率为33%,
∴再摸1000次,摸出白球的次数会接近330次,正确,其他错误,
故选D.
【点睛】本题考查了利用频率估计概率的知识,观察随着实验次数的增多而逐渐稳定在某个常数附近即可.
5.有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是().
A. B. C. D.
A.袋子一定有三个白球
B.袋子中白球占小球总数的十分之三
C.再摸三次球,一定有一次 白球
D.再摸1000次,摸出白球的次数会接近330次
5. 有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是( ).
A. B. C. D.
6.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转、一辆右转的概率是( )
相关文档
最新文档