东明县第一中学2018-2019学年下学期高二期中数学模拟题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东明县第一中学2018-2019学年下学期高二期中数学模拟题
一、选择题
1. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )
A .﹣6
B .6
C .3
D .﹣3
2. ∃x ∈R ,x 2﹣2x+3>0的否定是(

A .不存在x ∈R ,使∃x 2﹣2x+3≥0
B .∃x ∈R ,x 2﹣2x+3≤0
C .∀x ∈R ,x 2﹣2x+3≤0
D .∀x ∈R ,x 2﹣2x+3>0
3. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( )
A .C .D .时,函数f (x )的最大值与最小值的和为( )
A .a+3
B .6
C .2
D .3﹣a
4. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )
A .5A ∈
B .1.5A ∉
C .1A -∉
D .0A
∈5. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为(

A .4
B .8
C .10
D .13
6. 若函数是偶函数,则函数的图象的对称轴方程是( )]
)1(+=x f y )(x f y =A .
B .
C .
D .1=x 1-=x 2=x 2
-=x 7. 设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到
F 22
221(0,0)x y a b a b
-=>>OF 另一条渐近线的距离为,则双曲线的离心率为( )
1
||2OF A . B
C .
D .
3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.8. 与向量=(1,﹣3,2)平行的一个向量的坐标是(

A .(,1,1)
B .(﹣1,﹣3,2)
C .(﹣,,﹣1)
D .(,﹣3,﹣2)
9. 如图所示的程序框图,若输入的x 值为0,则输出的y 值为(

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .0
C .1
D .或0
10.已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( )
A .p ∧q
B .¬p ∧q
C .p ∧¬q
D .¬p ∧¬q
11.已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为
真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q
⌝∧12.下列计算正确的是( )
A 、
B 、
C 、
D 、213
3
x x
x ÷=4554
()x x =455
4
x x x =445
5
x x -=二、填空题
13.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两
()2,0,
{,0x x x f x x lnx x a
+≤=->个零点,则正实数的值为______.
a 14.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .
15.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 . 
16.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 . 
17.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且
||=2,则= .18.给出下列四个命题:
①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;
③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 . 
三、解答题
19.如图,已知五面体ABCDE ,其中△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(Ⅰ)证明:AD ⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A ﹣BD ﹣C 所成角θ的正切值是2,试求该几何体ABCDE 的体积.
20.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1
PF 交轴于,且为坐标原点.
y Q 22,PF QO O =u u u u v u u u v
(1)求椭圆的方程;
C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.
12,k k 122k k +=AB
21.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如表:
x x1x2x3
ωx+φ0π2π
Asin(ωx+φ)+B00﹣0
(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.
22.若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.
(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?
(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.
23.已知函数,且.
(Ⅰ)求的解析式;
(Ⅱ)若对于任意,都有,求的最小值;
(Ⅲ)证明:函数的图象在直线的下方.
24.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x
轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)直线l与曲线C相交于A、B两点,求∠AOB的值.
东明县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵ =(2+3)(k ﹣4)
=2k +(3k ﹣8)
﹣12
=0,
又∵=0.∴2k ﹣12=0,k=6.
故选B
【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的 
2. 【答案】C
【解析】解:因为特称命题的否定是全称命题,所以,∃x ∈R ,x 2﹣2x+3>0的否定是:∀x ∈R ,x 2﹣2x+3≤0.故选:C . 
3. 【答案】A
【解析】A .C .D .恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,故选:A .4. 【答案】A 【解析】
试题分析:因为{}|5A x N x =∈< ,而,即B 、C 正确,又因为且,1.5,1,.5,1N N A A ∉-∉∴∉-∉0N ∈05<所以,即D 正确,故选A. 10A ∈考点:集合与元素的关系.5. 【答案】 C
【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan =2,lg =﹣1,∴(2tan )⊗lg =(2tan
)×(lg
+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,
∴lne ⊗(
)﹣1=(
)﹣1×(lne+1)=5×(1+1)=10,
∴+=0+10=10.故选:C . 
6. 【答案】A 【解析】
试题分析:∵函数向右平移个单位得出的图象,又是偶函数,对称轴方程)1(+=x f y )(x f y =)1(+=x f y 为,的对称轴方程为.故选A .0=x ∴)(x f y =1=x 考点:函数的对称性.7. 【答案】B 【



8. 【答案】C
【解析】解:对于C 中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.
故选:C .
【点评】本题考查了向量共线定理的应用,属于基础题. 
9. 【答案】B
【解析】解:根据题意,模拟程序框图的运行过程,如下;输入x=0,x >1?,否;x <1?,是;y=x=0,
输出y=0,结束.故选:B .
【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论. 
10.【答案】B
【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p :∀x ∈R ,2x <3x 为假命题,则¬p 为真命题.
令f (x )=x 3+x 2﹣1,因为f (0)=﹣1<0,f (1)=1>0.所以函数f (x )=x 3+x 2﹣1在(0,1)上存在零点,即命题q :∃x ∈R ,x 3=1﹣x 2为真命题.则¬p ∧q 为真命题.故选B . 
11.【答案】D
【解析】

点:命题的真假.12.【答案】B 【解析】
试题分析:根据可知,B 正确。

()
a a β
ααβ⋅=考点:指数运算。

二、填空题
13.【答案】e
【解析】考查函数,其余条件均不变,则:
()()
20{x x x f x ax lnx
+≤=-当x ⩽0时,f (x )=x +2x ,单调递增,f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点;则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有有且只有一个实根。

ln x
a x =
令,()()2
ln 1ln ,'x x
g x g x x x -==
当x >e 时,g ′(x )<0,g (x )递减;当0<x <e 时,g ′(x )>0,g (x )递增。

即有x =e 处取得极大值,也为最大值,且为
,1
e
如图g (x )的图象,当直线y =a (a >0)与g (x )的图象
只有一个交点时,则.1a e
=
回归原问题,则原问题中.
a e =
点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.
14.【答案】 50π 
【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,
所以长方体的对角线就是球的直径,长方体的对角线为:,
所以球的半径为:;则这个球的表面积是:=50π.
故答案为:50π.
15.【答案】 (﹣2,﹣6) .
【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,
则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),
故答案为:(﹣2,﹣6).
【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.
16.【答案】 D .
【解析】解:根据题意,质点运动的轨迹为:
A→B→C→A→D→B→A→C→D→A
接着是→B→C→A→D→B→A→C→D→A…
周期为9.
∵质点经过2015次运动,
2015=223×9+8,
∴质点到达点D.
故答案为:D.
【点评】本题考查了函数的周期性,本题难度不大,属于基础题.
17.【答案】 (﹣,) .
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为

解得:

又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
18.【答案】 ①③④ .
【解析】解:①∵,∴T=2π,故①正确;
②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;
③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正
确;
④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y﹣2=0,故④正确.
综上,正确的命题为①③④.
故答案为①③④.
三、解答题
19.【答案】
【解析】(Ⅰ)证明:∵AB是圆O的直径,
∴AC⊥BC,
又∵DC⊥平面ABC
∴DC⊥BC,
又AC∩CD=C,
∴BC⊥平面ACD,
又AD⊂平面ACD,
∴AD⊥BC.
(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).
由(Ⅰ)可得,AC⊥平面BCD,
∴平面BCD的一个法向量是=,
设=(x,y,z)为平面ABD的一个法向量,
由条件得,=,=(﹣2,0,a).
∴即,
不妨令x=1,则y=,z=,
∴=.
又二面角A﹣BD﹣C所成角θ的正切值是2,
∴.
∴=cosθ=,
∴==,解得a=2.
∴V ABCDE=V E﹣ADC+V E﹣ABC
=+
=+
=
=8.
∴该几何体ABCDE的体积是8.
【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题. 
20.【答案】(1);(2)证明见解析.2
212
x y +=【解析】

题解析:
(1),∴,∴,
22PF QO =u u u u v u u u v
212PF F F ⊥1c =,2222
221121,1a b c b a b +==+=+∴,
22
1,2b a ==即;2
212
x y +=(2)设方程为代入椭圆方程
AB y kx b =+,,
222
12102k x kbx b ⎛⎫+++-= ⎪⎝⎭22221
,112
2
A B A B kb b x x x x k
k --+==++g ,∴,
11,A B MA MB A B y y k k x x --==()
112A B A B A B A B MA MB A B A B
y x x y x x y y k k x x x x +-+--+=+=
=g ∴代入得:所以, 直线必过.11k b =+y kx b =+1y kx k =+-()1,1--考点:直线与圆锥曲线位置关系.
【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.21.【答案】
【解析】解:(Ⅰ)由条件知,,,
∴,,
∴,.
(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,
∴,
∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,
∴最高点为,最低点为,∴,,
∴,又0≤θ≤π,∴.
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.
22.【答案】
【解析】解:(1)根据题意,点(p,q),在|p|≤3,|q|≤3中,即在如图的正方形区域,
其中p、q都是整数的点有6×6=36个,
点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1≤x≤3,1≤y≤3,
点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,
所以点M(x,y)落在上述区域的概率P1=;
(2)|p|≤3,|q|≤3表示如图的正方形区域,易得其面积为36;
若方程x2+2px﹣q2+1=0有两个实数根,则有△=(2p)2﹣4(﹣q2+1)>0,
解可得p2+q2≥1,为如图所示正方形中圆以外的区域,其面积为36﹣π,
即方程x2+2px﹣q2+1=0有两个实数根的概率,P2=.
【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点.
23.【答案】
【解析】【知识点】导数的综合运用利用导数研究函数的单调性
【试题解析】(Ⅰ)对求导,得,
所以,解得,
所以.
(Ⅱ)由,得,
因为,
所以对于任意,都有.
设,则.
令,解得.
当x变化时,与的变化情况如下表:
所以当时,.
因为对于任意,都有成立,
所以.
所以的最小值为.
(Ⅲ)证明:“函数的图象在直线的下方”
等价于“”,
即要证,
所以只要证.
由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.
设,
所以,
令,解得.
由,得,所以在上为增函数.
所以,即.
所以.
故函数的图象在直线的下方.
24.【答案】
【解析】解:(1)∵直线l的参数方程为(t为参数),
∴直线l的普通方程为.
∵曲线C的极坐标方程是ρ=4,∴ρ2=16,
∴曲线C的直角坐标系方程为x2+y2=16.
(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:d==2,
∴cos,
∵0,∴,
∴.。

相关文档
最新文档