(学习指导) 古典概型的应用(二)Word版含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2古典概型的应用(二) 学习目标核心素养
1.掌握较复杂的古典概型问题的求解方法.(重点、易混点)
2.掌握概率和统计综合问题的解决方法.(重点、难点)1.通过对古典概型概率问题的求解,培养数学抽象素养.
2.通过解决概率和统计综合问题,培养数学建模素养.
【例1】甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出试验的样本空间;
(2)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.
[解](1)方片4用4′表示,试验的样本空间为Ω={(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)},则样本点的总数为12.
(2)不公平.甲抽到牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,
3),共5种,甲胜的概率为P1=5
12,乙胜的概率为P2=
7
12,因为
5
12
<7
12,所以此
游戏不公平.
游戏公平性的标准及判断方法
(1)游戏规则是否公平,要看对游戏的双方来说获胜的可能性或概率是否相同.若相同,则规则公平,否则就是不公平.
(2)具体判断时,可以求出按所给规则双方的获胜概率,再进行比较.
[跟进训练]
1.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
[解]由题中数据可知,男顾客对该商场服务满意的概率P=40
50
=4
5,
女顾客对该商场服务满意的概率P=30
50=3 5.
古典概型的综合应用
【例2】现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.
[解](1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的样本空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}由18个样本点组成.由于每一个样本点被抽取的机会均等,因此这些样本点的发生是等可能的.
用M表示“A1恰被选中”这一事件,则
M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),
(A1,B3,C2)},事件M由6个样本点组成,因而P(M)=6
18
=1
3.
(2)用N表示“B1和C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},
事件N由3个基本事件组成,所以P(N)=3
18=1
6,由对立事件的概率公式得P(N)
=1-P(N)=1-1
6=5 6.
使用古典概型的概率计算公式的三个关键点
(1)审读题干:对于实际问题要认真读题,深入理解题意,计算基本事件总数要做到不重不漏,这是解决古典概型问题的关键.(关键词:不重不漏)
(2)编号:分析实际问题时,往往对要研究的对象进行编号或用字母代替,使复杂的实际意义变为简单的数字和字母,方便寻找对象间的关系,可以使问题得以简单地表示,这是解决古典概型问题时主要的解题技巧.(关键词:简单的数字和字母)
(3)“正难则反”原则:在解决古典概型的概率问题时,如果从正面分解一个事件的情况比较多时,可以考虑利用它的对立事件的概率求解.
[跟进训练]
2.现有7名数理化成绩优秀者,分别用A1,A2,A3,B1,B2,C1,C2表示,其中A1,A2,A3的数学成绩优秀,B1,B2的物理成绩优秀,C1,C2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A1和B1不全被选中的概率为________.
5
6[从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2).设“A1和B1不全被选中”为事件N,则其对立事件N表示“A1和B1全被选中”,由于N={(A1,B1,C1),(A1,B1,C2)},
所以P(N)=2
12=1
6,由对立事件的概率计算公式得P(N)=1-P(N)=1-
1
6
=5
6.]
概率与统计的综合应用问题
【例3】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
[思路点拨](1)根据分层抽样各层所抽比例相等可得结果;
(2)①用列举法求出基本事件数;
②用列举法求出事件M所含基本事件数以及对应的概率;
[解](1)由已知,老、中、青员工人数之比为6∶9∶10,
由于采用分层抽样从中抽取25位员工,
因此应从老、中、青员工中分别抽取6人,9人,10人;
(2)①从已知的6人中随机抽取2人的所有可能结果为
{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},