Incrementally computing ordered answers of acyclic conjunctive queries

合集下载

计算思维的结构_桂林电子科技大学中国大学mooc课后章节答案期末考试题库2023年

计算思维的结构_桂林电子科技大学中国大学mooc课后章节答案期末考试题库2023年

计算思维的结构_桂林电子科技大学中国大学mooc课后章节答案期末考试题库2023年1.美国ACM前主席Denning在《超越计算思维》一文中增加了以下计算原理的两个类别,最终形成了7个伟大的计算原理。

()答案:评估、设计2.计算思维表述体系给出了42个核心概念,其中属于自动化类别的是()答案:算法、程序;迭代、递归;启发式策略、随机策略;智能3.汉诺塔问题是使用递归算法的一个典型案例,下面给出的利用Raptor实现的汉诺塔问题盘子移动move的子程序,正确的是()答案:4.在一个RSA公钥密码系统中,设私钥为(5,133),对加密报文13解密,原报文为。

()答案:905.用贪婪算法解决背包问题,贪婪准则为:每次都选择Vi/Wi值(价值密度)最大的物品装包。

假设n=3;W1=100,V1=60;W2=20,V2=40;W3=20,V3=40;C=110。

下列说法不正确的是()答案:利用价值密度最大的贪婪准则时,选物品1,这种方案的总价值为606.硬盘属于哪类设备()答案:既属于输入设备,又属于输出设备7.如果一个指令系统有20条指令,操作码最少应该设置为()答案:5位8.下列有关虚拟机的说法,不正确的是()答案:虚拟机是一个抽象的计算机,不同于实际机器一样,不具有一个指令集并可以使用不同的存储区域9.设,下面是求解e的近似值的算法伪代码,请选择正确的选项填写在空白处()伪代码:eRes = 0eCur = 1k = 1i = 1While ( abs(eRes - eCur) >= 1.0E-10 ){eRes = eCureCur = eCur + 1.0 / ki = i + 1}Print eRes答案:k = k * i10.下列关于线性表、栈和队列的操作规则正确的是()答案:线性表可以在任意位置插入和删除,栈只能在栈顶插入和删除,队列只能在尾部插入头部删除11.假设一仅含数值8A的队列,8B和2C依次入队,然后执行一次出队操作,最后数据7D和6E依次入队。

esscher鞅测度 -回复

esscher鞅测度 -回复

esscher鞅测度-回复关于esscher鞅测度的介绍和应用。

鞅理论是概率论和随机过程领域中的一个重要分支,在金融衍生品定价和风险管理等领域有广泛应用。

而esscher鞅测度是鞅理论中的一个特殊类型,本文将从介绍鞅的基本概念开始,逐步讲解esscher鞅测度的定义和性质,并探讨其在金融领域中的应用。

鞅(martingale)是概率论中一组随机变量的序列,满足一个重要的条件——在给定过去的信息下,未来的预期值等于当前值。

鞅的概念首先由法国数学家保罗·莱维(Paul Lévy)在20世纪初提出,并在之后由一系列数学家进一步发展完善。

为了更好地理解鞅的定义和性质,我们以一个股票价格模型为例。

假设现在有一只股票价格为S_t,在t时刻进行观察,我们希望根据已有的信息预测其在未来时刻的价格。

如果该股票价格满足鞅的条件,即E[S_{t+1} S_0,S_1,...,S_t]=S_t,则我们可以说该价格是一个鞅。

这个条件实际上是指在给定过去的所有价格信息后,未来价格的预期值等于当前价格。

在金融领域中,我们经常考虑随机过程的贴现因子。

贴现因子是用于将未来的现金流折算到当前时刻的一个经济量。

常见的贴现因子有风险中性测度,它是在这个测度下股票价格是鞅。

不过,在实际应用中,风险中性测度往往难以计算或者不一定存在,这时esscher鞅测度就成为一个很有用的工具。

esscher鞅测度是一种基于鞅的概率测度,其定义是对鞅的原始测度进行调整,使得股票价格在新测度下依然成为鞅。

具体来说,对于每个时刻t,esscher鞅测度的调整是通过乘以一个补偿项来实现的。

这个补偿项通常取为贴现因子的一个函数,其形式为exp(-λS_t),其中λ是一个正的调整参数。

通过这样的调整,我们在新的测度下得到的股票价格序列依然满足鞅的条件。

esscher鞅测度的应用主要在金融衍生品定价和风险管理中。

在金融衍生品定价中,我们经常需要对未来现金流进行折现,而esscher鞅测度提供了一种对未来现金流进行折现的方法,从而可以确定一个较为合理的价格范围。

算法导论 答案 (2)

算法导论 答案 (2)

算法导论答案算法导论概述《算法导论》是一本经典的计算机科学教材,由Thomas H. Cormen、Charles E. Leiserson、Ronald L. Rivest和Clifford Stein合著。

这本书详细介绍了算法的设计、分析和实现,并涵盖了算法导论领域的许多重要概念和技术。

本文将为你提供一些关于《算法导论》中一些常见问题的答案。

1. 什么是算法?算法是一系列明确定义的步骤,用于解决特定问题或完成特定任务。

它可以是一个计算过程、一个程序或一个有限的操作序列。

算法通常用于计算和数据处理领域,是计算机科学的核心概念。

2. 为什么学习算法很重要?学习算法的重要性体现在以下几个方面:•提高问题解决能力:算法是解决问题的有效工具。

学习算法可以帮助我们思考和理解问题,并设计出相应的解决方案。

•优化计算性能:算法的设计和分析可以帮助我们提高计算的效率和性能。

合适的算法可以在短时间内处理大规模数据集和复杂计算任务。

•促进技术创新:算法是许多技术和应用的基石,包括人工智能、机器学习、数据挖掘等。

学习算法可以为我们打开更多的研究和创新机会。

3. 《算法导论》提供了哪些内容?《算法导论》这本书详细介绍了算法的基本概念和设计技巧,并提供了许多典型算法的实现和分析。

以下是该书的一些主要内容:•算法分析:对算法进行时间复杂度和空间复杂度的理论分析,帮助我们评估算法的效率和性能。

•排序和查找算法:介绍了各种排序算法(如插入排序、归并排序、快速排序)和查找算法(如二分查找、哈希表)。

•图算法:讨论了图的表示方法和图搜索算法(如深度优先搜索、广度优先搜索)以及最短路径算法(如Dijkstra算法)等。

•动态规划和贪心算法:介绍了动态规划和贪心算法的原理和应用,用于解决具有最优子结构性质的问题。

•分治算法和递归思想:讲解了分治算法的基本原理,并提供了许多使用递归思想解决问题的例子。

•NP完全问题:探讨了NP完全问题的性质和求解方法,引导了读者进入计算复杂性理论的领域。

k阶指数哥伦布编码算法

k阶指数哥伦布编码算法

k阶指数哥伦布编码算法k阶指数哥伦布编码算法(k-order exponential Golomb coding algorithm)是一种无损压缩算法,主要用于对非负整数序列进行编码。

本文将对该算法进行详细介绍和分析,包括算法原理、编码过程和编码效果评估。

一、算法原理k阶指数哥伦布编码算法的核心思想是通过对非负整数进行分组,然后对每个分组进行编码,并使用相应的标志位区分不同的分组。

该算法以k为阶数进行分组,将每个整数表示为两部分:前缀和后缀。

具体而言,设k为阶数,将整数n分解为一个前缀x和一个后缀y,其中x的位数为k-1,y的值范围为0到2^(k-1)。

前缀x表示该整数所属的分组,后缀y则表示该整数在分组中的位置。

对于非负整数n,其编码过程可以分为以下几个步骤:Step 1:计算前缀x和后缀y,其中x = n / 2^(k-1),y = n mod 2^(k-1)。

Step 2:根据前缀x的位数和y的值,确定分组的编码长度,使用二进制表示的结果为g。

Step 3:将g的二进制表示加上前缀x的二进制表示作为最终的编码结果。

例如,当k=3时,对整数15进行编码:Step 1:计算x和y,其中x = 15 / 2^2 = 3,y = 15 mod 2^2 = 3。

Step 2:由于x = 3的二进制表示为"011",y = 3的二进制表示为"011",所以分组的编码长度为"011011"。

Step 3:将分组的编码长度"011011"与前缀x的二进制表示"011"拼接得到最终的编码结果"011011011"。

二、编码过程k阶指数哥伦布编码算法的编码过程可以总结为以下几个步骤:Step 1:确定阶数k和非负整数序列。

Step 2:对每个非负整数n进行编码。

Step 3:将每个编码的结果拼接得到最终的压缩结果。

北京大学信息科学技术学院《计算机科学基础》考试试卷

北京大学信息科学技术学院《计算机科学基础》考试试卷

北京大学信息科学技术学院考试试卷Array考试科目:理论计算机科学基础姓名:学号:一、填空题(10分)1.非确定型有穷自动机M=(K,∑,∆,s,F)的转移函数∆⊆()。

2.有唯一接受状态f的下推自动机的接受格局是()。

3.初始状态为s的图灵机在输入w上的初始格局是()。

4.左平移机S←把w (其中表示空格)变换为()。

5.上下文无关文法是线性的当且仅当()。

6.乔姆斯基范式中要求产生式满足()。

7.设多带图灵机运行T(n)步,用单带图灵机去模拟则需要()步。

8.通用图灵机U在输入“M”“w”上停机当且仅当()。

9.原始递归函数加上()操作就得到递归函数。

10.P类与EXP类之间的关系是()。

1.下列语言中一进制和二进制表示都不是正则语言的是()A) 全体素数B) 全体偶数C) 全体自然数D) 都不对2.接受语言(ab⋃ba)*的最小确定型有穷自动机的状态数是()A) 3个B) 4个C) 5个D) 6个3.泵引理给出的是正则语言的()A) 必要条件B) 充分条件C) 充要条件D) 都不对4.确定型有穷自动机的等价性问题是()A) P问题B) NP完全问题C) 不可判定问题D) 都不对5.下列语言类中对于交运算不封闭的是:()A) 正则语言B) 上下文无关语言C) 递归语言D) 递归可枚举语言6.一个上下文无关文法能否派生出一个字符串的问题是()A) 属于P类的B) NP完全的C) 不可判定的D) 都不对7.下列哪个问题不可判定:任给上下文无关文法G,问()A) L(G)=∅?B) L(G)=∑*?C) L(G)无穷?D) 都不是8.对角化语言D={“M”| 图灵机M在输入M上不停机}是()A) 递归的B) 递归可枚举的C) 补递归可枚举的D) 都不对9.下面哪句话不是递归语言类的等价描述()A) 递归可枚举类与补递归可枚举类的交B) 以字典序图灵可枚举的语言类C) 处处停机的图灵机接受的语言类D) 无限制文法生成的语言类10.若问题A多项式时间归约到问题B,A属于P类,则()A) B属于P类B) B为NP完全的C) B是可判定的D) 都不对都是字符串}。

计算理论习题答案

计算理论习题答案

计算理论习题答案计算理论,也称为理论计算机科学,是研究算法和计算过程的数学理论基础的学科。

以下是一些计算理论习题的答案示例:1. 确定性图灵机(Deterministic Turing Machine, DTM):- 习题:证明一个确定性图灵机可以模拟任何其他确定性图灵机。

- 答案:确定性图灵机可以读取输入,根据当前状态和读取到的符号,按照预定的转移规则移动磁带头并改变状态。

要模拟另一台确定性图灵机,只需要将被模拟机的状态转移表编码为模拟机的转移规则即可。

2. 非确定性图灵机(Nondeterministic Turing Machine, NTM):- 习题:证明非确定性图灵机比确定性图灵机更强大。

- 答案:非确定性图灵机可以在多个可能的转移中选择,这使得它能够解决一些确定性图灵机无法解决的问题,例如哈密顿回路问题。

此外,任何确定性图灵机都可以被一个非确定性图灵机模拟,但反之则不成立。

3. 可计算性(Computability):- 习题:证明某个特定的函数是可计算的。

- 答案:要证明一个函数是可计算的,需要展示一个算法或图灵机,它对于该函数的任何输入都能在有限步骤内给出输出。

例如,一个简单的加法函数f(x, y) = x + y是可计算的,因为它可以通过迭代或递归来实现。

4. 不可解问题(Undecidable Problems):- 习题:解释停机问题(Halting Problem)为什么是不可解的。

- 答案:停机问题是不可解的,因为它涉及到预测一个图灵机是否会在有限步骤内停止。

如果存在一个算法能够解决停机问题,那么我们可以构造一个悖论,即一个图灵机可以模拟自身并决定自己是否会停止,这会导致自指的悖论。

5. 复杂性类(Complexity Classes):- 习题:区分P类问题和NP类问题。

- 答案:P类问题是指可以在多项式时间内解决的问题,而NP类问题是指可以在多项式时间内验证一个解的问题。

(完整版)人工智能原理MOOC习题集及答案北京大学王文敏课件

(完整版)人工智能原理MOOC习题集及答案北京大学王文敏课件

正确答案:A、B 你选对了Quizzes for Chapter 11 单选(1 分)图灵测试旨在给予哪一种令人满意的操作定义得分/ 5 多选(1 分)选择下列计算机系统中属于人工智能的实例得分/总分总分A. W eb搜索引擎A. 人类思考B.超市条形码扫描器B. 人工智能C.声控电话菜单该题无法得分/1.00C.机器智能 1.00/1.00D.智能个人助理该题无法得分/1.00正确答案:A、D 你错选为C、DD.机器动作正确答案: C 你选对了6 多选(1 分)选择下列哪些是人工智能的研究领域得分/总分2 多选(1 分)选择以下关于人工智能概念的正确表述得分/总分A.人脸识别0.33/1.00A. 人工智能旨在创造智能机器该题无法得分/1.00B.专家系统0.33/1.00B. 人工智能是研究和构建在给定环境下表现良好的智能体程序该题无法得分/1.00C.图像理解C.人工智能将其定义为人类智能体的研究该题无法D.分布式计算得分/1.00正确答案:A、B、C 你错选为A、BD.人工智能是为了开发一类计算机使之能够完成通7 多选(1 分)考察人工智能(AI) 的一些应用,去发现目前下列哪些任务可以通过AI 来解决得分/总分常由人类所能做的事该题无法得分/1.00正确答案:A、B、D 你错选为A、B、C、DA.以竞技水平玩德州扑克游戏0.33/1.003 多选(1 分)如下学科哪些是人工智能的基础?得分/总分B.打一场像样的乒乓球比赛A. 经济学0.25/1.00C.在Web 上购买一周的食品杂货0.33/1.00B. 哲学0.25/1.00D.在市场上购买一周的食品杂货C.心理学0.25/1.00正确答案:A、B、C 你错选为A、CD.数学0.25/1.008 填空(1 分)理性指的是一个系统的属性,即在_________的环境下正确答案:A、B、C、D 你选对了做正确的事。

得分/总分正确答案:已知4 多选(1 分)下列陈述中哪些是描述强AI (通用AI )的正确答案?得1 单选(1 分)图灵测试旨在给予哪一种令人满意的操作定义得分/ 分/总分总分A. 指的是一种机器,具有将智能应用于任何问题的A.人类思考能力0.50/1.00B.人工智能B. 是经过适当编程的具有正确输入和输出的计算机,因此有与人类同样判断力的头脑0.50/1.00C.机器智能 1.00/1.00C.指的是一种机器,仅针对一个具体问题D.机器动作正确答案: C 你选对了D.其定义为无知觉的计算机智能,或专注于一个狭2 多选(1 分)选择以下关于人工智能概念的正确表述得分/总分窄任务的AIA. 人工智能旨在创造智能机器该题无法得分/1.00B.专家系统0.33/1.00B. 人工智能是研究和构建在给定环境下表现良好的C.图像理解智能体程序该题无法得分/1.00D.分布式计算C.人工智能将其定义为人类智能体的研究该题无法正确答案:A、B、C 你错选为A、B得分/1.00 7 多选(1 分)考察人工智能(AI) 的一些应用,去发现目前下列哪些任务可以通过AI 来解决得分/总分D.人工智能是为了开发一类计算机使之能够完成通A.以竞技水平玩德州扑克游戏0.33/1.00常由人类所能做的事该题无法得分/1.00正确答案:A、B、D 你错选为A、B、C、DB.打一场像样的乒乓球比赛3 多选(1 分)如下学科哪些是人工智能的基础?得分/总分C.在Web 上购买一周的食品杂货0.33/1.00A. 经济学0.25/1.00D.在市场上购买一周的食品杂货B. 哲学0.25/1.00正确答案:A、B、C 你错选为A、CC.心理学0.25/1.008 填空(1 分)理性指的是一个系统的属性,即在_________的环境下D.数学0.25/1.00 做正确的事。

2024Tableau介绍与应用

2024Tableau介绍与应用

Tableau介绍与应用•Tableau Overview•Tableau core features •Tableau usage tips sharing •Application Cases of Tableauin Business Scenarios•Development Trends andChallenges of Tableau目录CONTENTS01 Tableau Overview•Definition: Tableau is a powerful and fast data visualization tool used for data analysis and business intelligenceCharacteristicsFast performance: Tableau is optimized for fast data processing and rendering, enabling users to analyze large datasets in real time Flexibility: Tableau supports a wide range of data sources and file formats, making it easy to integrate with various business systems and data warehousesEasy to use: Tableau provides an intuitive drag and drop interface that allows users to quickly create interactive visualizations without programming skillsDevelopment history and market positionDevelopment historyTableau was founded in 2003 and has since become a leading player in thedata visualization and analytics market The company has continuouslyinnovated and expanded its product offers to meet the evolving needs ofcustomersMarket positionTableau is widely recognized as a market leader in the data visualization space,with a strong presence in various industries including finance, healthcare, retail,and technology•Application fields: Tableau is used in a wide range of application fields, including business intelligence, data analytics, market research, and operational reporting•Value declarations•Enhanced decision making: Tableau empowers users to make informed decisions by providing interactive visualizations that review hidden patterns and trends in data•Improved productivity: With Tableau, users can quickly create and share reports and dashboards, reducing the time and effort required for data analysis and presentation•Cost savings: Tableau's effective data processing capabilities can help organizations reduce the cost of data storage and infrastructure by enabling real-time analysis on large datasets02 Tableau core featuresData connectivity and integration capabilitiesConnect to multiple data sourcesTableau can connect to various data sources such as relational databases, multi-dimensional databases, and cloud data sourcesData blending and joiningTableau supports data blending and joining operations, allowing users tocombine data from different sources for analysisData preprocessing and calculationTableau provides powerful data preprocessing and calculation functions, such asdata filtering, grouping, sorting, and creating calculated fieldsRich visual display effectsDiverse chart typesTableau provides a variety of chart types, includingbar charts, line charts, pie charts, scatter plots, maps,and moreVisual enhancementsTableau supports various visual enhancements suchas color, size, shape, and texture adjustments tomake charts more intuitive and appealingInteractive dashboardsUsers can create interactive dashboards bycombining multiple charts and components,allowing for more flexible data analysis andpresentationInteractive operation experience optimizationFast data loading and renderingTableau optimizes data loading and rendering speeds to ensure smooth and effective interactiveoperationsIntelligent recommendations and assistanceTableau provides intelligent recommendations and assistance based on user behavior and datacharacteristics to help users quickly find the desired analysis resultsCross platform and cross device supportTableau supports cross platform and cross device operations, allowing users to access andanalyze data anytime, anywhereSecurity and stability assuranceData security protectionTableau options advanced encryption and authentication technologies toensure data security during transmission and storageSystem stability and reliabilityTableau has Excel system stability and reliability, ensuring uninterruptedservice and data availabilityCompliance with industry standards and regulationsTableau compliance with relevant industry standards and regulations to ensurethe legal and compliance of data analysis operations03 Tableau usage tips sharingFamiliarize yourself with the various panels, shelves, and tools available in Tableau for creating and editingviews Mastering the interfaceBefore creating a view, itis essential to understand the data sources and their relationshipsUnderstandin g data sourcesTake advantage of Tableau's intuitive drag and drop functionality to quickly add fields to the view and range them asneededDrag and dropfunctionalityFilters and parameterscan be used to refine the data displayed in the view and make it more interactiveUsing filters andparametersView creation and editing skillsDiscussion on Data Screening and Sorting Methods Data screening techniquesLearn how to use wildcards, regular expressions, and othertechniques to filter data effectivelySorting optionsExplore the various sorting options available in Tableau, so asascending, descending, and custom sortsUsing calculated fieldsCalculated fields can be created to perform complexcalculations and screens on the dataLeveling quick filtersQuick filters provide an easy way to filter data interactivelyand can be customized to fit specific needsSelecting the right chart type: Choose the most appropriate chart type based on the nature of the data and the insights you want to communicate Principles of effectivepresentation: Followprinciples such as clarity,simplicity, andconsistency to ensurethat your charts are easyto understand andinterpretUsing storyboards anddashboards: Storyboardsand dashboards can beused to combine multipleviews and present themin a cohesive andcompeting wayCustomizing chartelements: Customizechart elements such asaxes, legends, and titlesto enhance readabilityand visual appearanceChart type selection and presentation principlesColor theory basics: Understand the basics of color theory and how it applies to data visualization in TableauLayout best practices: Follow layout best practices such as alignment, whitespace management, and grouping to create visually appealing and easy to navigate views Using backgrounds and borders: Backgrounds and borders can be used to enhance the overall appearance of your views and make them more visually apparent Selecting color schemes: Choose color schemes that are visually apparent and effective in communicating the insights in your dataColor matching and layout design suggestions04 Application Cases of Tableau in BusinessMarketing analysis casesMarket Segmentation Analysis01Utilize Tableau to visualize customer data and identify distinctmarket segments based on graphics, purchasing behavior, andother relevant factorsCampaign Performance Tracking02Monitor and evaluate the performance of marketing campaignsacross different channels (e.g., email, social media, paidadvertising) using Tableau dashboardsPricing Strategy Optimization03Analyze pricing data and customer response to develop optimalpricing strategies that maximize revenue and profitabilityOperational Management Optimization CaseSupply Chain ManagementLevel Tableau to visualize and analyze supply chaindata, identifying bottlenecks, optimizing inventorylevels, and improving logistics efficiencyPerformance ManagementTrack key performance indicators (KPIs) for variousdepartments and functions within the organizationusing interactive Tableau dashboardsResource AllocationUtilize Tableau to analyze resource utilization dataand make informed decisions about resourceallocation to improve operational efficiency01 02 03Customer Profiling and Segmentation Create detailed customer profiles and segments using Tableau to better understand customer needs, preferences, and behaviorsCustomer Journey MappingVisualize the customer journey across different touchpoints and channels to identify opportunities for improvement and optimizationChurn Prediction and PreventionUtilize Tableau's predictive analytics capabilities to identify customers at risk of Churn and develop targeted retention strategiesCustomer Relationship Management CaseCredit RiskAssessmentAnalyze credit history, financial statements, and other relevant data using Tableau to assess credit risk and make informed lending decisionsFraud Detectionand PreventionUtilize Tableau to visualizeand analyze transaction datato identify patterns andanomalies indicative of fraudactivityOperational RiskManagementMonitor key risk indicators(KRIs) and assess operationalrisk exposure across theorganization using interactiveTableau dashboardsRisk management assessment cases05 Development Trends and Challenges of TableauTableau is incrementally integrating with big data platforms like Hadoop, Spark, and Google BigQuery to handle large volumes of data effectively With the incident of streamingdata and the need for real-timeinsights, Tableau is enhancing itscapabilities to process andvisualize data in real-timeThe trend towards cloudcomputing is driving thedevelopment of cloud basedversions of Tableau, making itmore accessible and scalableIntegration with Big Data Platforms Real time DataAnalysisCloud baseddeploymentDevelopment Trends in the Context of Big Data EraAutomated Data InsightsAI technology can be applied in Tableau to automatically generate insights and recommendations from data, reducing the need for manual analysis要点一要点二Intelligent Data VisualizationAI can help create more intelligent and interactive data visualizations in Tableau, improving user engagement and understandingPredictive AnalyticsBy integrating predictive analysis algorithms, Tableau can assist users in forecasting future trends and making data driven decisions要点三The Application Prospects of Artistic Intelligence Technology in TableauFacing challenges and coping strategies•Data Security and Privacy: With the increasing amount ofdata being processed, Tableau faces challenges insafeguarding data security and privacy To address this, itis adopTHANKS 感谢您的观看。

软件体系结构重点

软件体系结构重点

1.软件理论包括:–计算模型与可计算理论、算法理论基础、算法设计与分析、程序设计语言理论基础、程序设计语言设计及其编译技术、数理逻辑、数据抽象与基本数据类型的实现技术等。

对软件工程而言,充满了方法论的内容:–如何分析、如何设计、如何编程、如何测试、如何维护、…;–软件模型与软件系统的“质量”在很大程度上依赖于开发者本身的经验与水平。

因为缺乏对软件开发过程的理论层面的刻画,没有将数目众多的方法论总结提升为理论,故而只能是“工程”。

2.体系结构”的共性一组基本的构成要素——构件–这些要素之间的连接关系——连接件–这些要素连接之后形成的拓扑结构——物理分布–作用于这些要素或连接关系上的限制条件——约束–质量——性能3.软件体系结构(SA):–提供了一个结构、行为和属性的高级抽象–从一个较高的层次来考虑组成系统的构件、构件之间的连接,以及由构件与构件交互形成的拓扑结构–这些要素应该满足一定的限制,遵循一定的设计规则,能够在一定的环境下进行演化。

–反映系统开发中具有重要影响的设计决策,便于各种人员的交流,反映多种关注,据此开发的系统能完成系统既定的功能和性能需求4.体系结构= 构件+ 连接件+ 拓扑结构+ 约束+ 质量5.目标:提高软件质量–功能属性(functional properties):能够完成用户功能性需求;–非功能性属性(non-functional properties):能够以用户要求的性能标准,合理、高效的实现各类功能性需求。

6.软件体系结构关注的是:如何将复杂的软件系统划分为模块、如何规范模块的构成和性能、以及如何将这些模块组织为完整的系统。

⏹主要目标:建立一个一致的系统及其视图集,并表达为最终用户和软件设计者需要的结构形式,支持用户和设计者之间的交流与理解。

⏹分为两方面:–外向目标:建立满足最终用户要求的系统需求;–内向目标:建立满足系统设计者需要以及易于系统实现、维护和扩展的系统构件构成。

算法导论附录a习题答案

算法导论附录a习题答案

算法导论附录a习题答案算法导论附录A习题答案算法导论是一本经典的计算机科学教材,被广泛应用于计算机科学和工程的教育和研究领域。

附录A是该书中的一个重要部分,提供了一系列习题,用于帮助读者巩固和应用书中所讲述的算法概念和理论。

本文将回答附录A中的一些习题,旨在帮助读者更好地理解和运用算法导论中的知识。

习题1:给定一个由n个整数构成的数组A,设计一个算法,找到数组中的两个元素,使得它们的和等于给定的值x。

解答:可以使用哈希表来解决这个问题。

首先,遍历一遍数组A,将每个元素插入哈希表中。

然后,再次遍历数组A,对于每个元素a,计算目标值x与a的差值diff。

检查哈希表中是否存在diff,如果存在,则找到了满足条件的两个元素。

习题2:给定一个由n个整数构成的数组A,设计一个算法,找到数组中的一个元素,使得它出现的次数超过数组长度的一半。

解答:可以使用摩尔投票算法来解决这个问题。

首先,假设数组中的第一个元素为候选元素,初始化计数器count为1。

然后,遍历数组,对于每个元素a,如果a与候选元素相同,则计数器加1;否则,计数器减1。

如果计数器减到0,则将当前元素设为候选元素,并将计数器重置为1。

最后,返回候选元素即可。

习题3:给定一个由n个整数构成的数组A,设计一个算法,找到数组中的一个元素,使得它出现的次数严格大于n/3。

解答:可以使用摩尔投票算法的变种来解决这个问题。

首先,假设数组中的前两个元素为候选元素1和候选元素2,初始化计数器count1和count2为0。

然后,遍历数组,对于每个元素a,如果a与候选元素1相同,则计数器count1加1;如果a与候选元素2相同,则计数器count2加1;如果count1为0,则将当前元素设为候选元素1,并将计数器count1重置为1;如果count2为0,则将当前元素设为候选元素2,并将计数器count2重置为1。

最后,再次遍历数组,统计候选元素1和候选元素2的出现次数,如果其中一个元素的出现次数严格大于n/3,则返回该元素。

普林斯顿 算法 -回复

普林斯顿 算法 -回复

普林斯顿算法-回复普林斯顿算法:解密传世之难题【引言】在计算机科学和数学领域,算法是解决问题的步骤和指令的有序集合。

而在这个世界上,有一种特殊的算法备受研究人员的关注,它被称为普林斯顿算法。

普林斯顿算法作为解密传世之难题的独特工具,引起了广泛的讨论和探索。

本文将深入研究普林斯顿算法的原理和应用,并逐步回答关于它的问题。

【正文】【第一部分:普林斯顿算法的基本原理】普林斯顿算法是一种基于分治思想的求解问题的算法。

它的核心思想是将原问题划分为若干个子问题,并通过递归的方式解决这些子问题,最终将它们的解合并得到原问题的解。

普林斯顿算法的基本框架如下:PrincetonAlgorithm(问题P)1. 如果问题P可以直接求解,返回解2. 将问题P划分为若干个子问题P1, P2, ..., Pn3. 递归地解决子问题P1, P2, ..., Pn,得到它们的解S1, S2, ..., Sn4. 将子问题P1, P2, ..., Pn的解S1, S2, ..., Sn合并,得到问题P的解5. 返回问题P的解【第二部分:普林斯顿算法的应用】普林斯顿算法具有广泛的应用领域,特别是在解密传世之难题方面。

传世之难题是指那些被加密保护的信息或者密码,其破解困难度极高。

普林斯顿算法在解密传世之难题时,可以通过将整个加密信息或密码划分为若干个子问题,并通过分别破解子问题来逐步得到整个加密信息或密码。

这种逐步解密的过程,利用了普林斯顿算法的分治思想,可以大大提高破解的效率。

【第三部分:普林斯顿算法的案例分析】为了更好地理解普林斯顿算法的应用,我们以实际案例进行分析。

假设有一个传世之难题,我们得到了一个加密密码,该密码是由两个相同长度的字符串拼接而成。

我们知道密码的总长度是10位,并且已经猜到了其中的一部分字符串。

现在的问题是如何通过普林斯顿算法来破解剩下的密码。

首先,我们将问题划分为两个子问题:猜测字符串的前5位和猜测字符串的后5位。

再次应答的名词解释(一)

再次应答的名词解释(一)

再次应答的名词解释(一)再次应答的名词解释1. 逻辑逻辑是指思考和推理的科学方法,用于判断真伪和推断结论。

在再次应答中,逻辑起着重要的作用,帮助我们理清思路和推导答案。

2. 递归递归是指一个问题可以通过不断重复应用相同规则或操作来解决。

在计算机科学中,递归常用于描述一个函数调用自己的情况。

例如:def factorial(n):if n <= 1:return 1else:return n * factorial(n-1)以上代码是计算阶乘的递归实现,该函数会不断调用自身,直到满足终止条件。

3. 迭代迭代是指通过重复执行一系列步骤来逐步接近于目标或解决问题的过程。

在编程中,使用迭代能够高效地处理大规模的数据和循环操作。

例如:for i in range(5):print(i)以上代码使用迭代方式输出0到4的数字。

4. 逗号运算符逗号运算符是一种在表达式中使用逗号分隔多个值,并且只返回最后一个值的运算符。

例如:a, b = 1, 2以上代码中,逗号运算符用于将1赋给变量a,将2赋给变量b。

5. 泛型编程泛型编程是一种基于类型参数化的编程方式,能够编写可重用且通用的代码。

在再次应答中,泛型编程可以用来定义能适应不同数据类型的函数或类。

例如:def add(a, b):return a + b以上代码是一个泛型的加法函数,可以适用于不同类型的数据。

6. 重载重载是指在同一个作用域中定义多个同名函数,但参数个数或类型不同。

重载可以使函数在不同情况下具有不同的行为。

例如:def add(a, b):return a + bdef add(a, b, c):return a + b + c以上代码中,定义了两个同名的add函数,但参数个数不同,实现了函数的重载。

以上是关于再次应答中的一些相关名词的解释和例子,包括逻辑、递归、迭代、逗号运算符、泛型编程和重载。

这些名词在创作者的创作过程中可能会经常遇到,理解它们的含义和用法有助于提高创作者的能力和效率。

incremental theory

incremental theory

incremental theory【原创实用版】目录1.增量理论概述2.增量理论的发展历程3.增量理论的应用领域4.增量理论的优势与局限性5.我国对增量理论的研究与应用正文增量理论(incremental theory)是一种知识表示和推理的方法,主要通过不断添加新的信息来逐步完善对问题的解决。

这种理论广泛应用于人工智能、机器学习和自然语言处理等领域,旨在提高计算机系统对复杂环境的适应性和灵活性。

增量理论的发展历程可以追溯到上世纪五六十年代,当时计算机科学家们开始关注如何让计算机具有学习和适应能力的问题。

随着研究的深入,增量理论逐渐形成了自己的体系,并得到了广泛的应用。

增量理论的应用领域主要集中在以下几个方面:(1)人工智能:通过模拟人类的推理过程,使计算机能够在特定领域内进行自主学习和推理。

(2)机器学习:通过训练数据对计算机进行自动学习和改进,从而提高其性能。

(3)自然语言处理:通过对大量文本的分析和理解,使计算机能够进行自然语言的生成和理解。

尽管增量理论具有很多优势,但它也存在一些局限性。

首先,由于增量理论需要不断地对新信息进行处理,因此计算量较大,可能导致计算速度较慢。

其次,增量理论对于一些非线性、模糊的问题处理能力较弱。

在我国,增量理论在多个领域也得到了广泛的研究和应用。

我国科研人员在增量理论的基础上,结合我国的实际情况,提出了许多具有我国特色的理论和方法。

在人工智能、机器学习和自然语言处理等领域,我国已经取得了一系列重要的研究成果。

总之,增量理论作为一种重要的知识表示和推理方法,在多个领域都取得了显著的成果。

llm 重排算法

llm 重排算法

llm 重排算法
重排算法(Reranking Algorithm)是信息检索系统中的一个重要步骤,它发挥着优化检索结果的关键作用。

在初始检索阶段,系统根据某种标准(如相似度)返回一组文档。

然而,由于初始排序可能并不总是能够准确反映文档与查询的真实相关性,因此需要进行重排序来提升检索结果的质量。

LLM(Language Model)是一种自然语言处理技术,它通过学习大量的文本数据来预测下一个单词或字符,从而生成自然语言文本。

基于LLM的重排方法主要分为用重排任务微调LLM、使用prompt让LLM进行重排以及利用LLM做训练数据的增强三种思路。

如果你想了解更多关于llm重排算法的信息,可以继续向我提问。

英语 算法 -回复

英语 算法 -回复

英语算法-回复标题:英语与算法:一种跨学科的理解和应用在当今的数字化世界中,英语和算法这两者之间的关系日益紧密。

英语作为全球最广泛使用的语言,为我们理解和交流关于算法的概念、原理和应用提供了基础。

而算法,作为一种解决问题的精确步骤和方法,也在我们的日常生活中,特别是在计算机科学和信息技术领域,发挥着至关重要的作用。

以下我们将逐步探讨英语与算法之间的联系,以及如何通过英语学习和理解算法。

第一步:理解算法的基本概念在英语中,“algorithm”一词源自9世纪波斯数学家穆罕默德·本·穆萨·喀什的拉丁化名字“Algoritmi”。

算法是一种明确、有限的计算过程,用于解决特定问题或执行特定任务。

它包括一系列有序的操作步骤,这些步骤通常以一种可以预测的方式改变输入数据,从而产生期望的输出。

第二步:学习算法的英语表达在英语中,描述和讨论算法时,我们会使用一些特定的词汇和术语。

例如,"input"(输入)、"output"(输出)、"procedure"(过程)、"loop"(循环)、"condition"(条件)、"recursion"(递归)等。

理解并熟练运用这些术语是理解和编写算法的关键。

第三步:通过英语学习算法原理许多关于算法的教材、论文和在线资源都是用英语编写的。

因此,良好的英语阅读和理解能力对于学习算法至关重要。

例如,我们可以通过阅读《Introduction to Algorithms》(算法导论)这样的经典教材,或者访问像GeeksforGeeks、Coursera、MIT OpenCourseWare等在线平台,来深入理解排序、搜索、图论、动态规划等各种算法的原理和应用。

第四步:用英语编写和解释算法掌握英语不仅可以帮助我们理解现有的算法,还可以让我们更有效地编写和解释自己的算法。

s procedure定理 -回复

s procedure定理 -回复

s procedure定理-回复s procedure定理是一个在计算机科学和数学中广泛应用的定理。

它是由美国计算机科学家John von Neumann提出的,用于描述一个通用的计算机程序可以通过一系列的简单且确定的步骤来完成其任务。

本文将逐步回答关于s procedure定理的问题,并深入探讨其应用和意义。

首先,我们来了解一下s procedure定理的基本概念。

s procedure定理是一个关于计算过程的数学定理,它指出任何计算过程都可以通过有限的步骤来实现。

这意味着,对于给定的输入,我们可以通过一系列的指令来计算出相应的输出。

接下来,我们需要了解s procedure定理的证明过程。

s procedure定理的证明是基于形式化推理的方法。

形式化推理是一种用逻辑语言来描述和推导数学和计算逻辑的方法。

在s procedure定理的证明中,我们使用了一种称为s程序的特殊形式的计算过程。

s程序是一种包含若干个基本指令和过程调用的程序。

基本指令是可以直接执行的,而过程调用是指调用另一个过程来完成一些特定的计算任务。

通过使用s程序,我们可以将一个复杂的计算过程拆分为多个简单的步骤,从而使得整个过程更加清晰和易于理解。

在s procedure定理的证明过程中,我们通过使用归纳法来证明其正确性。

归纳法是一种证明方法,它通过证明某个命题在基础情况下成立,并证明如果某个命题对于某个情况成立,则它对于下一个情况也成立。

通过不断迭代这个过程,我们可以证明某个命题在所有情况下都成立。

该定理的证明主要包括以下几个步骤:第一步,定义计算过程。

我们首先需要清楚地定义计算过程的输入和输出,以及它是如何进行计算的。

这将有助于我们更好地理解s procedure定理的证明过程。

第二步,构建s程序。

在这一步中,我们使用s程序的基本指令和过程调用来描述计算过程。

我们需要确定每个步骤的具体指令以及它们的执行顺序。

第三步,验证s程序的正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Incrementally Computing Ordered Answers of Acyclic Conjunctive Queries⋆Benny Kimelfeld and Yehoshua Sagiv{bennyk,sagiv}@cs.huji.ac.ilThe Selim and Rachel Benin School of Engineering and Computer ScienceThe Hebrew University of JerusalemEdmond J.Safra CampusJerusalem91904,IsraelAbstract.Evaluations of SQL queries with the ORDER BY clause is con-sidered.The naive approach offirst computing the result and then sortingthe tuples is not suitable for Web applications,since the result could bevery large while users expect to get quickly the top-k tuples.Tractabil-ity,in this case,amounts to enumerating answers in sorted order withpolynomial delay,under query-and-data complexity.It is proved that anefficient algorithm forfinding the top-ranked tuple of a conjunctive queryis a sufficient(and not just necessary)condition for tractability.Severalclasses of orders are shown to have this property when queries are acyclic.1IntroductionComputing queries incrementally has become an increasingly important issue; for example,in Web applications users want to see thefirst few pages of results as quickly as possible.This task is more challenging if a ranking function is involved and users are interested in the top-k answers.One approach[3,4]is to extend SQL with the STOP AFTER operator that limits the generated tuples to the top-k.An efficient processing of this operator is done by enriching query plans with counters and sorters[3]and range partitioning[4].Other papers proposed algorithms for computing the top-k results of ranked joins,including the J∗algorithm[14],the rank-join algorithm[11]and the top-k-oriented variant of the hash-join algorithm[9].The goal of this paper is to investigate the complexity of computing answers of queries in ranked order.To discern between tractable and intractable cases, one has to measure the running time as a function of the combined size of the input and the output,using query-and-data complexity(that is,the size of the query is unbounded).Since queries may have exponentially many answers,an algorithm is efficient if it computes all the answers in polynomial total time,i.e., the runtime is bounded by a polynomial in the combined size of the query,the data and the puting efficiently the top-k answers requires a stronger notion,namely,the runtime should be polynomial in the size of the input and ⋆This research was supported by The Israel Science Foundation(Grant893/05).the value k.An even stronger notion is that of polynomial delay[12],that is,the elapsed time between generating two successive tuples is polynomial only in the size of the input(i.e.,the query and data).The algorithms mentioned above are not efficient from a theoretical point of view,since the delay in producing the top answer(or any answer thereafter) could be exponential.We show that for a large class of queries,answers can be computed in ranked order with polynomial delay.We believe that this result could lead to better algorithms for computing the top-k answers than those proposed thus far.Two factors determine whether the top-k answers can be computed efficiently. First,the non-emptiness problem must be tractable.In other words,if it is hard to determine whether the result of a query is nonempty,then it is impossible to enumerate the answers with polynomial delay(regardless of which order is used). Second,for some(rather simple)ranking functions,it is hard to enumerate the answers in ranked order even if non-emptiness is easy to check.In this paper,we consider the class of acyclic conjunctive queries,which is one of the largest classes with an efficient algorithm for checking non-emptiness.We first show that,with respect to all conjunctive queries,the important property of ranking functions is the ability tofind the top answer efficiently(i.e.,in polynomial time in the size of the the query and the data).Clearly,this is a necessary condition for enumerating in ranked order with polynomial delay.In the case of general conjunctive queries,it is(rather surprisingly)also a sufficient condition.We identify several types of ranking functions that have this property with respect to acyclic conjunctive queries.Our results hold even if projections are used and duplicates should be removed,and even if the ranking depends also on attributes that are not included in thefinal projection.Note that a naive handling of duplicate elimination(i.e.,removing them at the end of the computation)cannot yield an enumeration with polynomial delay or even in polynomial total time.2MotivationFor motivating our work,consider the database scheme of Figure1and the SQL query of Figure2.This queryfinds apartments for sale and sorts the result according to a linear combination of the average temperature,the price and the distance from London.Note that the result includes only some of the attributes that determine the order;in other words,there are attributes that appear in the ORDER BY clause but not in the SELECT clause.But this fact does not affect the complexity of evaluating the given query,since duplicates are not removed (i.e.,DISTINCT is not specified in the SELECT clause).That is,the difference between applying projection as soon as possible and applying it in the last step is negligible.If,however,duplicates have to be removed and projection is performed only in the last step(followed by duplicate elimination),then intermediate results could be much larger than thefinal one,leading to a difference of an exponential factor in the runtime.–Apartments(id,city,street,price,bedrooms)–Climate(city,avgTemp)–Distances(fromCity,toCity,distance)Fig.1.A database schemeTwo criteria determine whether queries can be evaluated without generating intermediate results that are too large.First,testing non-emptiness of queries (regardless of the order)must be a tractable problem.Since not all conjunctive queries satisfy this requirement[5],we state our actual tractability results for acyclic conjunctive queries[1,2,15]that have this property.Second,there must be an efficient algorithm forfinding the top-ranked(i.e.,first)tuple of the result, according to the specified order.Consider,for example,the following query.SELECT*FROM R1,...,R nORDER BY ABS(R1.A1+...+R n.A n−K)R1,...,R n are names of relations that have the attributes A1,...,A n,respec-tively,and K is a number.ABS is the absolute-value operator.Testing non-emptiness of this query is easy,since it is merely a Cartesian product.It is intractable,however,to compute the top-ranked tuple.1Our goal is tofind sufficient conditions for efficiently enumerating all tuples of the result in sorted rmally,efficiency means that the delays between generating successive tuples are small.We show that for general conjunctive queries,tractability offinding the top-ranked tuple is a sufficient(and not just necessary)condition for efficiently enumerating in sorted order.This result holds even if duplicates are eliminated and attributes of the ORDER BY clause are not required to appear in the SELECT clause.The proof is by means of an algorithm that reduces the problem of enumerating in sorted order to the problem offinding the top-ranked tuple with respect to the given order.(Technically,we mustfind the top-ranked tuple with respect to the query that is obtained from the original one by adding all attributes to the SELECT clause.)Next,we consider acyclic conjunctive queries and show that for two classes of orders,the top-ranked answer can be found efficiently.Thefirst class consists 1This can be easily proved by a reduction from the subset-sum problem.SELECT A.city,A.bedrooms,A.priceFROM Apartments A,Climate C,Distances DWHERE A.city=C.city=D.fromCity AND D.toCity=‘London’ORDER BY C.avgTemp*10-D.distance-A.price/1000DESCFig.2.An SQL queryof monotonic orders that have the following property.Consider a tuple t and all subsets S of the attributes that appear in the ORDER BY rmally,if for some subset S,replacing the values of S in t with new ones yields a tuple that has at least the same rank as t,then this replacement can only improve every tuple of the result that is equal to t on S(whenever the modified tuple is also in the result).As an example,the following orders are monotonic:–ORDER BY C1(R i1.A i1)+...+C k(R ik.A ik)[DESC](Linear combination)–ORDER BY R i1.A i1[DESC],...,R ik.A ik[DESC](Lexicographic)The second class of orders is called c-determined,where c is afixed positive integer(i.e.,c does not depend on the input).Informally,in a c-determined order,the position of a tuple in the order is determined by a set of c or fewer values.For example,the following two orders are1-determined and3-determined, respectively.Note that in thefirst order,k is unbounded(i.e.,not assumed to befixed).–ORDER BY MAX(C1R i1.A i1,...,C k R ik.A ik)DESC–ORDER BY R1.A1∗R2.A2+R3.A33Formal SettingOur goal is to identify queries and orders that have efficient algorithms for pro-ducing answers in the specified ordering.We consider acyclic conjunctive queries, since they satisfy the necessary requirement,namely,answers can be generated efficiently in an arbitrary order.This section defines the main concepts.3.1Databases and Conjunctive QueriesWe assume that Dom is a countable domain of atomic values.A relation scheme R has an associated arity,denoted by arity(R).A relation instance(or simply,a relation)over a relation scheme R is afinite subset of Dom arity(R).The elements of a relation are tuples.A database scheme S is a set of relation schemes.A database instance(or simply,a database)D over a database scheme S consists of a relation instance,denoted by D[R],for each relation scheme R of S.We write D′⊆D if D′is obtained from D by deleting some tuples.A conjunctive query(abbr.CQ)Q over a database scheme S has the formQ(u):−R1(u1),R2(u2),...,R k(u k)and it satisfies the following:(1)R1,...,R n are(not necessarily distinct)relation schemes of S;(2)u is a list of variables;(3)Each u i is a list of terms that has a length of arity(R i),where a term is either a constant of Dom or a variable; and(4)Each variable in u appears in some u i.We say that each R i(u i)is a conjunct of Q and Q(u)is the head of Q.The set of variables appearing in Q is denoted by var(Q).When we consider a CQ Q and a database D,we implicitly assume that Q and D are defined over the same database scheme.Consider a conjunctive query Q and a database D.An assignment for var(Q) is a mappingϕ:var(Q)→Dom.We useϕu i to denote the tuple that is obtained from u i by replacing every variable X withϕ(X)(and leaving constants unchanged).A homomorphism from Q to D is an assignmentϕfor var(Q),such thatϕu i∈D[R i]for each conjunct R i(u i)of Q.We use Hom(Q,D)to denote the set of all homomorphisms from Q to D.An answer is a tupleϕu,whereϕis a homomorphism of Hom(Q,D).The result of applying Q to D,denoted by Q(D),is the set of all the answers,i.e.,Q(D)={ϕu|ϕ∈Hom(Q,D)}.Acyclic conjunctive queries[1,2](abbr.ACQs)are conjunctive queries that have join trees.Formally,we say that a conjunctive query Q is acyclic if there exists a tree T(called a join tree),such the nodes of T are the conjuncts of Q and the following holds.For every variable X∈var(Q),the subgraph of T that is induced by the conjuncts containing X is connected(i.e.,it is a subtree of T).It has been shown[15]that acyclic conjunctive queries can be computed efficiently,i.e.,in time that is polynomial in the combined size of the query,the database and the result,while for general conjunctive queries,it is NP-complete just to determine whether the result is nonempty[5].3.2Orders over Query AnswersConsider a conjunctive query Q and a database D.Our goal is to enumerate all the tuples of Q(D)according to an order that is specified,for example,in the ORDER BY clause of an SQL query.Recall that the ORDER BY clause may include attributes that do not necessarily appear in the SELECT clause.In other words, we cannot assume that the specified order is defined merely over the tuples of the result,since these tuples are obtained after projecting out attributes that may determine the position of a tuple in the desired ordering.Thus,an order over the answers to a query should be defined in terms of a more general order on the ways to derive these answers,i.e.,homomorphisms.As an example,consider the SQL query of Figure2.The corresponding conjunctive query isQ(C,B,P):−Apartments(I,C,S,P,B),Climate(C,T),Distances(C,‘London’,D)and the ranking function is10ϕ(T)−ϕ(D)−ϕ(P)/1000.The valuesϕ(T)and ϕ(D),however,do not appear in the result.Things become more complicated if the DISTINCT operator is used in order to eliminate duplicates.In this case,the position of a tuple is determined by thefirst appearance that this tuple would have,had the DISTINCT operator not been used.Formally,we assume that there is an underlying order over homomor-phisms that is defined for a given CQ Q and a database D.The order is a binary relation over Hom(Q,D)that is reflexive,transitive and total(i.e.,every two homomorphisms are comparable).Orders on homomorphisms determine orders on answers as follows.Consider a query with the head Q(u)and a database D.Letϕ1,ϕ2∈Hom(Q,D).If ϕ1 ϕ2holds,then it means thatϕ1generates a“better”answer,i.e.,ϕ1ushould precedeϕ2u.Formally, implies an order Q,D over the tuples of Q(D) that is defined as follow.Two tuples t1,t2∈Q(D)satisfy t1 Q,D t2if for every homomorphismϕ2∈Hom(Q,D)satisfyingϕ2u=t2,there exists a homomor-phismϕ1∈Hom(Q,D)satisfyingϕ1u=t1,such thatϕ1 ϕ2.In other words, t1 Q,D t2if the maximal homomorphismsϕ1andϕ2that produce t1and t2, respectively,satisfyϕ1 ϕ2.Thus,the goal is to enumerate the answers of Q(D) in decreasing order,i.e.,if t1 Q,D t2,then t1is printed before t2.3.3Measuring EfficiencyWe want to enumerate all the answers of Q(D)in the order Q,D.A related prob-lem is that offinding a maximal(i.e.,top-ranked)homomorphism of Hom(Q,D). An algorithm for this problem is deemed efficient if its runtime is polynomial(in the size of Q and D).Note that we assume thatϕ′ ϕcan be tested efficiently.For the problem of enumerating all the answers of Hom(Q,D),polynomial time is not a suitable measure of efficiency,since the output size could be much larger(e.g.,exponentially larger)than the input size.For this type of problems, there are several notions of efficiency[12].The strongest one among them is enumeration with polynomial delay,that is,after the algorithm prints the(i−1)st answer,it generates the next(i th)answer in time that is polynomial in the input size.Polynomial delay implies an efficient evaluation of the top-k answers,since we can stop the execution after printing thefirst k answers and the runtime is only linear in k(and polynomial in the input).By definition,the result of a conjunctive query is a set whereas an SQL query may produce duplicates(unless the DISTINCT operator is used).It is sufficient, however,to develop an efficient algorithm for enumerating tuples of the result assuming that duplicates are eliminated.If duplicates should be retained,then one can simply use this algorithm as if all the attributes appear in the SELECT clause(equivalently,as if all the variables of var(Q)appear in the head)and apply the required projection just before printing each tuple.4Ordered Evaluation with Polynomial Delay4.1The Main TheoremIn this section,we prove our main theorem.In the next section,we describe families of orders that satisfy thefirst condition of this theorem,assuming that the CQ Q is acyclic.We start with some notation and definitions.Consider an ACQ Q,with the head Q(u),and a database D.We denote by Q+the query that is obtained from Q by adding the conjunct R X(X)for each variable X of u.Note that R X is a relation scheme with arity1.The database D Q(u)is obtained from D by adding a relation instance I X for each R X as follows.I X comprises all constants d of D,such that there is a conjunct R i(u i) of Q,the variable X is in u i and the constant d appears in the relation R i[D]in a column that corresponds to X.In other words,the relation for R X contains(at least)all constants that could potentially be the image of X under some homomorphism from Q to D.The following proposition is rather straightforward. Proposition1.Let Q be a conjunctive query and D be a database.Then,–Q(D)=Q+(D Q(u));–Hom(Q,D)=Hom(Q+,D Q(u));and–Q is acyclic if and only if Q+is acyclic.According to the above proposition,if we are interested in evaluating a CQ Q over a database D orfinding a maximal homomorphism of Hom(Q,D),we can instead solve these problems with respect to the query Q+and the database D Q(u).Furthermore,this transformation preserves acyclicity of Q,namely,if Q is a cyclic,then so is Q+.Our main result is the next theorem that uses the above proposition in order to show the following.An efficient algorithm forfinding a maximal homomor-phism is sufficient for efficiently enumerating all answers and all homomorphisms of a CQ Q with respect to a database D.Formally,we need to make the nat-ural assumption that if an algorithm is efficient with respect to a CQ Q and a database D,then it is also correct and efficient with respect to every databaseˆD that is obtained from D by deleting some tuples(i.e.,ˆD⊆D).Note that when consideringˆD instead of D,we assume that the order on the homomorphisms of Hom(Q,ˆD)is the same as the one defined on Hom(Q,D).Theorem1.Consider a CQ Q,a database D and an order on Hom(Q,D). The following are equivalent.1.There is a polynomial-time algorithm for solving the following problem.Giventhe CQ Q and a databaseˆD⊆D Q(u),find a maximal homomorphism of Hom(Q+,ˆD).(The running time is polynomial in the size of Q+andˆD.)2.There are enumeration algorithms that run with polynomial delay for the fol-lowing two problems.Given the CQ Q and a databaseˆD⊆D Q(u),enumer-ate all the answers of Q+(ˆD)and all the homomorphisms of Hom(Q+,ˆD) in ranked order.(The delay is polynomial in the size of Q+andˆD.)Clearly,the second part implies thefirst.So,we now prove the other direc-tion.Our proof is for the case where we want to enumerate Q(D)(or,equiva-lently,Q+(D Q(u))).For that,we describe the algorithm SortedEval (Q,D)of Figure3that enumerates the answers of Q(D)in ranked order,using the subrou-tine Maximize (Q+,ˆD)thatfinds a maximal homomorphism of Hom(Q+,ˆD), whereˆD⊆D Q(u).Our algorithm is an adaptation of a procedure2by Lawler[13] for computing the top-k solutions to discrete optimization problems.Proving the theorem for an arbitraryˆD⊆D Q(u)requires straightforward modifications to the algorithm.Note that in order to use SortedEval (Q,D)for enumerating all the homomorphisms of Hom(Q,D),we need to modify Q so that the head includes all the variables of Q.2This procedure generalizes an algorithm of Yen[16]for enumerating simple paths.SortedEval (Q,D)1u←the tuple of variables from the head of Q2Queue←an empty priority queue,with priority based on3ϕ←Maximize (Q+,D Q(u))4ifϕ=⊥5then Queue.insert( ∅,∅,ϕ )6while Queue is not empty7do P,N,ϕ ←Queue.removeTop()8{X1,...,X k}←the variables that appear in u but not in P 9for i←1to k10do P i←P∪{X1=ϕ(X1),...,X i−1=ϕ(X i−1)}11N i←N∪{X i=ϕ(X i)}12D i←D Q(u)13for all(X=a)∈P i14do remove from D i[R X]all tuples except for a 15for all(Y=b)∈N i16do remove from D i[R Y]the tuple b17ϕi←Maximize (Q+,D i)18ifϕi=⊥19then Queue.insert( P i,N i,ϕi )20Print(ϕu)Fig.3.Incrementally computing answers in sorted order The algorithm SortedEval (Q,D)uses two types of constraints.A positive constraint has the form X=a and a negative constraint has the form Y=b, where both X and Y are variables from the head of Q while a and b are constants of D.We use P and P i to denote sets of positive constraints whereas N and N i denote sets of negative constraints.A homomorphismϕsatisfies the sets of constraints P and N ifϕ(X)=a for all constraint X=a of P andϕ(Y)=b for every constraint Y=b of N.SortedEval uses a priority queue,Queue.The operations on Queue take logarithmic time in the size of Queue(hence,polynomial time in Q and D).An element of Queue is a triplet P,N,ϕ ,where P and N are sets of positive and negative constraints,respectively,andϕ∈Hom(Q,D)is a maximal homomor-phism among all those satisfying P and N.Priority in Queue is based on ; that is,the top element of Queue is a triplet P,N,ϕ ,such thatϕ ϕ′for all triplets P′,N′,ϕ′ in Queue.A triplet P,N,ϕ represents the subset of Q(D) comprising all answers that are produced by homomorphisms satisfying P and N,whereϕis the“best”such homomorphism.The triplets of Queue represent disjoint subsets that cover all the answers that have not yet been printed.Thefirst element inserted into Queue(Lines3–5)represents the whole set Q(D).In the loop of Lines7–20,each iteration starts by removing the top ele-ment P,N,ϕ from Queue.The answerϕu is printed in Line20.Let X1,...,X k be the variables that appear in u but not in P(intuitively,these are the free variables of the answers represented by P,N,ϕ ).In Lines8–19,we partition all the answers represented by P,N,ϕ ,except forϕu,into k disjoint subsets by creating the elements P i,N i,ϕi ,1≤i≤k,and inserting them into Queue (wheneverϕi exists,i.e.,ϕi=⊥).The set P i is obtained from P by adding the constraints X j=ϕ(X j)for j=1,...,i−1.The set N i is obtained from N by adding the constraint X i=ϕ(X i).The maximal homomorphismϕi,under P i and N i,is generated in Lines13–17by executing Maximize (Q+,D i),where D i is the database that is obtained by changing D Q(u)so that all constraints are satisfied:(1)For each constraint X=a of P i,we remove from D Q(u)[R X] all tuples except for a ,and(2)for each constraint Y=b of N i,we remove the tuple b from D Q(u)[R Y].The following lemma shows the correctness of the algorithm SortedEval (Q,D).It also shows that this algorithm enumerates with polynomial delay if Maximize runs in polynomial time.Lemma1.Given a CQ Q,the algorithm SortedEval (Q,D)enumerates Q(D)in ranked order.The delay is polynomial provided that Maximize runs in polynomial time.4.2Tractable OrdersIn this Section,we present two families of orders that satisfy thefirst part of Theorem1and,hence,also the second part,assuming that the CQ Q is acyclic. Monotonic orders.This family includes many widely used orders,such as sums of single-variable functions(or products,if the functions are positive)and lexicographic orders.In order to define monotonic orders,we need to consider partial assignments,i.e.,mappings from some of the variables of the given query to constants of the database.First,consider two partial assignmentsϕandϕ′that are defined on the sets of variables V and V′,respectively.The combined assignmentϕ′⊕ϕmaps variables of V′according toϕ′and variables of V\V′according toϕ(i.e.,ϕ′takes precedence when mapping variables that are in the domains of both assignments).Now,an order is monotonic if for all partial assignmentsϕ,ϕ1andϕ2,such thatϕ1andϕ2are defined on the same set of variables,ifϕ1 ϕ2thenϕ1⊕ϕ ϕ2⊕ϕ.3As an example,suppose that each variable X is associated with a ranking function rank X.Then,the following definitions of rank(ϕ)imply monotonic orders(regardless of the specific form of rank X).Note that V denotes the domain ofϕ.rank(ϕ)= X∈V rank X(ϕ(X)),3For simplicity’s sake,the definition of monotonic orders is more restrictive than necessary.A more general definition can be obtained by taking into account the structure of the join tree of the given query.rank(ϕ)=max{rank X(ϕ(X))|X∈V},rank(ϕ)=min{rank X(ϕ(X))|X∈V}.The class of monotonic orders also contains the lexicographic orders.For example,every order specified by the SQL command ORDER BY R1.A1,...,R k.A k (with an optional DESC attached to each attribute)is lexicographic.We define this type of orders on homomorphisms.4Given a CQ Q,a lexicographic order is specified by a sequence(X1,...,X k)of distinct variables of Q.We assume that for every variable X i,there is an order>i over the values(of the given database D)that X i could be mapped to.Two homomorphismsϕ1,ϕ2∈Hom(Q,D) satisfyϕ1 ϕ2if either(1)ϕ1andϕ2agree on every variable X i or(2)the minimal i,such thatϕ1(X i)=ϕ2(X i),satisfiesϕ1(X i)>iϕ2(X i).We briefly sketch how tofind a maximal homomorphism,under a monotonic order,for a given ACQ Q and a database D.Note that the running time is polynomial in the size of Q and D.First,we construct a rooted join tree T of Q (recall that the nodes of T are the conjuncts of Q).Then,we traverse T bottom up.For each conjunct R(u i)and tuple t∈D[R],we compute the maximal partial assignmentϕt to the variables of the subtree rooted at R(u i),such thatϕt maps u i to t.A detailed description is beyond the scope of this paper.c-determined orders.This type of orders generalizes the one given in[6]and is defined as follows.Given afixed positive integer c,an order over homo-morphisms is c-determined if for allϕ∈Hom(Q,D),there exists a set Cϕof c or fewer variables,such that every homomorphismϕ′∈Hom(Q,D)that agrees withϕon the variables of Cϕmust satisfyϕ′ ϕ.For example,an order that is defined by a ranking function over3variables,e.g.,the one used in the query of Figure2,is3-determined.As another example,an order that is defined by taking the maximal rank over all variables(as defined above)is1-determined. Note that a c-determined order is not necessarily monotonic and vice versa(even if the order is determined by afixed set of variables C,i.e.,Cϕ=C for allϕ).Given an ACQ Q,a database D and a c-determined order ,we canfind a maximal homomorphism as follows.We consider every subset C of var(Q),with c or fewer variables,and every possible assignmentψthat maps C to constants from D.For eachψ,we compute a homomorphismϕC(if it exists)that agrees withψon C.The desired homomorphism is the maximal one among all theϕC.The following theorem summarizes the above discussion.Theorem2.Consider an ACQ Q and database D.For the following orders,finding a maximal homomorphism is polynomial in Q and D.Hence,all answers can be generated in ranked order with polynomial delay.–Monotonic(e.g.,lexicographic)orders.–c-determined orders,where c is afixed positive integer.4We omit both the definition of these orders on partial assignments and a proof that they are monotonic,due to a lack of space.5Space-Efficient EvaluationThe algorithm SortedEval of Figure3runs with polynomial delay,but its queue may grow linearly with respect to the number of answers.In this section, we briefly discuss an alternative technique that applies to certain types of orders. This technique has a polynomial delay and uses only a polynomial amount of space.It is based on the following proposition.Proposition2.Let Q be an ACQ and D be a database.The answers of Q(D) can be enumerated(in an arbitrary order)with polynomial delay and polynomial space.If the order is either lexicographic or c-determined by afixed set of variables and,moreover,it depends only on variables that appear in the head of Q,then we can use the above result as follows.We bind the variables of the head that determine the rank to constants from the database.Then,we sort the different bindings.In the case of a c-determined order,there is only a polynomial number of bindings.If the order is lexicographic,then we have to do it one variable at a time,in a recursive manner.For a given binding,we can determine whether there is any answer and,if so,enumerate all the answers using the above proposition. Additional details are beyond the scope of this paper.6ConclusionWe have investigated the complexity of incrementally computing SQL queries with the ORDER BY clause.We have stated actual tractability results for SQL queries that correspond to acyclic conjunctive queries,since solving efficiently the non-emptiness problem is a necessary condition for incremental computation with polynomial delay.In our framework,the ORDER BY clause is modeled as an order on homomorphisms from the conjunctive query to the database,since the ORDER BY clause may include attributes that do not appear in the SELECT clause.Our main result holds for general conjunctive queries and it states that if one canfind the top-ranked homomorphism in polynomial time,then all the tuples of the result can be enumerated in sorted order with polynomial delay(sub-ject to the natural assumption that the given algorithm forfinding a maximal homomorphism can be applied efficiently and correctly to any database that is obtained from the given one by deleting some tuples).For acyclic conjunctive queries,we have shown that c-determined and monotonic(which include lexi-cographic)orders satisfy this property.If all attributes of the ORDER BY clause also appear in the SELECT clause,then the computation requires only polyno-mial space if the order is either c-determined by afixed set of variables C or lexicographic.Our results can be easily extended to unions of acyclic conjunctive queries.In this case,enumeration in sorted order runs in incremental polynomial time if duplicates are eliminated;otherwise,the delay is polynomial.Some related work dealt with problems that are similar to,yet different from the one considered in this paper.In[7,8],the goal is tofind the top-k objects,。

相关文档
最新文档