概统第4章

合集下载

概率论与数理统计第四版第四章

概率论与数理统计第四版第四章

定理2的结果用于计算卡方分布的期望值和方差。

解:让定理2 xedx 4成为随机变量。

尝试证明定理5。

证明:因为,让定理1让总体x服从[0,b]上的均匀分布,并且B是未知的。

尝试找到未知样本值(1.3、0.6、1.7、2.2、0.3、1.1)以找到未知样本,即样本,尝试进行分析:X的概率密度是给定样本值的概率密度,要求使用尽可能小的值,并且最大值应为(相对于给定样本值,如果可能的话)。

最大似然估计方法用于估计总体的未知参数,并且总体θ的概率密度是lnln的样本。

(1)样本方差s的无偏估计。

(2)对于任何α,它也是λ的无偏估计。

解决方案:(1)无偏估计原因。

(2)因为x 是λ的无偏估计,所以它也是λ的无偏估计。

11.对于已知平方差的正常总体,要使总体置信区间的平均值不大于给定正数l的样本大小n是多少?当已知总体的置信区间为-3.0%时,正常解的置信区间为-3.0%,并且已知总体的置信区间为-0.9%。

总体平均值的95%置信区间为315.5%。

因此,正常总体平均值的95%置信区间是样本值,而正常总体平均值的95%置信区间为(-2.751,3.501)。

质量指标数据如下:0.143、0.142、0.143、0.137批次:0.140、0.142、0.136、0.138、0.140。

测试数据独立且未知。

尝试找出95%的置信区间,是否可以认为这两个批次的产品质量存在显着差异?样本值0023的95%置信区间为(-0.002,0.006)。

14.某种容量为100的电子管的寿命样本的标准偏差为45。

给出了这些管的寿命种群(设置为正常种群)的标准偏差σ的95%置信区间。

因为05的95%置信区间为(1566.212747.74),所以标准偏差的95%置信区间为(39.58,52.42)。

15.为了检查两名工人的生产技能的稳定性,在一天中从他们的产品中选择了容量分别为25和15的两个样本,样本的方差计算如下。

让这两个样本来自正常总体,并尝试找到方差。

概率论与数理统计教程(茆诗松)第4章

概率论与数理统计教程(茆诗松)第4章

解:用 Xi=1表示第i个部件正常工作, 反之记为Xi=0. 又记Y=X1+X2+…+X100,则 E(Y)=90,Var(Y)=9.
由此得:
P{Y
85}
ห้องสมุดไป่ตู้
1
85
0.5 9
90
0.966.
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第10页
二、给定 n 和概率,求 y
例4.4.4 有200台独立工作(工作的概率为0.7)的机床,
第6页
4.4.3 二项分布的正态近似
定理4.4.2 棣莫弗—拉普拉斯中心极限定理
设n 为服从二项分布 b(n, p) 的随机变量,则当 n
充分大时,有
lim
n
P
n
np npq
y
( y)
是林德贝格—勒维中心极限定理的特例.
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第7页
13 July 2020
华东师范大学
第四章 大数定律与中心极限定理
第5页
例4.4.2 设 X 为一次射击中命中的环数,其分布列为
X 10 9 8 7
6
P 0.8 0.1 0.05 0.02 0.03
求100次射击中命中环数在900环到930环之间的概率.
解: 设 Xi 为第 i 次射击命中的环数,则Xi 独立同分布,
且 E(Xi) =9.62,Var(Xi) =0.82,故
P
900
100 i 1
Xi
930
930 100 9.62 100 0.82
900 100 9.62 100 0.82

概率统计第4章第1讲

概率统计第4章第1讲

随机事件及其运算
在建立了随机试验的样本空间后, 在建立了随机试验的样本空间后,用样 随机事件, 本空间的子集来表示随机事件 , , 本空间的子集来表示随机事件,用A,B, C….表示。 表示。 表示 在每次试验中都必然发生的事件称为必 在每次试验中都必然发生的事件称为必 然事件, 然事件,在任何一次试验中都不可能发生 的事件称为不可能事件 不可能事件。 的事件称为不可能事件。 由若干个基本事件组成的集合成为复合 由若干个基本事件组成的集合成为复合 事件。 事件。
1.事件的包含 事件的包含
如果事件A发生必然导 如果事件 发生必然导 发生, 致 B发生,则称事件 包含事 发生 则称事件B包含事 件A,或称事件 包含于事件 ,或称事件A包含于事件 B。记作 Β ⊃ Α 或 Α ⊂ Β 。
2.事件相等 2.事件相等 如果事件A包含事件 ,事件B也包含 如果事件 包含事件B,事件 也包含 包含事件 事件A,则称事件A与 相等 相等。 事件 ,则称事件 与B相等。记作 A=B。 。 3.事件的并(和事件) 3.事件的并(和事件) 事件的并 “事件A与B至少有 事件 与 至少有 一个发生” 一个发生”这一事件称 作事件A与 的并 的并, 作事件 与B的并,记 作 Α∪Β 。
许多服务系统,如电话通信、船舶装卸、 8. 许多服务系统,如电话通信、船舶装卸、 机器维修、病人候诊、存货控制、水库调度、 机器维修、病人候诊、存货控制、水库调度、 购物排队、红绿灯转换等, 购物排队、红绿灯转换等,都可用一类概率 模型来描述,其涉及到的知识就是排队论。 模型来描述,其涉及到的知识就是排队论。 法国数学家拉普拉斯说 :“生活中最重要 的问题, 的问题,其中绝大多数在实质上只是概率的 问题。 问题。”
A ∩ B = B ∩ A;

概率论与数理统计第四章

概率论与数理统计第四章

上述定理还可以推广到两个或两个以上随 机变量的函数的情况。
02
该公式的重要性在于: 当我们求E[g(X)]时, 不必知道g(X)的分布,而只需知道X的分布就可以了. 这给求随机变量函数的期望带来很大方便.
01
例6
例 7
解:
设(X,Y)在区域A上服从均匀分布,其中A为x轴,y轴和直线x+y+1=0所围成的区域。 求EX,E(-3X+2Y),EXY。
例5
若将这两个电子装置串联连接组成整机,求整机
寿命(以小时计) N 的数学期望.
的分布函数为
三、随机变量函数的数学期望
1. 问题的提出:
设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?
一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.
若设
i=1,2,…,n
则 是n次试验中“成功” 的次数

X~B(n,p),
“成功” 次数 .
则X表示n重努里试验中的
于是
i=1,2,…,n
由于X1,X2,…, Xn 相互独立
= np(1- p)
E(Xi)= p,
D(Xi)=
p(1- p) ,
例7

1
展开
2
证:D(X)=E[X-E(X)]2
3
=E{X2-2XE(X)+[E(X)]2}
4
=E(X2)-2[E(X)]2+[E(X)]2
5
=E(X2)-[E(X)]2

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

E( X 2 ) 700E( X ) 3502 122686 . 10. A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如
下表所示:
3
A 机床
次品数 X
0
1
2
3
概率 P
0.7
0.2
0.06
0.04
B 机床
次品数 X
0
1
2
3
概率 P
0.8
0.06
0.04
0.10
问哪一台机床加工质量较好.
5.设离散型随机变量 X
的分布列为 P( X
(1)k
2k ) k!
1 2k
,k
1,2,,
问 X 是否有数学期望.
解:因为 (1)k
k 1
2k k
1 2k
1 发散, k 1 k
所以 X 的数学期望不存在. 6.设随机变量 X 具有密度函数
f
(x)
2
cos2
x, 2
x
2
,
0, 其他.
空测量的误差随机变量 X 的分布列为
X (m) 30
20
10
0
10
20
30
P
0.05 0.08 0.16 0.42 0.16 0.08 0.05
而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即Y 350 X ,
求场地面积的数学期望.
解:设场地面积为 S ,则 S Y 2 ,
E( X ) 30 0.05 (20) 0.08 (10) 0.16 0 0.42 10 0.16
12 2
7.设随机变量 X 具有密度函数 x, 0 x 1,
f (x) 2 x, 1 x 2, 0, 其他.

概率论与数理统计_第4章1节概要

概率论与数理统计_第4章1节概要
( t ) E (ei t ) E (ei t ( a b ) )
ei tb E (ei ta ) ei tb (at )
例如:设 ~N , , 求 t . t2 解:设 = , 则 ~ N 0,1 , t e 2 故 t Eeit Eeit eit Eeit
特别地,若 ~ U a, a , 则
1 sin at t e dx , a 2a at 注意,此时 t 是实值的!
a itx
【标准正态分布】
(t )

1 1



e e
i tx
x2 2
dx dx 1

1

cos tx e
e

dF ( x)
定义
若实随机变量 的分布函数为 F ( x) ,则称
(t ) Ee
it
t R
为 的特征函数 (characteristic function). 显然特征函数只与分布函数有关,因此又称某一分布 函数的特征函数.
(t ) Ee E cos t i sin t
x2 2



i sin tx e
x2 2
dx

由于 (t )
'
1



cos tx e

x2 2
dx
x2 2


x sin tx e

dx
1

x2 2


sin tx de
x2 2
1 sin tx e 2π

概率论与数理统计 第4章

概率论与数理统计 第4章

xf (x)dx x dx 2
0

1




(自学)例4.9 设二维随机变量(X,Y)具有概 率密度 15x 2 y 0 x y 1 f ( x) y 0 其它
设Z=XY,试求Z的数学期望。 解

y=x
1
E (Z ) E ( XY )


推广:设(X,Y)是二维随机变量,Z=g(X,Y),其中g(•,•) 是连续函数。
(1)设(X,Y)是离散型随机向量,分布律为
P(X=xi,Y=yj)=pij,i,j=1,2,…
则当 g ( xi , y j ) pij 绝对收敛时,Z的数学期望存在,且
i 1 j 1
E ( X ) xi p i
i 1
i
记作 E(X),即
注意:随机变量X的数学期望E(X)完全是由X的分布律
确定的,而不应受X的可能取值的排列次序的影响,因
此要求级数
x p 绝对收敛。若级数 x p 不绝对收敛,
i 1 i i i 1 i i


则称随机变量X的数学期望不存在。
证 将C看成是离散型随机变量,分布律P(X=C)=1,则 E(C)=C 2、设C是常数,X为随机变量,则E(CX)=CE(X);
证 设X的密度函数为f(x),则

E (CX )

xf ( x)dx CE ( X ) Cxf ( x)dx C

3、设X,Y为任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 证 设(X,Y)~f(x,y),边缘密度函数为fX(x),fY(y)
第四章 随机变量的数字特征

概率论与数理统计 第四版 第四章

概率论与数理统计 第四版 第四章

第四章 随机变量的数字特征1.(1)在下列句子中随机地取一个单词,以X表示取到的单词所包含的字母个数,写出X的分布律并求E(X).“T H E GIRL P U T ON H ER BEA U T IF U L RED H A T”.(2)在上述句子的30个字母中随机地取一个字母,以Y表示取到的字母所在单词所包含的字母数,写出Y的分布律并求E(Y).(3)一人掷骰子,如得6点则掷第2次,此时得分为6+第二次得到的点数;否则得分为他第一次掷得的点数,且不能再掷,求得分X的分布律及E(X).解(1)随机试验属等可能概型.所给句子共8个单词,其中含2个字母,含4个字母,含9个字母的各有一个单词,另有5个单词含3个字母,所以X的分布律为X2349p k18581818数学期望E(X)=2×18+3×58+4×18+9×18=154.(2)随机试验属等可能概型,Y的可能值也是2,3,4,9.样本空间S由各个字母组成,共有30个样本点,其中样本点属于Y=2的有2个,属于Y=3的有15个,属于Y=4的有4个,属于Y=9的有9个,所以Y的分布律为Y2349p k2301530430930数学期望 E(Y)=2×230+3×1530+4×430+9×930=7315.(3)分布律为X12345789101112p k1616161616136136136136136136E(X)=1×16+2×16+3×16+4×16+5×16+7×136+8×136+9×136 +10×136+11×136+12×136=4912.2.某产品的次品率为0畅1,检验员每天检验4次.每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备.以X表示一天中调整设备的次数,试求E(X).(设诸产品是否为次品是相互独立的.)解先求检验一次,决定需要调整设备的概率.设抽检出次品件数为Y,则Y~b(10,0畅1).记需调整设备一次的概率为p,则p=P{Y>1}=1-P{Y=0}-P{Y=1}=1-0畅910-101·0畅99·0畅1=0畅2639.又因各次检验结果相互独立,故X~b(4,0畅2639).X的分布律为X01234p k(1-p)44p(1-p)36p2(1-p)24p3(1-p)p4于是E(X)=1×4p(1-p)3+2×6p2(1-p)2+3×4p3(1-p)+4×p4=4p=4×0畅2639=1畅0556.以后将会知道若X~b(n,p),则E(X)=n p.3.有3只球,4个盒子,盒子的编号为1,2,3,4.将球逐个独立地,随机地放入4个盒子中去.以X表示其中至少有一只球的盒子的最小号码(例如X=3表示第1号,第2号盒子是空的,第3个盒子至少有一只球),试求E(X).解法(i) 由于每只球都有4种放法,由乘法原理共有43=64种放法.其中3只球都放在4号盒中的放置法仅有1种,从而P{X=4}=164.又{X=3}表示事件“1,2号盒子都是空的,而3号盒子不空”.因1,2号盒子都空,球只能放置在3,4号两个盒子中,共有23种放置法,但其中有一种是3只球都放在4号盒子中,即3号盒子是空的,这不符合X=3的要求需除去,故有P{X=3}=23-164=764.88概率论与数理统计习题全解指南同理可得P {X =2}=33-2364=1964,P {X =1}=43-3364=3764.因此E (X )=钞4k =1kP {X =k }=2516.注:P {X =1}也可由1-(P {X =4}+P {X =3}+P {X =2})求得.解法(ii ) 以A i (i =1,2,3,4)记事件“第i 个盒子是空盒”.{X =1}表示事件“第一个盒子中至少有一只球”,因此{X =1}=A —1,故P {X =1}=P (A —1)=1-P (A 1)=1-343=3764.(因第一个盒子为空盒,3只球的每一只都只有3个盒子可以放,故P (A 1)=(3/4)3.){X =2}表示事件“第一个盒子为空盒且第二个盒子中至少有一只球”,因此{X =2}=A 1A —2.故P {X =2}=P (A 1A —2)=P (A —2A 1)P (A 1)=(1-P (A 2A 1))P (A 1)=1-233343=1964.(因在第一个盒子是空盒的条件下,第二个盒子也是空盒,则3只球都只有2个盒子可以放,故P (A 2A1)=233.)类似地,P {X =3}=P (A 1A 2A —3)=P (A —3A 1A 2)P (A 2A 1)P (A 1)=1-123233343=764,P {X =4}=1-3764-1964-764=164,因此,E (X )=钞4k =1kP {X =k }=2516.解法(iii ) 将球编号.以X 1,X 2,X 3分别记1号,2号,3号球所落入的盒子的号码数.则X 1,X 2,X 3都是随机变量,记X =min {X 1,X 2,X 3},按题意,本题需要求的是98第四章 随机变量的数字特征E(X)=E[min{X1,X2,X3}].因X1,X2,X3具有相同的分布律X j1234p k14141414因而X1,X2,X3具有相同的分布函数F(z)=0,z<1,14,1≤z<2,24,2≤z<3,34,3≤z<4,1,z≥4.于是X=min{X1,X2,X3}的分布函数为:F min(z)=1-[1-F(z)]3=1-(1-0)3=0,z<1,1-1-143=3764,1≤z<2,1-1-243=5664,2≤z<3,1-1-343=6364,3≤z<4,1-(1-1)3=1,z≥4.X=min{X1,X2,X3}的分布律为X1234p k37641964764164得E(X)=2516.4.(1)设随机变量X的分布律为P X=(-1)j+13j j=23j,j=1,2,…,说明X的数学期望不存在.(2)一盒中装有一只黑球,一只白球,作摸球游戏,规则如下:一次从盒中随机摸一只球,若摸到白球,则游戏结束;若摸到黑球放回再放入一只黑球,然后再09概率论与数理统计习题全解指南从盒中随机地摸一只球.试说明要游戏结束的摸球次数X的数学期望不存在.解(1)因级数钞∞j=1(-1)j+13j j P X=(-1)j+13j j=钞∞j=1(-1)j+13j j·23j=2钞∞j=1(-1)j+1j不绝对收敛,按定义X的数学期望不存在.(2)以A k记事件“第k次摸球摸到黑球”,以A k记事件“第k次摸球摸到白球”,以C k表示事件“游戏在第k次摸球时结束”,k=1,2,….按题意C k=A1A2…A k-1A —k,P(C k)=P(A —k|A1A2…A k-1)P(A k-1|A1A2…A k-2)…P(A2|A1)P(A1).P{X=1}=P(A —1)=12,P{X=2}=P(A1A —2)=P(A —2|A1)P(A1)=13·12,P{X=3}=P(A1A2A —3)=P(A —3|A1A2)P(A2|A1)P(A1)=14·23·12=14·13,X=k时,盒中共k+1只球,其中只有一只是白球,故P{X=k}=P(A1…A k-1A —k)=P(A —k A1A2…A k-1)P(A k-1A1A2…A k-2)…P(A2A1)P(A1)=1k+1·k-1k·k-2k-1·…·23·12=1k+1·1k.若E(X)存在,则它应等于钞∞k=1kP{X=k}.但钞∞k=1kP{X=k}=钞∞k=1k·1k+1·1k=钞∞k=11k+1=∞,故X的数学期望不存在.5.设在某一规定的时间间隔里,某电气设备用于最大负荷的时间X(以min 计)是一个随机变量,其概率密度为f(x)=115002x,0≤x≤1500,-115002(x-3000),1500<x≤3000,0,其他.19第四章 随机变量的数字特征求E (X ).解按连续型随机变量的数学期望的定义,有E (X )=∫∞-∞x f (x )d x =∫0-∞x f (x )d x +∫15000x f (x )d x +∫30001500x f (x )d x +∫∞3000x f (x )d x=∫0-∞x ·0d x +∫15000x ·x15002d x +∫30001500x ·-(x -3000)15002d x +∫∞3000x ·0d x=115002x 3315000+1150023000×x 22-x3330001500=1500(min ).6.(1)设随机变量X 的分布律为X -202p k0畅40畅30畅3求E (X ),E (X 2),E (3X 2+5).(2)设X ~π(λ),求E 1X +1.解(1)X 的分布律为X -202p k0畅40畅30畅3E (X )=(-2)×0畅4+0×0畅3+2×0畅3=-0畅2.由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2×0畅4+02×0畅3+22×0畅3=2畅8,E (3X 2+5)=[3(-2)2+5]×0畅4+[3(0)2+5]×0畅3+[3(22)+5]×0畅3=13畅4.如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3×2畅8+5=13畅4.(2)因X ~π(λ),故P {X =k }=λke -λk !.29概率论与数理统计习题全解指南E1X+1=钞∞k=01k+1P{X=k}=钞∞k=01k+1λk e-λk!=钞∞k=0λk e-λ(k+1)!=e-λλ钞∞k=0λk+1(k+1)!=e-λλ钞∞j=1λjj!=e-λλ钞∞j=0λjj!-1=e-λλ(eλ-1)=1λ(1-e-λ).7.(1)设随机变量X的概率密度为f(x)=e-x,x>0,0,x≤0.求(i)Y=2X;(ii)Y=e-2X的数学期望.(2)设随机变量X1,X2,…,X n相互独立,且都服从(0,1)上的均匀分布(i)求U=max{X1,X2,…,X n}的数学期望,(ii)求V=min{X1,X2,…,X n}的数学期望.解(1)由关于随机变量函数的数学期望的定理,知(i)E(Y)=E(2X)=∫∞-∞2x f(x)d x=2∫0-∞x·0d x+∫∞0x e-x d x=2-x e-x∞0+∫∞0e-x d x=-2e-x∞0=2;(ii)E(Y)=E(e-2X)=∫∞0e-2x·e-x d x=∫∞0e-3x d x=-13e-3x∞0=13.(2)因X i~U(0,1),i=1,2,…,n,X i的分布函数为F(x)=0, x<0,x, 0≤x<1,1, x≥1.因X1,X2,…,X n相互独立,故U=max{X1,X2,…,X n}的分布函数为F U(u)=0, u<0,u n, 0≤u<1,1, u≥1.U的概率密度为f U(u)=nun-1, 0<u<1,0, 其他.E(U)=∫∞-∞u f U(u)d u=∫10u·nu n-1d u=n∫10u n d u=n n+1.39第四章 随机变量的数字特征V =min {X 1,X 2,…,X n }的分布函数为F V (v )=0, v <0,1-(1-v )n, 0≤v <1,1, v ≥1.V 的概率密度为f V (v )=n (1-v )n -1, 0<v <1,0, 其他.E (V )=∫∞-∞v f V (v )d v =∫10vn (1-v )n -1d v=-v (1-v )n10+∫10(1-v )nd v=-(1-v )n +1n +110=1n +1.8.设随机变量(X ,Y )的分布律为X Y 123-10畅20畅10畅000畅10畅00畅310畅10畅10畅1(1)求E (X ),E (Y ).(2)设Z =Y X,求E (Z ).(3)设Z =(X -Y )2,求E (Z ).解由关于随机变量函数的数学期望E [g (X ,Y )]的定理,得(1)E (X )=钞3i =1钞3j =1x i p i j=1·(0畅2+0畅1+0畅1)+2·(0畅1+0+0畅1)+3·(0+0畅3+0畅1)=2. E (Y )=钞3j =1钞3i =1y j p i j=(-1)·(0畅2+0畅1+0)+0·(0畅1+0+0畅3)+1·(0畅1+0畅1+0畅1)=0.(2)E (Z )=EYX=-11P {X =1,Y =-1}+-12P {X =2,Y=-1} +-13P {X =3,Y =-1}49概率论与数理统计习题全解指南 +01P {X =1,Y =0}+02P {X =2,Y =0} +03P {X =3,Y =0}+11P {X =1,Y =1} +12P {X =2,Y =1}+13P {X =3,Y =1}=-0畅2-0畅05+0畅1+0畅05+0畅13=-115.(3)E (Z )=E [(X -Y )2]=钞3j =1钞3i =1(x i -y j )2p i j=22×0畅2+32×0畅1+42×0+12×0畅1+22×0 +32×0畅3+02×0畅1+12×0畅1+22×0畅1=5.注:(i )可先求出边缘分布律,然后求出E (X ),E (Y ).(ii )在(3)中可先算出Z =(X -Y )2的分布律Z 0149p k0畅10畅20畅30畅4然后求得E (Z )=钞4k =1z k p k =5.题4畅9图9.(1)设随机变量(X ,Y )的概率密度为f (x ,y )=12y 2,0≤y ≤x ≤1,0,其他.求E (X ),E (Y ),E (XY ),E (X 2+Y 2).(2)设随机变量X ,Y 的联合密度为f (x ,y )=1ye -(y +x /y ), x >0,y >0,0, 其他,求E (X ),E (Y ),E (XY ).解(1)各数学期望均可按照E [g (X ,Y )]=∫∞-∞∫∞-∞g (x ,y )f (x ,y )d x d y 计算.因f (x ,y )仅在有限区域G :{(x ,y ) 0≤y ≤x ≤1}内不为零,故各数学期望均化为G (如题4畅9图)上相应积分的计算.E (X )=∫∞-∞∫∞-∞x f (x ,y )d x d y =∫∫Gx ·12y 2d x d y=∫10d x ∫x012x y 2d y =45.59第四章 随机变量的数字特征E(Y)=∫∫G y·12y2d x d y=∫10d x∫x012y3d y=35.E(XY)=∫∫G x y·12y2d x d y=∫10d x∫x012x y3d y=12.E(X2+Y2)=∫∫G(x2+y2)12y2d x d y=∫10d x∫x012(x2y2+y4)d y=1615.(2)E(X)=∫∞-∞∫∞-∞x f(x,y)d x d y=∫∞0∫∞0x y e-(y+x y)d x d y=-∫∞0e-y∫∞0x e-x/y d(-x y)d y=-∫∞0e-y x e-x/y∞0-∫∞0e-x/y d x d y=∫∞0e-y y d y=1.E(Y)=∫∞0∫∞0e-(y+x/y)d x d y=∫∞0e-y∫∞0e-x/y d x d y=∫∞0e-y[-y e-x/y]∞0d y=∫∞0e-y y d y=1.E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=∫∞0∫∞0x e-(y+x/y)d x d y=∫∞0e-y[∫∞0x e-x/y d x]d y.而 ∫∞0x e-x/y d x=-y∫∞0x e-x/y d(-x y)=y2,故 E(XY)=∫∞0y2e-y d y=Γ(3)①=2.10.(1)设随机变量X~N(0,1),Y~N(0,1)且X,Y相互独立.求E X2X2+Y2.(2)一飞机进行空投物资作业,设目标点为原点O(0,0),物资着陆点为(X,Y),X,Y相互独立,且设X~N(0,σ2),Y~N(0,σ2),求原点到点(X,Y)间距离的数学期望.解(1)由对称性知E X2X2+Y2=EY2X2+Y2.69概率论与数理统计习题全解指南①Γ函数:Γ(α)=∫∞0xα-1e-x d x,α>0,它具有性质:Γ(α+1)=αΓ(α),α>0,Γ(1)=1,Γ(12)=π,Γ(n+1)=nΓ(n)=n!(n为正整数).而EX2X2+Y2+EY2X2+Y2=E(1)=1,故EX2X2+Y2=12.(2)记原点到点(X,Y)的距离为R,R=X2+Y2,由题设(X,Y)的密度函数为f(x,y)=12πσe-x2/(2σ2)·12πσe-y2/(2σ2)=12πσ2e-x2+y22σ2, -∞<x<∞, -∞<y<∞.E(R)=E(X2+Y2)=∫∞-∞∫∞-∞x2+y212πσ2e-(x2+y2)/(2σ2)d x d y.采用极坐标E(R)=∫2π0dθ∫∞0r2πσ2e-r2/(2σ2)r d r=2π∫∞012πσ2r2e-r2/(2σ2)d r=1σ2∫∞0r2e-r2/(2σ2)d r=-∫∞0r d(e-r2/(2σ2))=-r e-r2/(2σ2)∞0+∫∞0e-r2/(2σ2)d r=12∫∞-∞e-r2/(2σ2)d r=1212πσ∫∞-∞e-r2/(2σ2)d r2πσ=12×1×2πσ=σπ2.11.一工厂生产的某种设备的寿命X(以年计)服从指数分布,概率密度为f(x)=14e-x/4,x>0,0, x≤0.工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备净赢利的数学期望.解一台设备在一年内调换的概率为p=P{X<1}=∫1014e-x/4d x=-e-x/410=1-e-1/4.以Y记工厂售出一台设备的净赢利值,则Y具有分布律Y100100-300p k e-1/41-e-1/4故有E(Y)=100×e-1/4-200(1-e-1/4)=300e-1/4-200=33畅64(元).12.某车间生产的圆盘直径在区间(a,b)服从均匀分布,试求圆盘面积的数学期望.解设圆盘直径为X,按题设X具有概率密度f X(x)=1b-a,a<x<b,0,其他,故圆盘面积A=14πX2的数学期望为E14πX2=∫b a14πx21b-a d x=π12(b-a)x3ba=π12(b2+ab+a2).13.设电压(以V计)X~N(0,9).将电压施加于一检波器,其输出电压为Y=5X2,求输出电压Y的均值.解由X~N(0,9),即有E(X)=0,D(X)=9.E(Y)=E(5X2)=5E(X2)=5{D(X)+[E(X)]2}=5(9+0)=45(V).另法 X的概率密度为f X(x)=132πe-x2/18, -∞<x<∞.E(Y)=E(5X2)=5E(X2)=5∫∞-∞x232πe-x2/18d x=5×932π-x e-x2/18∞-∞+∫∞-∞e-x2/18d x=4532π∫∞-∞e-x2/18d x=45∫∞-∞f X(x)d x=45×1=45(V).14.设随机变量X1,X2的概率密度分别为f1(x)=2e-2x,x>0,0,x≤0, f2(x)=4e-4x,x>0,0,x≤0.(1)求E(X1+X2),E(2X1-3X22).(2)又设X1,X2相互独立,求E(X1X2).解若X服从以θ为参数的指数分布,其概率密度为f(x)=1θe-x/θ,x>0,0,其他,则E(X)=∫∞-∞x f(x)d x=∫∞0x1θe-x/θd x,令u=xθ,得到 E(X)=θ∫∞0u e-u d u=θΓ(2)=θΓ(1)=θ,E(X2)=∫∞-∞x2f(x)d x=∫∞0x21θe-x/θd x=θ2∫∞0u2e-u d u=θ2Γ(3) (其中u=xθ)=θ2·2Γ(2)=θ2·2Γ(1)=2θ2,故E(X1)=12,E(X2)=14,E(X22)=2(14)2=18,于是(1)由数学期望的性质,有E(X1+X2)=E(X1)+E(X2)=34,E(2X1-3X22)=2E(X1)-3E(X22)=58.(2)因X1,X2相互独立,由数学期望的性质,有E(X1X2)=E(X1)E(X2)=12×14=18.15.将n只球(1~n号)随机地放进n个盒子(1~n号)中去,一个盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对.记X为总的配对数,求E(X).解引入随机变量X i=1, 若第i号球装入第i号盒子中,0, 若第i号球未装入第i号盒子中,i=1,2,…,n,则总的配对数X可表示成X=X1+X2+…+X n.显然P{X i=1}=1n, i=1,2,…,n.X i的分布律为X i01p k1-1n1n即有E(X i)=1n,i=1,2,…,n,于是E (X )=E (X 1+X 2+…+X n )=E (X 1)+E (X 2)+…+E (X n )=1.16.若有n 把看上去样子相同的钥匙,其中只有一把能打开门上的锁,用它们去试开门上的锁.设取到每只钥匙是等可能的.若每把钥匙试开一次后除去,试用下面两种方法求试开次数X 的数学期望.(1)写出X 的分布律.(2)不写出X 的分布律.解(1)以A k (k =1,2,…,n )表示事件“第k 次试开是成功的”.{X =k }表示前k -1次所取的钥匙均未能打开门,而第k 次所取的钥匙能将门打开.即有P {X =k }=P (A —1A —2…A —k -1A k )=P (A —1A —2…A —k -1)P (A k A —1A —2…A —k -1)=P (A —1A —2…A —k -2)P (A —k -1A —1A —2…A —k -2)P (A k A —1A —2…A —k -1)=…=P (A —1)P (A —2A —1)P (A —3A —1A —2)…P (A k A —1A —2…A —k -1)=n -1n ·n -2n -1·…·n -k +1n -k +2·1n -k +1=1n,X 的分布律为P {X =k }=1n, k =1,2,…,n ,故E (X )=钞nk =1kP {X =k }=钞nk =1k ·1n =1n钞nk =1k=1n ·n (n +1)2=n +12.(2)引入随机变量X k 如下:X 1=1,X k =1, 前k -1次试开均未成功,0, 前k -1次中有一次试开成功,k =2,3,…,n ,则X =X 1+X 2+…+X n .沿用(1)中的记号,则有E (X 1)=1,E (X k )=1×P {X k =1}=1×P (A —1A —2…A —k -1)=P (A —1)P (A —2A —1)…P (A —k -1A —1A —2…A —k -2)=n -1n ·n -2n -1·…·n -(k -1)n -(k -2)=n -k +1n, k=2,3,…,n.故有E(X)=1+钞nk=2E(X k)=1+钞nk=2n-k+1n=n+12.17.设X为随机变量,C是常数,证明D(X)<E[(X-C)2],对于C≠E(X).(由于D(X)=E[[X-E(X)]2],上式表明E[(X-C)2]当C=E(X)时取到最小值.)证 E[(X-C)2]=E(X2-2CX+C2)=E(X2)-2CE(X)+C2=E(X2)-[E(X)]2+{[E(X)]2-2CE(X)+C2}=D(X)+(E(X)-C)2≥D(X).等号仅当C=E(X)时成立.18.设随机变量X服从瑞利分布,其概率密度为f(x)=xσ2e-x2(2σ2),x>0,0,x≤0,其中σ>0是常数.求E(X),D(X).解E(X)=∫∞-∞x f(x)d x=∫∞0x xσ2e-x2(2σ2)d x.令u=x2(2σ2),得到E(X)=2σ∫∞0u1/2e-u d u=2σΓ(32)=2σ12Γ(12)①=π2σ.E(X2)=∫∞-∞x2f(x)d x=∫∞0x2xσ2e-x2(2σ2)d x.令u=x2(2σ2),得到E(X2)=2σ2∫∞0u e-u d u=2σ2Γ(2)=2σ2,故D(X)=E(X2)-(E(X))2=2σ2-π2σ2=4-π2σ2.19.设随机变量X服从Γ分布,其概率密度为f(x)=1βαΓ(α)xα-1e-x/β,x>0,0,x≤0,①参见96页注.其中α>0,β>0是常数.求E(X),D(X).解E(X)=∫∞-∞x f(x)d x=∫∞0xβαΓ(α)xα-1e-x/βd x令u=xββΓ(α)∫∞0uαe-u d u=βΓ(α)Γ(α+1)=βΓ(α)αΓ(α)=αβ. Ε(X2)=∫∞-∞x2f(x)d x=∫∞0x2βαΓ(α)xα-1e-x/βd x令u=x/ββ2Γ(α)∫∞0uα+1e-u d u=β2Γ(α)Γ(α+2)=β2Γ(α)(α+1)αΓ(α)=α(α+1)β2. D(X)=α(α+1)β2-(αβ)2=αβ2.20.设随机变量X服从几何分布,其分布律为P{X=k}=p(1-p)k-1, k=1,2,…,其中0<p<1是常数.求E(X),D(X).解E(X)=钞∞n=1nP{X=n}=钞∞n=1n p(1-p)n-1=p钞∞n=1n(1-p)n-1=p1[1-(1-p)]2=1p.这是因为11-x=1+x+x2+…+xk+…, x<1,两边对x求导,就有1(1-x)2=1+2x+3x2+…+kxk-1+…,x<1.(A)又E[X(X+1)]=钞∞n=1n(n+1)P{X=n}=p钞+∞n=1n(n+1)(1-p)n-1.将上述(A)式两边关于x求导,就有2(1-x)3=1·2+2·3x+…+(k-1)·kxk-2+…, x<1,由此知E[X(X+1)]=p2[1-(1-p)]3=2p2故D(X)=E(X2)-[E(X)]2=E[X(X+1)-X]-[E(X)]2=E [X (X +1)]-E (X )-[E (X )]2=2p 2-1p -1p 2=1-pp2.21.设长方形的长(以m 计)X ~U (0,2),已知长方形的周长(以m 计)为20.求长方形面积A 的数学期望和方差.解长方形的长为X ,周长为20,所以它的面积A 为A =X (10-X ).现在X ~U (0,2),X 的概率密度为f X (x )=12,0<x <2,0,其他,所以E (A )=E [X (10-X )]=∫20x (10-x )·12d x =52x 2-16x 320=263=8畅67,E (A 2)=E [X 2(10-X )2]=∫20x 2(10-x )2·12d x =12∫20(100x 2-20x 3+x 4)d x =144815=96畅53,D (A )=E (A 2)-[E (A )]2=144815-2632=21畅42.22.(1)设随机变量X 1,X 2,X 3,X 4相互独立,且有E (X i )=i ,D (X i )=5-i ,i =1,2,3,4.设Y =2X 1-X 2+3X 3-12X 4.求E (Y ),D (Y ).(2)设随机变量X ,Y 相互独立,且X ~N (720,302),Y ~N (640,252),求Z 1=2X +Y ,Z 2=X -Y 的分布,并求概率P {X >Y },P {X +Y >1400}.解(1)E (Y )=E 2X 1-X 2+3X 3-12X 4=2E (X 1)-E (X 2)+3E (X 3)-12E (X 4)=2×1-2+3×3-12×4=7.因X 1,X 2,X 3,X 4相互独立,故有D (Y )=D 2X 1-X 2+3X 3-12X 4=4D (X 1)+D (X 2)+9D (X 3)+14D (X 4)=4×4+3+9×2+14×1=37畅25.(2)因X,Y相互独立,且X~N(720,302),Y~N(640,252),故Z1=2X+Y,Z2=X-Y均服从正态分布,且E(Z1)=E(2X+Y)=2E(X)+E(Y)=2×720+640=2080,D(Z1)=D(2X+Y)=4D(X)+D(Y)=4×302+252=4225,E(Z2)=E(X-Y)=E(X)-E(Y)=720-640=80,D(Z2)=D(X-Y)=D(X)+D(Y)=302+252=1525,故有Z1~N(2080,4225), Z2~N(80,1525).P{X>Y}=P{X-Y>0}=P{Z2>0}=1-P{Z2≤0}=1-Φ0-801525=Φ(2畅0486)=0畅9798.又X+Y~N(E(X)+E(Y),D(X)+D(Y)),即X+Y~N(1360,1525).故P{X+Y>1400}=1-P{X+Y≤1400}=1-Φ1400-13601525=1-Φ(1畅02)=1-0畅8461=0畅1539.23.五家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1~N(200,225),X2~N(240,240),X3~N(180,225),X4~N(260,265),X5~N(320,270),X1,X2,X3,X4,X5相互独立.(1)求五家商店两周的总销售量的均值和方差.(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存多少千克该产品?解以Y记五家商店该种产品的总销售量,即Y=X1+X2+X3+X4+X5.(1)按题设X i(i=1,2,3,4,5)相互独立且均服从正态分布,即有E(Y)=钞5i=1E(X i)=200+240+180+260+320=1200,D (Y )=钞5i =1D (Y i )=225+240+225+265+270=1225.(2)设仓库应至少储存n kg 该产品,才能使该产品不脱销的概率大于0畅99,按题意,n 应满足条件P {Y ≤n }>0畅99.由于Y ~N (1200,352),故有P {Y ≤n }=PY -120035≤n -120035=Φn -120035,因而上述不等式即为Φn -120035>0畅99=Φ(2畅33),从而n -120035>2畅33,故应有n >1200+2畅33×35=1281畅55,即需取n =1282kg 畅24.卡车装运水泥,设每袋水泥重量X (以kg 计)服从N (50,2.52),问至多装多少袋水泥使总重量超过2000的概率不大于0畅05.解设至多能装运n 袋水泥,各袋水泥的重量分别为X 1,X 2,…,X n ,则X i ~N (50,2畅52), i =1,2,…,n ,故卡车所装运水泥的总重量为W =X 1+X 2+…+X n .按题意n 需满足P {W >2000}≤0畅05.对于像这样的实际问题,认为X 1,X 2,…,X n 相互独立是适宜的,此时E (W )=50n , D (W )=2畅52n ,于是W ~N (50n ,2畅52n ).从而P {W >2000}=1-Φ2000-50n2畅5n,即n 应满足Φ2000-50n2畅5n ≥0畅95=Φ(1畅645).故应有2000-50n2畅5n≥1畅645,解得n ≤6畅2836,从而n ≤39畅483.故n 至多取39,即该卡车至多能装运39袋水泥,方能使超过2000kg 的概率不大于0畅05.(在这里我们指出,若设W =nX ,其中X ~N (50,2畅52)而去求出n ≈37,那就犯错误了,为什么?)25.设随机变量X ,Y 相互独立,且都服从(0,1)上的均匀分布.(1)求E (XY ),E (X /Y ),E [ln (XY )],E [|Y -X |].(2)以X ,Y 为边长作一长方形,以A ,C 分别表示长方形的面积和周长,求A 和C 的相关系数.解(1)X ,Y 的概率密度都是f (x )=1, 0<x <1,0, 其他.E (XY )=E (X )E (Y )=12×12=14.E X Y不存在(因∫10∫10xyd x d y发散).题4畅25图E [ln (XY )]=∫10∫10(ln x +ln y )d x d y =2∫10∫10(ln x )d x d y=-2.E (|Y -X |) =簇D|y -x |d x d y (如题4畅25图D =D 1∪D 2) =2簇D 1(y -x )d x d y =2∫10∫1x(y -x )d y d x =13.(2)A =XY ,C =2(X +Y ),Cov (A ,C )=E (AC )-E (A )E (C ).AC =2X 2Y +2XY 2,E (X 2)=E (Y 2)=D (X )+(E (X ))2=112+14=13.E (AC )=2E (X 2Y )+2E (XY 2)=2E (X 2)E (Y )+2E (X )E (Y 2)=2×13×12+2×12×13=23.Cov (A ,C )=E (AC )-E (A )E (C )=23-[E (X )E (Y )×2(E (X )+E (Y ))]=23-12×12×212+12=16.D (A )=E (X 2Y 2)-[E (X )E (Y )]2=E (X 2)E (Y 2)-(12×12)2=(13)2-(14)2=7144.D (C )=D (2X +2Y )=D (2X )+D (2Y )=4×112+4×112=23.故 ρAC =Cov (A ,C )D (A )D (C )=16/7144×23=67.26.(1)设随机变量X 1,X 2,X 3相互独立,且有X 1~b 4,12,X 2~b 6,13,X 3~b 6,13,求P {X 1=2,X 2=2,X 3=5},E (X 1X 2X 3),E (X 1-X 2),E (X 1-2X 2).(2)设X ,Y 是随机变量,且有E (X )=3,E (Y )=1,D (X )=4,D (Y )=9,令Z =5X -Y +15,分别在下列3种情况下求E (Z )和D (Z ).(i )X ,Y 相互独立,(ii )X ,Y 不相关,(iii )X 与Y 的相关系数为0.25.解(1)P {X 1=2,X 2=2,X 3=5}=P {X 1=2}P {X 2=2}P {X 3=5}.因P {X 1=2}=421221-124-2=42124,P {X 2=2}=621321-136-2=62132234,P {X 3=5}=651351-136-5=6513523,故 P {X 1=2,X 2=2,X 3=5}=P {X 1=2}·P {X 2=2}·P {X 3=5}=0.00203E (X 1X 2X 3)=E (X 1)E (X 2)E (X 3)=(4×12)(6×13)(6×13)=8.E (X 1-X 2)=E (X 1)-E (X 2)=2-2=0.E (X 1-2X 2)=E (X 1)-2E (X 2)=-2.(2)对于E (Z ),在(i ),(ii ),(iii )三种情况下都有E (Z )=E (5X -Y +15)=5E (X )-E (Y )+15=15-1+15=29.对于D (Z ),(i )X ,Y 独立,则D (5X -Y +15)=D (5X -Y )=D (5X )+D (-Y )=25D (X )+D (Y )=25×4+9=109.(ii)X,Y不相关,即Cov(X,Y)=0,D(Z)=109.(iii)ρX Y=0畅25,则Cov(X,Y)=D(X)D(Y)ρX Y=2×3×0畅25=1畅5,D(5X-Y+15)=D(5X-Y)=25D(X)+D(Y)-10Cov(X,Y)=100+9-10×1畅5=94畅27.下列各对随机变量X和Y,问哪几对是相互独立的?哪几对是不相关的.(1)X~U(0,1),Y=X2.(2)X~U(-1,1),Y=X2.(3)X=cos V,Y=sin V,V~U(0,2π).若(X,Y)的概率密度为f(x,y),(4)f(x,y)=x+y 0<x<1,0<y<1,0, 其他.(5)f(x,y)=2y, 0<x<1,0<y<1,0, 其他.解 (1)E(X)=12,E(Y)=E(X2)=∫10x2d x=13,E(XY)=E(X3)=∫10x3d x=14.Cov(X,Y)=E(XY)-E(X)E(Y)=14-12×13≠0.故X,Y不相互独立,也不是不相关的.(2)E(X)=0,E(Y)=E(X2)=∫1-112x2d x=13,E(XY)=E(X3)=∫1-112x3d x=0.Cov(X,Y)=E(XY)-E(X)E(Y)=0-0=0.故X,Y不相互独立,但不相关.(3)E(X)=∫2π012πcos v d v=0,E(Y)=∫2π012πsin v d v=0,E(XY)=E(sin V cos V)=12E(sin2V)=12∫2π012πsin2v d v=0,Cov(X,Y)=E(XY)-E(Z)E(Y)=0-0×0=0,故X,Y不相互独立,但不相关.(4)f(x,y)=x+y, 0<x<1, 0<y<1,0, 其他.f X(x)=∫10(x+y)d y=x+12, 0<x<1,0, 其他,f Y(y)=y+12, 0<y<1,0,其他.f(x,y)与f X(x)f Y(y)在平面上不几乎处处相等,X,Y不相互独立.E(X)=∫10x(x+12)d x=712, E(Y)=712,E(XY)=∫10∫10x y(x+y)d x d y=13.Cov(X,Y)=E(XY)-E(X)E(Y)≠0.故X,Y不是不相关的,因而一定也是不相互独立的.(5)f(x,y)=2y, 0<x<1, 0<y<1,0, 其他,f X(x)=1, 0<x<1,0, 其他, f Y(y)=2y, 0<y<1,0, 其他.f(x,y)=f X(x)f Y(y)对于任意x,y成立.故X,Y相互独立,因此X,Y也是不相关的.28.设二维随机变量(X,Y)的概率密度为f(x,y)=1π,x2+y2≤1,0,其他.试验证X和Y是不相关的,但X和Y不是相互独立的.证 E(X)=∫∞-∞∫∞-∞x f(x,y)d x d y=簇x2+y2≤1xπd x d y=1π∫1-1d y∫1-y2-1-y2x d x=0.同样 E(Y)=∫∞-∞∫∞-∞y f(x,y)d x d y=簇x2+y2≤1yπd x d y=0,而 E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=簇x2+y2≤1x yπd x d y=1π∫1-1y d y∫1-y2-1-y2x d x=0,从而E(XY)=E(X)E(Y),这表明X,Y是不相关的.又f X(x)=∫∞-∞f(x,y)d y=∫1-x 2-1-x21πd y=2π1-x2,-1<x<1,0,其他.同样f Y(y)=2π1-y2,-1<y<1,0,其他.显然f X(x)f Y(y)≠f(x,y),故X,Y不是相互独立的.29.设随机变量(X,Y)的分布律为XY -101-11818180180181181818验证X和Y是不相关的,但X和Y不是相互独立的.证 先求出边缘分布律如下:X-101p k382838Y-101p k382838易见P{X=0,Y=0}=0≠P{X=0}P{Y=0},故X,Y不是相互独立的.又知X,Y具有相同的分布律,且有E(X)=E(Y)=(-1)×38+1×38=0.又 E(XY)=钞3j=1钞3i=1x i y j p i j=(-1)(-1)×18+(-1)×1×18+1×(-1)×18+1×1×18=0,即有E(XY)=E(X)E(Y),故X,Y是不相关的.30.设A 和B 是试验E 的两个事件,且P (A )>0,P (B )>0,并定义随机变量X ,Y 如下:X =1, 若A 发生,0, 若A不发生, Y =1, 若B 发生,0, 若B不发生.证明若ρX Y =0,则X 和Y 必定相互独立.解X ,Y 的分布律分别为X 01p kP (A —)P (A )Y 01p kP (B —)P (B )由X ,Y 的定义,XY 只能取0,1两个值,且P {XY =1}=P {X =1,Y =1}=P (AB ),于是得XY 的分布律为XY 01p k1-P (AB )P (AB )即得 E (X )=P (A ),E (Y )=P (B ),E (XY )=P (AB ).由假设ρX Y =0,得E (XY )=E (X )E (Y ),即P (AB )=P (A )P (B ),故知A 与B 相互独立.从而知A 与B —、A —与B 、A —与B —也相互独立,于是 P {X =1,Y =1}=P (AB )=P (A )P (B )=P {X =1}P {Y =1}, P {X =1,Y =0}=P (AB —)=P (A )P (B —)=P {X =1}P {Y =0}, P {X =0,Y =1}=P (A —B )=P (A —)P (B )=P {X =0}P {Y =1}, P {X =0,Y =0}=P (A —B —)=P (A —)P (B —)=P {X =0}P {Y =0},故X ,Y 相互独立.题4畅31图31.设随机变量(X ,Y )具有概率密度f (x ,y )=1,y <x ,0<x <1,0,其他.求E (X ),E (Y ),Cov (X ,Y ).解注意到f (x ,y )只在区域G :{(x ,y ) y <x ,0<x <1}(题4畅31图)上不等于零,故有E (X )=∫∞-∞∫∞-∞x f (x ,y )d x d y =簇Gx d x d y=∫10d x ∫x-xx d y =∫102x 2d x =23,E(Y)=∫∞-∞∫∞-∞y f(x,y)d x d y=簇G y d x d y=∫10d x∫x-x y d y=0,E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=簇G x y d x d y=∫10d x∫x-x x y d y=0,Cov(X,Y)=E(XY)-E(X)E(Y)=0.32.设随机变量(X,Y)具有概率密度f(x,y)=18(x+y),0≤x≤2,0≤y≤2,0,其他.求E(X),E(Y),Cov(X,Y),ρX Y,D(X+Y).解注意到f(x,y)只在区域G:{(x,y) 0<x<2,0<y<2}上不等于零,故有E(X)=∫∞-∞∫∞-∞x f(x,y)d x d y=∫20d x∫20x8(x+y)d y=∫20x8(x y+12y2)20d x=∫20x4(x+1)d x=76,E(X2)=∫∞-∞∫∞-∞x2f(x,y)d x d y=∫20d x∫20x28(x+y)d y=18∫20x2(x y+12y2)20d x=14∫20(x3+x2)d x=53,E(XY)=∫∞-∞∫∞-∞x y f(x,y)d x d y=∫20d x∫20x y8(x+y)d y=14∫20(x2+4x3)d x=43.由x,y在f(x,y)的表达式中的对称性(即在表达式f(x,y)中将x和y互换,表达式不变),得知E(Y)=E(X)=76, E(Y2)=E(X2)=53,且有D(Y)=D(X)=E(X2)-[E(X)]2=53-(76)2=1136.而 Cov(X,Y)=E(XY)-E(X)E(Y)=43-4936=-136,ρX Y=Cov(X,Y)D(X)D(Y)=-111,D(X+Y)=D(X)+D(Y)+2Cov(X,Y)=59.33.设随机变量X~N(μ,σ2),Y~N(μ,σ2),且设X,Y相互独立,试求Z1=αX+βY和Z2=αX-βY的相关系数(其中α,β是不为零的常数).解法(i) Cov(Z1,Z2)=Cov(αX+βY,αX-βY)=α2Cov(X,X)-αβCov(X,Y)+αβCov(Y,X)-β2Cov(Y,Y)=α2D(X)-β2D(Y)=(α2-β2)σ2,而 D(Z1)=D(αX+βY)=α2D(X)+β2D(Y)+2Cov(αX,βY)=(α2+β2)σ2,D(Z2)=D(αX-βY)=α2D(X)+β2D(Y)-2Cov(αX,βY)=(α2+β2)σ2,故ρZ1Z2=(α2-β2)σ2D(Z1)D(Z2)=α2-β2α2+β2.解法(ii) Cov(Z1,Z2)=E(Z1Z2)-E(Z1)E(Z2)=E(α2X2-β2Y2)-[αE(X)+βE(Y)][αE(X)-βE(Y)]=α2E(X2)-β2E(Y2)-{α2[E(X)]2-β2[E(Y)]2}=α2{E(X2)-[E(X)]2}-β2{E(Y2)-[E(Y)]2}=α2D(X)-β2D(Y)=(α2-β2)σ2. D(Z1)=D(αX+βY)=α2D(X)+β2D(Y)=(α2+β2)σ2, D(Z2)=D(αX-βY)=α2D(X)+β2D(Y)=(α2+β2)σ2,故ρZ1Z2=(α2-β2)σ2D(Z1)D(Z2)=α2-β2α2+β2.34.(1)设随机变量W=(aX+3Y)2,E(X)=E(Y)=0,D(X)=4,D(Y)=16,ρXY=-0畅5.求常数a使E(W)为最小,并求E(W)的最小值.(2)设随机变量(X,Y)服从二维正态分布,且有D(X)=σ2X,D(Y)=σ2Y.证明当a2=σ2Xσ2Y时,随机变量W=X-aY与V=X+aY相互独立.解(1)E(W)=E[(aX+3Y)2]=a2E(X2)+6aE(XY)+9E(Y2),E(X2)=D(X)+[E(X)]2=4,E(Y2)=D(Y)+[E(Y)]2=16,E(XY)=Cov(X,Y)+E(X)E(Y)=ρX YD(X)D(Y)=-4,故E(W)=4a2-24a+144=4(a-3)2+108,故当a=3时E(W)取最小值,min{E(W)}=108.(2)因为(X,Y)是二维正态变量,而W与V分别是X,Y的线性组合,故由n维正态随机变量的性质3°知(W,V)也是二维正态变量.现在a2=σ2Xσ2Y,故知有Cov(W,V)=Cov(X-aY,X+aY)=Cov(X,X)-a2Cov(Y,Y)=σ2X-a2σ2Y=0,即知W与V不相关.又因(W,V)是二维正态变量,故知W与V是相互独立的.35.设随机变量(X,Y)服从二维正态分布,且X~N(0,3),Y~N(0,4),相关系数ρX Y=-14,试写出X和Y的联合概率密度.解因μ1=μ2=0,σ1=3,σ2=2,ρ=-14,故X和Y的联合概率密度为f(x,y)=143π1-116exp-12(1-116)x23+x y43+y24=135πexp-815x23+x y43+y24.36.已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700.利用切比雪夫不等式估计每毫升含白细胞数在5200~9400之间的概率p.解以X表示每毫升含白细胞数,由题设E(X)=μ=7300, D(X)=σ=700而概率p=P{5200<X<9400}=P{-2100<X-7300<2100}=P{X-7300<2100}.在切比雪夫不等式P{X-μ<ε}≥1-σ2ε2中,取ε=2100,此时1-σ2ε2=1-700221002=89,即知p=P{X-7300<2100}≥89.37.对于两个随机变量V,W,若E(V2),E(W2)存在,证明[E(V W)]2≤E(V2)E(W2).(A)这一不等式称为柯西施瓦茨(Cauchy‐Sch warz)不等式.证若E(V2)=0,则P{V=0}=1(因E(V2)=D(V)+(E(V))2=0,得D(V)=0且E(V)=0,由方差性质4°即得P{V=0}=1).由此P{V W=0}=1,因此,E(V W)=0,此时不等式(A)得证.同样对于E(W2)=0时,不等式(A)也成立.以下设E(V2)>0,E(W2)>0.考虑实变量t的函数:q(t)=E[(V+tW)2]=E(V2)+2tE(V W)+t2E(W2).因为对于任意t,E[(V+tW)2]≥0,E(W2)>0,故二次三项式q(t)的判别式:Δ=4[E(V W)]2-4E(V2)E(W2)≤0,即有[E(V W)]2≤E(V2)E(W2).38.中位数.对于任意随机变量X,满足以下两式P{X≤x}≥12, P{X≥x}≤12的x称为X的中位数,记为x12或M.它是反映集中位置的一个数字特征.中位数总是存在,但可以不唯一.画出X的分布函数F(x)的图.如果F(x)连续,那么x12是方程F(x)=12的解(如题4畅38图(1)),如果F(x)有跳跃点(见题4畅38图(2)),用垂直于横轴的线段联结后,得一连续曲线,它与直线y=12的交点的横坐标即为x12.由于交点可以不唯一,故可以有许多x12.题4畅38图(1)设X的概率密度为f(x)=2e-2x, x≥0,0, 其他.试求X的中位数M.(2)设X服从柯西分布,其概率密度为f(x)=bπ[(x-a)2+b2], b>0.试求X的中位数M.解 设F(x)为分布函数.(1)M应满足F(M)=12.即 12=F(M)=P{X≤M}=∫M02e-2x d x=-e-2x M0=1-e-2M,故 e-2M=12, e2M=2,得 M=12ln2.此即为所求的中位数.(2)由 12=F(M)=P{X≤M}=∫M-∞bπ[(x-a)2+b2]d x=1πarctan x-a b M-∞=1πarctan M-a b+12,得 M-a=0,即知中位数M=a.另外,易知X的概率密度函数f(x)的图形关于直线x=a是对称的.即知P{X≤a}=∫a-∞f(x)d x=12.故中位数为M=a.。

概率统计(新课本)第四章

概率统计(新课本)第四章

第四章
随机变量的数字特征
例6 设(X,Y)的联合密度函数为
求 (1) E ( X ) 解:
π π ⎧ ⎪cos x cos y 0 ≤ x ≤ , 0 ≤ y ≤ f ( x, y ) = ⎨ 2 2 ⎪ 0 其它 ⎩
+∞
(2 ) E (Y )
+∞
2
(3) E ( XY )
π
−1
(1) E ( X ) = ∫−∞ ∫−∞ xf ( x , y ) d x d y
第四章
随机变量的数字特征


分布函数能完整地描述 r.v.的统计特性, 但实际 应用中并不都需要知道分布函数,而只需知道 r.v.的 某些特征. 例如: 某某人怎么样? “帅”就一个字。 又如: 考察一射手的水平, 既要看他的平均环数是否 高, 还要看他弹着点的范围是否小, 即数据的波动是 否小.
第四章
2
+∞
2
2. 通用公式: D( X ) = E( X 2 ) − E 2 ( X )
证明: DX = E ( X − EX ) = E X 2 − ( 2EX ) ⋅ X + ( EX )2
2
(
)
= EX − ( 2EX ) ⋅ EX + ( EX )
2
2 2 2
2
2
= EX − 2 ( EX ) + ( EX ) = EX 2 − ( EX )
解:设 a 为准备出口的货源数量,这个数量可只介 于 2000 与 4000 之间, Y 表示国家的收益 用 (万元)
3a, a ≤ X ≤ 4000 ⎧ 则, Y = g ( X ) = ⎨ ⎩3 X − ( a − X ) = 4 X − a, 2000 ≤ X < a

概率论与数理统计 第4章 几种重要的分布

概率论与数理统计 第4章 几种重要的分布

第二章 随机变量及其分布
§1 随机变量的概念 §2 随机变量的分布 §3 二元随机变量 §4 随机变量函数的分布
第七章 参数估计
§1 估计量的优劣标准 §2 点估计 §3 区间估计
第三章 随机变量的数字特征
§1 数学期望 §2 数学期望的性质 §3 条件期望 §4 方差、协方差
第八章 假设检验
§1 假设检验的原理 §2 一个正态总体的假设检验 §3 两个正态总体的假设检验
P( k ) (1 p)k 1 p k 1, 2,...
E
1 p
D
1 p p2
(四)二项分布
做n重贝努里试验,以表示某事件A发生的 次数,则
P( k ) Ck p k q n k n k 0,1,..., n
其中0<p<1,q=1-p 称服从参数为n,p的二项分布。 简记为 : B(n,p) 由二项展开公式
n N
Nn 1 2 n 1 1 1 ... 1 n! N N N
同样地
Ck 1 N
k N1 1 2 k 1 1 1 ... 1 k! N1 N1 N1
Cn 2k N
N n k 1 2 n k 1 2 1 1 ... 1 (n k)! N 2 N 2 N2
0.9298
(六)Poisson分布 如果随机变量的概率函数为
k P (k) P( k) e k!
k 0,1, 2,...
其中 0,称服从Poisson分布。 xk x 利用级数 e ,易知 P(k) 1 k 0 k ! k 0
Poisson分布常见于稠密性问题,如: 候车室旅客数目,
P( k) Ck p k q n k n
例8 10件产品有4件是废品,任取3件,分别 用超几何分布与二项分布求取到2件废品的 概率。 解:用表示取到的废品数。 不放回抽取时,服从超几何分布

概率统计每章知识点总结

概率统计每章知识点总结

概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。

概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。

随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。

大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。

第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。

古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。

几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。

等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。

第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。

随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。

数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。

离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。

第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。

概率论与数理统计教程第四章

概率论与数理统计教程第四章

应用之例: 正态随机数的产生; 误差分析
第四章 大数定律与中心极限定理
第22页
例4.4.1 每袋味精的净重为随机变量,平均重量为 100克,标准差为10克. 一箱内装200袋味精,求一 箱味精的净重大于20500克的概率?
解: 设箱中第 i 袋味精的净重为 Xi, 则Xi 独立同分布, 且 E(Xi)=100,Var(Xi) =100,
则{Xn}与{Yn}的加、减、乘、除 依概率收敛到 a 与 b 的加、减、乘、除.
第四章 大数定律与中心极限定理
4.3.2 按分布收敛、弱收敛
第16页
对分布函数列 {Fn(x)}而言,点点收敛要求太高.
定义4.3.2 若在 F(x) 的连续点上都有
nlim Fn(x) F(x) 则称{Fn(x)} 弱收敛于 F(x) ,记为
第31页
4.4.4 独立不同分布下的中心极限定理
定理4.4.3ቤተ መጻሕፍቲ ባይዱ林德贝格中心极限定理
设{Xn }为独立随机变量序列,若任对 > 0,有
1 n
lim
B n
2
2 n i1
xi Bn (x i )2 pi (x)dx 0
林德贝格条件

lim
P
1
n Bn
n
(Xi
i 1
i )
y
(
y)
第8页
4.2.2 常用的几个大数定律
大数定律一般形式:
若随机变量序列{Xn}满足:
nlim
P
1 n
n
i 1
Xi
1 n
n
E(Xi)
i 1
1
则称{Xn} 服从大数定律.
第四章 大数定律与中心极限定理

概率论与数理统计第四版课后学习资料第四章

概率论与数理统计第四版课后学习资料第四章

设寿命X服从指数分布, 概率密度为
x 1 10 x0 e f (x) 10 0 x0
试求该商店一台收费Y的数学期望。
3. 随机变量函数的数学期望公式:
定理: 设Y是r.v.X的函数, Y g(X) (g是连续函数) (i) X是离散型r.v., 它的分布律为 pk P X xk ,k 1, 2, , 若 g(xk )pk 绝对收敛, 则
2 2x e , x 0, 因而N的概率密度为 fmin (x) 0, x 0,
于是N的数学期望为 : E(N)



xfmin (x)dx

0
2x e

2x
dx 商店对某种家用电器的销售 采用先使用后付款的方式。记使用寿 命为X(以年计),规定: X 1,一台付款1500元;1<X 2,一台付款2000元; 2<X 3,一台付款2500元;X>3,一台付款3000元;
k 1
E(Y) E g(X) g(xk )p k .
k 1

(ii) X是连续型r.v., 它的概率密度为f(x), 若


-
g(x)f(x)dx 绝对收敛, 则
E(Y) E g(X)


-
g(x)f(x)dx.
说明: 1. 在已知Y是X的连续函数前提下,当我们求 E(Y)时不必知道Y的分布, 只需知道X的分布就可 以了. 2. 上述定理可以推广到多维r.v.函数. 如Z g(X, Y)(g是连续函数)是r.v.X, Y的函数, 若二
-
1
e
1 -x
, x 0,
0, x 0.

概统教案Ch4

概统教案Ch4
第四章 随机变量数字特征
目前对随机变量的描述… 微观
例 有甲乙两射手,他们的射击技术用下表 表示,X、Y 分别是他们命中的环数
X
8
9 10
概率 0.3 0.1 0.6
Y
8
9 10
概率 0.2 0.5 0.3
问那个射手技术较好? 类似问题,如预测粮食产量. 问题的本质: 寻找指标,能刻画随机变量 r.v.特性: 取值有大小,取各值的概率不尽相同.
两个r.v. 取值特征上的差别: 如何刻画? 定义 若E(X)存在,称E[XE(X)]2 为 r.v. X 的方 差,记为D(X) 或Var(X). 即 D(X)=E[XE(X)]2 并称 D(X ) 为X 的均方差或标准差.
方差是衡量随机变量取值与其均值的平均偏离 程度的一个数字特征。
可见
D(
(2) F(x)
1 x
2 e a ,
1
1 2
e
x a
,
x0 ;
x0
(4)
fY (
y)
1
a
y
1
2e
2y a
,
y
0
0 ,
y0
§4.3 协方差,相关系数
问题: 一维r.v. 到二维r.v., 对二维r.v.(X, Y ) 中的X 和Y 有数字特征——期望及方差, 能否刻画 X与Y 间联系的强弱.
y2,
求E(XY ) .
0 y x1 elsewhere
0
解 E( XY ) xy f ( x, y)dxdy
1
x
dx 12xy3dy
1
2
00
1x
四、数学期望的性质 (1) E(aX+b)=aE(X)+b, a, b为常数; (2) E(X+Y )= E(X )+E(Y );

概统(第四章)

概统(第四章)
1 解 E ( X ) x e 2
( x )2 2 2
dx
t2 2

x t
1 (t ) e dt 2
t2 2 t2 2

1 1 t e dt e dt 2 2 0
E a( X EX ) (b Eb)
2
2
E a ( X EX ) 2 a D( X )
2

2

性质 3 的证明:
E X C E ( X EX ) (C EX )
2 2
E ( X EX ) (C EX )
2
2
D( X ) (C EX )
Y -1 0.1 0.3 0.15 0 0.2 0.05 0 2 0 0.1 0.1
X
0 1 2 求:EXY
解:EXY 0
E (X + Y ) = E (X ) + E (Y )
E ai X i C ai E ( X i ) C i1 i1
n n

泊松分布
P( X k ) EX k
k 0

k
k!
k
e , k 0,1,2, e


k!

k 1


k
k 1
(k 1)! k! e

e


k 0

指数分布
X ~ E ( )

e x f ( x) 0
若存在数 a 使 P(X a) = 1, 则 E (X ) a ; 若存在数 b 使 P(X b) = 1, 则 E (X ) b.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

g( x) f ( x)dx
绝对收敛,则

E (Y ) E ( g( X ))


g( x) f ( x)dx
2016/3/5
8
例4.6
某车站开往甲地的班车每小时10分,40分 发车,一乘客因不知车站发车的时间,在每 小时的任意时刻都随机到达车站,求乘客 的平均等待时间. 解: 设乘客到达车站的时间为X,等车时间 为Y,则X~U[0,60],且
Var(X),称
2016/3/5
DX 为标准差。 (方差本质是随机变量函数的期望)
20
方差的计算式
DX E X EX
2
DX EX EX
2
2 2
(实数)
DX E X 2 X .EX ( EX )
2 2 2
2

DX EX 2EX .EX ( EX ) DX EX ( EX )
(1) 若离散型随机变量(X,Y)~P{X=xi Y=yj)}=pij, i,j=1,2,…, 如果级数
i , j 1
g( x , y ) p
i j

ij
绝对收敛,则
E ( Z ) E ( g( X , Y )) g( xi , y j ) pij
2016/3/5

i , j 1

D( ci X i ) c D( X i )
i 1 i 1 2 i
n
n
(5) DX=0 存 在 常 数 c , 使 得 P{X=c}=1。事实上c=EX。
2016/3/5 23
课堂练习: 设随机变量X 的期望EX , 方差DX= ,
2
则对任意常数c ( , )成立。 A. B. C. D.
2016/3/5
2
21
§4.2.2 方差的性质
(1)D(C ) 0. (常数的方差等于0)
(2)a,b为常数,D(aX b) a .DX
2
(3)若X与Y独立, D( X Y ) DX DY
课堂练习:请同学们自己验证(3)
2016/3/5
22
§4.2.2 方差的性质
(4)设Xi(i=1,2,…,n) 是相互独立的n个 随机变量,ci (i=1,2,…,n) 是n个常数,
第四章 随机变量的数字特征 §数学期望
2016/3/5
1
§4.1.1 数学期望的定义
定义 4.1. 若离散型随机变量X~ P{X=xk}=pk, k=1,2,…, 如果级数 绝对收敛,则称此级数为X的 数学期望(也称期望或均值),记为
k 1 k
x
pk
E ( X ) xk pk
若级数 xk pk 不收敛,我们称X的数学 k 1 期望不存在.
2016/3/5 6
X P g(x) P
x1 p1
x2 … p2 …
xn pn
… …
g(x1) g(x2) …
g(xn) …
p1
p2

pn
k 1

E (Y ) E ( g ( X )) g ( xk ) pk
2016/3/5 7
§4.1.2 随机变量函数的期望
(2)若连续型随机变量X~f(x), 如果广义 积分
1 x xe dx e dx 0 2 0 2(2) (1) 3
2016/3/5 14
§4.1.3 数学期望的性质
(1)E (C ) C. (常数的期望等于它本身)
(2)E (CX ) C.EX (期望有线性性质)
证: 设 X 有密度f ( x),
则 E (CX ) (Cx) f ( x)dx
而 故
EX i p, i 1, 2,, n
2016/3/5
i 1
EX EX i p np
i 1
i 1
n
n
19
§4.2 方差
方差的定义及计算
定义4.3 设X是随机变量,若E(X-EX)2存 在,则定义 D(X)= E(X-EX)2
称其为随机变量X的方差,记作D(X)或
2016/3/5 29
例4.16
(2)计算X,Y的期望和方差,得:
7 35 13 83 EX , DX , EY , DY 12 144 12 144
(3)为计算Cov(X,Y),必须计算二维随机 变量函数Z=XY的期望:
2 E ( XY ) xi y j pij 3 i, j
2016/3/5
E ( X c) 2 EX 2 c E ( X c) 2 E ( X ) 2 E ( X c) 2 E ( X ) 2 E ( X c) 2 E ( X ) 2
24
随机变量的标准化
设随机变量X的数学期望E(X),方差D(X) 均存在,且D(X) >0,定义一个新的随机 变量
2016/3/5 2


k 1
泊松分布的期望
例4.3 设X ,则 EX = 。
P{ X k }

k
k
k!
e , k 0,1, 2,



EX k
k 0


k!

e e
(k 1)!
k 1


k 1
m k 1 e
2016/3/5

( x y) f ( x, y)dxdy





yf ( x , y )dxdy

x[ f ( x , y )dy ]dx y[ f ( x , y )dx ]dy






xf X ( x)dx

yfY ( y)dy EX EY .
X*
X E( X ) DX
则 EX*=0,DX*=1。
称X*是随机变量X的标准化了的随机变量。
2016/3/5 25
§4.3.1协方差
定义4.6:设(X,Y)为二维的随机变量, Cov(X,Y)=E{[XE(X)][YE(Y)]}. 称为X与Y的协方差; 特别地, Cov(X,X)=DX 协方差的计算式为: Cov(X, Y)=E(XY)-E(X)E(Y).
0 X 10 10 X , Y g ( X ) 40 X , 10 X 40 60 X 10, 40 X 60
2016/3/5
9ห้องสมุดไป่ตู้
例4.6
于是,乘客的平均等待时间E(Y)为:
EY E ( g( X )) g( x) f ( x)dx



10
0
15
2016/3/5
40 1 1 (10 x ). dx (40 x ). dx 10 60 60 60 1 40 (70 x). 60 dx
10
二维随机变量函数的期望
定理4.2 设(X,Y)为二维随机变量, Z=g(X,Y)是(X,Y)的连续函数,
(5) D(X Y) D(X)+D(Y) 2Cov(X,Y)
(6) 若X与Y独立,则Cov(X,Y)=0
2016/3/5 27
为(X,Y)的数学期望(均值向量).
EX 对二维随机变量(X,Y),称向量 EY
二维向量的数字特征
Cov( X , Y ) DX 称矩阵 V DY Cov(Y , X )
2016/3/5 17
一 常用求和公式 1 (1) 1 x x x , x 1 1 x 1 2 n 1 (2) 1 2 x 3 x nx , x 1 2 (1 x) 1 x 2 2 2 2 n 1 (3) 1 2 x 3 x n x , x 1 3 (1 x)
(4)余下的代入公式计算,见P123
2016/3/5 30
例4.17
随机变量 X ~ U (3,6),Y ~ e(3), Z ~ (2,3) 且X,Y独立, E (YZ ) 1 / 3, Cov( X , Z ) 2, 求D(3X-2Y+Z) 解:本题主要考察协方差的性质,
X的密度函数:
解:

1 x x e f x 0
0
x0 x0
1 x
EX x f ( x)dx
x.



x
e
dx
1 1 x ( x) e d ( x) 0
为(X,Y)的协方差矩阵.可推广到n维.
2016/3/5 28
例4.16 (X,Y)有二维分布律
X\Y 0 1 2 1/6 1/12 1/6 0 1 1/12 1/3 1/6 求(X,Y)的数学期望和协方差矩阵.
解: (1)先求X,Y的边缘分布律;
0 1 2 0 1 X ~ 5 7 ,Y ~ 3 5 4 12 12 12 12 12

m! e e

m 0

m

3
连续型随机变量的数学期望
定义 4.2若连续型随机变量X~f(x), 如果 广义积分
此积分为随机变量X的数学期望,记为




xf ( x )dx绝对收敛,则称
E( X )
2016/3/5

4

xf ( x )dx
例4.4
Γ分布的数学期望

2016/3/5 5
相关文档
最新文档