《无机化学》第三章 化学反应的方向和化学平衡
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵标准:
f Gθm(稳定单质) 0
4.标准摩尔吉布斯自由能变
r
G
θ m
:
KJmol-1
⑴定义:标准状态下,反应进度为1mol时反
应的吉布斯自由能变称为该反应 的标
准摩尔吉布斯自由能变。
通式:mA + nB pC + qD
rGm i f Gm (生成物) i f Gm (反应物)
p f Gm (C) q f Gm (D) m f Gm ( A) n f Gm (B)
5.694 213.8 197.7
r
H
m
2 (110.5)
(393.5)
172.5(kJ
mol1)
r
S
m
2 197.7
213.8
5.694
175.9(J
mol1
K
1 )
r
G
θ m
r Hθm
TrSθm
172 .5 (900 273 .15) 175 .910 3
33.86(KJ mol 1)
恒温恒压只做体积功条件下:
△rGm < 0 △rGm = 0 △rGm >0
反应自发进行 反应处于平衡状态 正反应不能自发进行,但逆反 应能自发进行
3.标准摩尔生成吉布斯自由能 f Gθm : KJmol-1
⑴定义:标态下,由稳定单质生成1mol某物质时 反应的标准摩尔吉布斯自由能变称为 该物 质的标准摩尔生成吉布斯自由能。
1.反应前后气体分子数不相等的反应△n≠0
例:N2O4(g)
2NO2(g)
一定温度下达平衡时:
K
( pNO2 p N 2O4
p )2 p
增加压力到原来的2倍:
J (2 pNO2 2 pN2O4
0
-371.1
rGm 2 (371.1) 2 (300.19)
141.82(KJ / mol)
rGm 2.303RT lg K
lgK θ ΔrGθm 141.82 103 24.57 2.303RT 2.303 8.314 298
∴298K时 K=3.721024
五、多重平衡规则
r Gm 4 f Gm (NO, g) 6 f Gm (H2O, l) 4 f Gm (NH3, g) 487.6 6(237.1) 4 (16.4) 1006.6(KJ / mol) 0
标准状态下,298.15K时反应自发进行。
四、rGm、r Hm、rSm三者关系
1.吉布斯 - 赫姆霍兹公式
rGm r Hm TrSm
标准状态、任意温度T时
r
G
θ m
r
H
θ m
(298
.15
K
)
TrSθm (298 .15K )
或简写为:
r
G
θ m
r
H
θ m
TrSθm
2.恒压下温度对反应自发性的影响
△rHm △rSm △rGm= △rHm-T △rSm 反应自发性
-+
-
任何温度下都自发
+-
+
任何温度下都不自发
T 1114.9K
即T>1114.9K,正向反应能自发进行。
第二节 化学平衡
一、可逆反应和化学平衡
1.可逆反应: CO2 (g) H2 (g)
CO (g) H2O(g)
在同一条件下,既能向正反应方向进行,又
能向逆方向进行的化学反应叫做可逆反应。
υ正
υ正=υ逆
反应处 于平衡
υ逆
2.化学平衡:υ正 =υ逆 时体系所处的状态。
通式:mA + nB pC + qD
r
S
m
i
S
m
(生成物)
iSm (反应物)
pSm (C) qSm (D) mSm ( A) nSm (B)
三、吉布斯自由能 1.吉布斯自由能G: 可以做有用功的能。
有用功指膨胀功 以外的其他功
定义式: G = H-TS
G是状态函数,其绝对值不可测。
2.摩尔吉布斯自由能变△rGm: 反应进度为1mol 时的吉布斯自由能变。
3. K表达式中,不列出纯固体、纯液体物质的 浓度(或分压)。
4.对同一反应体系,化学方程式写法不同,则 K值将不同。
1/2N2 (g) + 3/2H2 (g)
NH3 (g)
K1 ( pN2
( pNH3 p ) p )1/ 2 ( pH2
p )3/ 2
N2 (g) +3 H2 (g)
2NH3 (g)
则rGm RT ln K=0
R:8.314 J·mol-1·K-1 △rGm : KJ·mol-1
结论1:rGm RT ln K
或 rGm -2.303RTlg K
⑵
②若反应未达平衡状态,则
( pX ( pA
p )x (CY p )a (CB
C )y C )b
J
J为反应商
⑶
将式(2)、(3)代入(1)中,则
多重平衡:在一个化学过程中有多个平衡同时存在,并 且一种物质同时参与几种平衡的现象。
多重平衡规则:在相同条件下,几个反应相加 (或相减)得到另一个反应时,则 所得反应的平衡常数等于几个反应 的平衡常数的乘积(或商)。
例:气态物质SO2、SO3、O2、NO、NO2共存于同一反应器中
(1) SO2( g )
起始物质的量/mol
1
0
变化物质的量/mol
-x
2x
平衡时物质的量/mol 1 -x
平衡时物质的摩尔分数 1 x 1 x
平衡时各气体 的分压/KPa
1 1
x x
p总
2 x n总=1+x
2x
1 x
2x 1 x
p总
N2O4(g)
K
( pNO2 ( pN2O4
p )2 p )
2NO2(g)
2x 100/1002
K
(CC (CA
C ) p (CD C )m (CB
C )q C )n
C=1mol/L
书写和应用标准平衡常数表达式的注意点:
1.K表达式中各物质的分压(或浓度)为平衡 状态时 的分压(或浓度)。
2.K表达式中,各生成物平衡浓度(或分压)的 乘积作分子,各反应物平衡浓度(或分压)的 乘积作分母,各物质浓度(或分压)的指数就 是化学方程式中该物质的计量系数;
H2 S(g) 2H2O(g)
K2
试求(3)4H2(g) 2SO2(g)
S2(g) 4H2O(g)
K
解:[ ( 2 ) - ( 1 ) ] 2 = ( 3 )
K (K2 K1 )2
第三节 化学平衡的移动
一、浓度对化学平衡的影响
例: H3BO3(aq) C3H5(OH )3(aq)
H3BO3 C3H5(OH )3(aq)
C )y C )b
⑴
(pA、 pX 任意状态下各组分的分压,CB、CY为任
意状态下各组分的浓度。)
rGm
rGm
RT ln
( pX ( pA
p )x (CY p )a (CB
C )y C )b
①若反应达平衡状态时, ΔrGm=0
K ( pX ( pA
p )x (CY p )a (CB
C )y C )b
注: ①反应处于平衡时,υ正 = υ逆≠0 从宏观上看,系统的组成不再随 时间而变。
②化学平衡是动态平衡。
二、标准平衡常数K:无单位 一般的化学反应:
aA(g) + bB(aq) + cC(s) xX(g) + yY(aq) + zZ(l)
K ( pX ( pA
p )x (CY p )a (CB
注:
r
G
θ 只能判断标态下反应的自发方向。
m
例:求298.15K反应 4NH3(g) 5O2(g) 4NO(g) 6H2O(l) 时的△rGmθ,并指出反应是否自发。
解:
4NH3(g) 5O2(g) 4NO(g) 6H2O(l)
△fGmθ/KJmol-1 -16.4
0
87.6 -237.1
转化率=
某反应物已转化的量 反应开始时该反应物的
量
100%
例:在308K时,反应 N2O4(g)
2NO2(g) 达到平衡时,
压力为100KPa,已知该温度下K=0.315,求在该温度下
N2O4的转化率。
解:设开始时N2O4的量为1mol,达平衡时N2O4变化的量
为x mol。
N2O4(g)
2NO2(g)
一定温度下达平衡时: K [H3BO3 C3H5(OH )3]
[H3BO3][C3H5(OH )3]
反应平衡 增加反应
物浓度
J=K
J<K
反应正向
进行
反应不平衡
在新条件
下反应平 衡J=K
结论:在其它条件不变的情况下,增加反应物
浓度或减少生成物浓度,化学平衡向正反应方 向移动。
二、压力对化学平衡的影响
第三章 化学反应的方向和化学平衡
3.1 化学反应的方向和限度的判断 3.2 化学反应的限度-化学平衡 3.3 化学平衡的移动-影响化学平
衡的因素
第一节 化学反应的方向和限度判断
一、化学反应自发性的讨论
•水从高处流向低处; •热从高温物体传向低温物体; •铁在潮湿的空气中锈蚀; •锌置换硫酸铜溶液反应: Zn(s)+Cu2+(aq) = Zn2+(aq)+Cu(s) 不需要外界干涉就能自动进行的过程称为自 发过程。
K3
( pSO3 ( pSO2
p )( pNO p )( pNO2
p ) p )
K1
K
2
( pSO2
( pSO3 p ) p )( pO2 p )1/ 2
( pNO
p )( pO2 p )1/ 2 ( pNO2 p )
=K3
例:
(1)H 2(g)
1 2
S2( g )
H 2S( g) K1
(2)3H2(g) SO2(g)
1 2
O2( g )
SO3( g )
K1
( pSO2
( pSO3 p ) p )( pO2 p )1/ 2
(2) NO 2( g )
NO( g)
1 2
O2( g )
(3)SO2(g) NO2(g)
SO3(g) NO(g)
可见(3)=(1)+(2)
K
2
( pNO
p )( pO2 p )1/ 2 ( pNO2 p )
++
低温为+ 高温为-
低温不自发 高温自发
--
低温为高温为+
低温自发 高温不自发
3.应用:
⑴求不同温度
r
G
θ m
例:求反应 C(s) CO2 (g) 2CO(g)在900 C时的rGm。
解:
C(s) CO2 (g) 2CO(g)
△fHmθ/KJmol-1 Smθ/Jmol-1K-1
0
-393.5 -110.5
C )y C )b
p=100KPa
C=1mol/L
气相反应: mA (g) + nB (g)
K ( pC ( pA
p ) p ( pD p )m ( pB
p )q p )n
pC (g) + qD (g)
p=100KPa
溶液反应: mA (aq) + nB (aq)
pC (aq) + qD (aq)
K
2
( pN2
( pNH3 p )2 p ) ( pH2
p )3
K2 (K1 )2
5.K 随温度 T 改变而改变。 三、K 与 △rGm
aA(g) + bB(aq) + cC(s) xX(g) + yY(aq) + zZ(l)
任意状态任意温度下:
rGm
rGm
RT
ln
( pX ( pA
p )x (CY p )a (CB
结论2.
rGm 2.303RT lgK 2.303RT lg J
2.303RT
lg
J K
J < K时,ΔrGm< 0,反应正方向进行。
J=K时,ΔrGm= 0,反应处于平衡。
J >K时,ΔrGm> 0,反应逆方向进行。
四、 有关平衡常数的计算
1)计算平衡常数或 平衡组成
2) 计算转化率
1.转化率:反应达平衡时反应物已转化的 量占起始量的百分率。
1 x
0.315
1 1
x x
100
/
100
4x2 1 x2
0.315
x=0.27(mol)
N 2O4的转化率
0.27 1
100%
27%
例:试求反应 2SO2(g) + O2 (g) 在298K时的K。
2SO3(g)
解:
2SO2(g) + O2 (g)
2SO3(g)
△fGmθ/KJmol-1 -300.19
⑵规律:
①同一物质 Sθm (s) Sθm (l) Sθm (g)
②同类物质,相对分子质量越大, Sθm 越大。
例:S(θm HF) S(θm HCl )
③物态相同时,复杂分子的熵大于简单分子。
例:
S(θm C2
H
6)
S(θm CH
)
4
3.标准摩尔熵变 rSθm : Jmol-1 K-1
在标准状态下,反应进度为1mol时反应 或过程的熵变。
⑵求指定反应自发进行所需温度
例: 已知298K时反应CaCO3(s) CaO(s)+CO2(g)的
ΔrHm⊖= 178.6kJ . mol-1,ΔrSm⊖ = 160.2Jmol-1 K -1
求: CaCO3在标准状态下开始分解的最低温度。
解:rGθm r Hθm TrSθm 178.6 T 160.2103 0
二、熵
1.熵S: 体系混乱度的一种量度。
体系混乱度越 大,熵值就越
大。
(注:S是状态函数,其绝对值可测。)
⑴在绝对零度(0K)时,任何纯净的完整晶
态物质的熵等于零。
热力学第三 定律
2. 标准摩尔熵 Sθm: Jmol-1 K-1
⑴定义: 标准状态下,1mol物质的 熵称为该物质的标准摩尔熵。
注: Sθm (稳定单质 ) 0
f Gθm(稳定单质) 0
4.标准摩尔吉布斯自由能变
r
G
θ m
:
KJmol-1
⑴定义:标准状态下,反应进度为1mol时反
应的吉布斯自由能变称为该反应 的标
准摩尔吉布斯自由能变。
通式:mA + nB pC + qD
rGm i f Gm (生成物) i f Gm (反应物)
p f Gm (C) q f Gm (D) m f Gm ( A) n f Gm (B)
5.694 213.8 197.7
r
H
m
2 (110.5)
(393.5)
172.5(kJ
mol1)
r
S
m
2 197.7
213.8
5.694
175.9(J
mol1
K
1 )
r
G
θ m
r Hθm
TrSθm
172 .5 (900 273 .15) 175 .910 3
33.86(KJ mol 1)
恒温恒压只做体积功条件下:
△rGm < 0 △rGm = 0 △rGm >0
反应自发进行 反应处于平衡状态 正反应不能自发进行,但逆反 应能自发进行
3.标准摩尔生成吉布斯自由能 f Gθm : KJmol-1
⑴定义:标态下,由稳定单质生成1mol某物质时 反应的标准摩尔吉布斯自由能变称为 该物 质的标准摩尔生成吉布斯自由能。
1.反应前后气体分子数不相等的反应△n≠0
例:N2O4(g)
2NO2(g)
一定温度下达平衡时:
K
( pNO2 p N 2O4
p )2 p
增加压力到原来的2倍:
J (2 pNO2 2 pN2O4
0
-371.1
rGm 2 (371.1) 2 (300.19)
141.82(KJ / mol)
rGm 2.303RT lg K
lgK θ ΔrGθm 141.82 103 24.57 2.303RT 2.303 8.314 298
∴298K时 K=3.721024
五、多重平衡规则
r Gm 4 f Gm (NO, g) 6 f Gm (H2O, l) 4 f Gm (NH3, g) 487.6 6(237.1) 4 (16.4) 1006.6(KJ / mol) 0
标准状态下,298.15K时反应自发进行。
四、rGm、r Hm、rSm三者关系
1.吉布斯 - 赫姆霍兹公式
rGm r Hm TrSm
标准状态、任意温度T时
r
G
θ m
r
H
θ m
(298
.15
K
)
TrSθm (298 .15K )
或简写为:
r
G
θ m
r
H
θ m
TrSθm
2.恒压下温度对反应自发性的影响
△rHm △rSm △rGm= △rHm-T △rSm 反应自发性
-+
-
任何温度下都自发
+-
+
任何温度下都不自发
T 1114.9K
即T>1114.9K,正向反应能自发进行。
第二节 化学平衡
一、可逆反应和化学平衡
1.可逆反应: CO2 (g) H2 (g)
CO (g) H2O(g)
在同一条件下,既能向正反应方向进行,又
能向逆方向进行的化学反应叫做可逆反应。
υ正
υ正=υ逆
反应处 于平衡
υ逆
2.化学平衡:υ正 =υ逆 时体系所处的状态。
通式:mA + nB pC + qD
r
S
m
i
S
m
(生成物)
iSm (反应物)
pSm (C) qSm (D) mSm ( A) nSm (B)
三、吉布斯自由能 1.吉布斯自由能G: 可以做有用功的能。
有用功指膨胀功 以外的其他功
定义式: G = H-TS
G是状态函数,其绝对值不可测。
2.摩尔吉布斯自由能变△rGm: 反应进度为1mol 时的吉布斯自由能变。
3. K表达式中,不列出纯固体、纯液体物质的 浓度(或分压)。
4.对同一反应体系,化学方程式写法不同,则 K值将不同。
1/2N2 (g) + 3/2H2 (g)
NH3 (g)
K1 ( pN2
( pNH3 p ) p )1/ 2 ( pH2
p )3/ 2
N2 (g) +3 H2 (g)
2NH3 (g)
则rGm RT ln K=0
R:8.314 J·mol-1·K-1 △rGm : KJ·mol-1
结论1:rGm RT ln K
或 rGm -2.303RTlg K
⑵
②若反应未达平衡状态,则
( pX ( pA
p )x (CY p )a (CB
C )y C )b
J
J为反应商
⑶
将式(2)、(3)代入(1)中,则
多重平衡:在一个化学过程中有多个平衡同时存在,并 且一种物质同时参与几种平衡的现象。
多重平衡规则:在相同条件下,几个反应相加 (或相减)得到另一个反应时,则 所得反应的平衡常数等于几个反应 的平衡常数的乘积(或商)。
例:气态物质SO2、SO3、O2、NO、NO2共存于同一反应器中
(1) SO2( g )
起始物质的量/mol
1
0
变化物质的量/mol
-x
2x
平衡时物质的量/mol 1 -x
平衡时物质的摩尔分数 1 x 1 x
平衡时各气体 的分压/KPa
1 1
x x
p总
2 x n总=1+x
2x
1 x
2x 1 x
p总
N2O4(g)
K
( pNO2 ( pN2O4
p )2 p )
2NO2(g)
2x 100/1002
K
(CC (CA
C ) p (CD C )m (CB
C )q C )n
C=1mol/L
书写和应用标准平衡常数表达式的注意点:
1.K表达式中各物质的分压(或浓度)为平衡 状态时 的分压(或浓度)。
2.K表达式中,各生成物平衡浓度(或分压)的 乘积作分子,各反应物平衡浓度(或分压)的 乘积作分母,各物质浓度(或分压)的指数就 是化学方程式中该物质的计量系数;
H2 S(g) 2H2O(g)
K2
试求(3)4H2(g) 2SO2(g)
S2(g) 4H2O(g)
K
解:[ ( 2 ) - ( 1 ) ] 2 = ( 3 )
K (K2 K1 )2
第三节 化学平衡的移动
一、浓度对化学平衡的影响
例: H3BO3(aq) C3H5(OH )3(aq)
H3BO3 C3H5(OH )3(aq)
C )y C )b
⑴
(pA、 pX 任意状态下各组分的分压,CB、CY为任
意状态下各组分的浓度。)
rGm
rGm
RT ln
( pX ( pA
p )x (CY p )a (CB
C )y C )b
①若反应达平衡状态时, ΔrGm=0
K ( pX ( pA
p )x (CY p )a (CB
C )y C )b
注: ①反应处于平衡时,υ正 = υ逆≠0 从宏观上看,系统的组成不再随 时间而变。
②化学平衡是动态平衡。
二、标准平衡常数K:无单位 一般的化学反应:
aA(g) + bB(aq) + cC(s) xX(g) + yY(aq) + zZ(l)
K ( pX ( pA
p )x (CY p )a (CB
注:
r
G
θ 只能判断标态下反应的自发方向。
m
例:求298.15K反应 4NH3(g) 5O2(g) 4NO(g) 6H2O(l) 时的△rGmθ,并指出反应是否自发。
解:
4NH3(g) 5O2(g) 4NO(g) 6H2O(l)
△fGmθ/KJmol-1 -16.4
0
87.6 -237.1
转化率=
某反应物已转化的量 反应开始时该反应物的
量
100%
例:在308K时,反应 N2O4(g)
2NO2(g) 达到平衡时,
压力为100KPa,已知该温度下K=0.315,求在该温度下
N2O4的转化率。
解:设开始时N2O4的量为1mol,达平衡时N2O4变化的量
为x mol。
N2O4(g)
2NO2(g)
一定温度下达平衡时: K [H3BO3 C3H5(OH )3]
[H3BO3][C3H5(OH )3]
反应平衡 增加反应
物浓度
J=K
J<K
反应正向
进行
反应不平衡
在新条件
下反应平 衡J=K
结论:在其它条件不变的情况下,增加反应物
浓度或减少生成物浓度,化学平衡向正反应方 向移动。
二、压力对化学平衡的影响
第三章 化学反应的方向和化学平衡
3.1 化学反应的方向和限度的判断 3.2 化学反应的限度-化学平衡 3.3 化学平衡的移动-影响化学平
衡的因素
第一节 化学反应的方向和限度判断
一、化学反应自发性的讨论
•水从高处流向低处; •热从高温物体传向低温物体; •铁在潮湿的空气中锈蚀; •锌置换硫酸铜溶液反应: Zn(s)+Cu2+(aq) = Zn2+(aq)+Cu(s) 不需要外界干涉就能自动进行的过程称为自 发过程。
K3
( pSO3 ( pSO2
p )( pNO p )( pNO2
p ) p )
K1
K
2
( pSO2
( pSO3 p ) p )( pO2 p )1/ 2
( pNO
p )( pO2 p )1/ 2 ( pNO2 p )
=K3
例:
(1)H 2(g)
1 2
S2( g )
H 2S( g) K1
(2)3H2(g) SO2(g)
1 2
O2( g )
SO3( g )
K1
( pSO2
( pSO3 p ) p )( pO2 p )1/ 2
(2) NO 2( g )
NO( g)
1 2
O2( g )
(3)SO2(g) NO2(g)
SO3(g) NO(g)
可见(3)=(1)+(2)
K
2
( pNO
p )( pO2 p )1/ 2 ( pNO2 p )
++
低温为+ 高温为-
低温不自发 高温自发
--
低温为高温为+
低温自发 高温不自发
3.应用:
⑴求不同温度
r
G
θ m
例:求反应 C(s) CO2 (g) 2CO(g)在900 C时的rGm。
解:
C(s) CO2 (g) 2CO(g)
△fHmθ/KJmol-1 Smθ/Jmol-1K-1
0
-393.5 -110.5
C )y C )b
p=100KPa
C=1mol/L
气相反应: mA (g) + nB (g)
K ( pC ( pA
p ) p ( pD p )m ( pB
p )q p )n
pC (g) + qD (g)
p=100KPa
溶液反应: mA (aq) + nB (aq)
pC (aq) + qD (aq)
K
2
( pN2
( pNH3 p )2 p ) ( pH2
p )3
K2 (K1 )2
5.K 随温度 T 改变而改变。 三、K 与 △rGm
aA(g) + bB(aq) + cC(s) xX(g) + yY(aq) + zZ(l)
任意状态任意温度下:
rGm
rGm
RT
ln
( pX ( pA
p )x (CY p )a (CB
结论2.
rGm 2.303RT lgK 2.303RT lg J
2.303RT
lg
J K
J < K时,ΔrGm< 0,反应正方向进行。
J=K时,ΔrGm= 0,反应处于平衡。
J >K时,ΔrGm> 0,反应逆方向进行。
四、 有关平衡常数的计算
1)计算平衡常数或 平衡组成
2) 计算转化率
1.转化率:反应达平衡时反应物已转化的 量占起始量的百分率。
1 x
0.315
1 1
x x
100
/
100
4x2 1 x2
0.315
x=0.27(mol)
N 2O4的转化率
0.27 1
100%
27%
例:试求反应 2SO2(g) + O2 (g) 在298K时的K。
2SO3(g)
解:
2SO2(g) + O2 (g)
2SO3(g)
△fGmθ/KJmol-1 -300.19
⑵规律:
①同一物质 Sθm (s) Sθm (l) Sθm (g)
②同类物质,相对分子质量越大, Sθm 越大。
例:S(θm HF) S(θm HCl )
③物态相同时,复杂分子的熵大于简单分子。
例:
S(θm C2
H
6)
S(θm CH
)
4
3.标准摩尔熵变 rSθm : Jmol-1 K-1
在标准状态下,反应进度为1mol时反应 或过程的熵变。
⑵求指定反应自发进行所需温度
例: 已知298K时反应CaCO3(s) CaO(s)+CO2(g)的
ΔrHm⊖= 178.6kJ . mol-1,ΔrSm⊖ = 160.2Jmol-1 K -1
求: CaCO3在标准状态下开始分解的最低温度。
解:rGθm r Hθm TrSθm 178.6 T 160.2103 0
二、熵
1.熵S: 体系混乱度的一种量度。
体系混乱度越 大,熵值就越
大。
(注:S是状态函数,其绝对值可测。)
⑴在绝对零度(0K)时,任何纯净的完整晶
态物质的熵等于零。
热力学第三 定律
2. 标准摩尔熵 Sθm: Jmol-1 K-1
⑴定义: 标准状态下,1mol物质的 熵称为该物质的标准摩尔熵。
注: Sθm (稳定单质 ) 0