瓦房店市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瓦房店市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,
﹣
),∠AOC=α,若|BC|=1,则
cos 2
﹣sin
cos
﹣
的值为( )
A .
B .
C .﹣
D .﹣
2. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <0
3. 函数2
1()ln 2
f x x x ax =+
+存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞
【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 4. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )
A .35
B .
C .
D .53
5. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D6
6. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD ⊥平面PAC ;
(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.
7. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
8. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )
A .4320
B .﹣4320
C .20
D .﹣20
9. 函数2
(44)x
y a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .1
10.已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2
B .x 3﹣2x 2
C .﹣x 3+2x 2
D .﹣x 3﹣2x 2
11.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )
A .4
B .5
C .32
D .33
12.若某算法框图如图所示,则输出的结果为( )
A.7 B.15 C.31 D.63
二、填空题
13.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:
那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.
14.函数f(x)=x﹣的值域是.
15.已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程
为.
16.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)=.
17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x1,x2,…,x90和y1,y2,…,y90,在90组数对(x i,y i)(1≤i≤90,i∈N*)中,
经统计有25组数对满足,则以此估计的π值为.
18.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.
三、解答题
19.函数f (x )=sin 2x+
sinxcosx .
(1)求函数f (x )的递增区间; (2)当x ∈[0,]时,求f (x )的值域.
20.已知{a n }为等比数列,a 1=1,a 6=243.S n 为等差数列{b n }的前n 项和,b 1=3,S 5=35. (1)求{a n }和{B n }的通项公式; (2)设T n =a 1b 1+a 2b 2+…+a n b n ,求T n .
21.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2
,
(Ⅰ)求数列{b n }的通项公式;
(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.
22.已知椭圆C : +
=1(a >b >0)与双曲线
﹣y 2=1的离心率互为倒数,且直线x ﹣y ﹣2=0经过椭圆
的右顶点.
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)设不过原点O 的直线与椭圆C 交于M 、N 两点,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.
23.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记n
n a n b 1
4+=
,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.
24.在四棱锥E ﹣ABCD 中,底面ABCD 是边长为1的正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F 为BE 的中点.
(Ⅰ)求证:DE ∥平面ACF ;
(Ⅱ)求证:BD⊥AE.
瓦房店市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】 A
【解析】解:∵|BC|=1,点B 的坐标为(,﹣),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC=
,
又∠AOC=α,∴∠AOB=﹣α,∴cos (
﹣α)=
,﹣sin (
﹣α)=﹣
,
∴sin (
﹣α)=
.
∴cos α=cos[﹣(
﹣α)]=cos
cos (
﹣α)+sin sin (﹣α)
=
+
=,
∴sin α=sin[﹣(﹣α)]=sin
cos (
﹣α)﹣cos sin (﹣α)
=﹣=.
∴cos 2
﹣sin cos ﹣=(2cos 2
﹣1)﹣sin α=
cos α﹣sin α
=
﹣
=,
故选:A .
【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.
2. 【答案】B
【解析】解:∵函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限, ∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0, 即a >1,b >0, 故选:B
3. 【答案】D 【解析】因为1()f x x a x
'=++,直线的03=-y x 的斜率为3,由题意知方程1
3x a x ++=(0x >)有解,
因为1
2x x
+
?,所以1a £,故选D . 4. 【答案】D
【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,
故选:D.
【点评】本题主要考查分步计数原理的应用,属于基础题.
5.【答案】B
【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 6.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
7.【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
8.【答案】B
解析:解:487=(49﹣1)7=﹣+…+﹣1,
∵487被7除的余数为a(0≤a<7),
∴a=6,
∴展开式的通项为T r+1=,
令6﹣3r=﹣3,可得r=3,
∴展开式中x﹣3的系数为=﹣4320,
故选:B..
9.【答案】C
【解析】
考点:指数函数的概念.
10.【答案】A
【解析】解:设x <0时,则﹣x >0,
因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2, 又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ), 所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A .
11.【答案】D 【解析】
试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面
,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:2232,3(32)AC GC ==+
222733,345GE ===+=,32,4,10,10BG AD EF CE ====,所以最长为33GC =.
考点:几何体的三视图及几何体的结构特征. 12.【答案】 D
【解析】解:模拟执行算法框图,可得 A=1,B=1
满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6
不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .
【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.
二、填空题
13.【答案】1464
【解析】【知识点】函数模型及其应用
【试题解析】显然,面积大的房间用费用低的涂料,所以房间A 用涂料1,房间B 用涂料3, 房间C 用涂料2,即最低的涂料总费用是元。
故答案为:1464
14.【答案】(﹣∞,1].
【解析】解:设=t,则t≥0,
f(t)=1﹣t2﹣t,t≥0,函数图象的对称轴为t=﹣,开口向下,在区间[0,+∞)上单调减,
∴f(t)max=f(0)=1,
∴函数f(x)的值域为(﹣∞,1].
故答案为:(﹣∞,1].
【点评】本题主要考查函数的值域的求法.换元法是求函数的值域的一个重要方法,应熟练记忆.
15.【答案】(±,0)y=±2x.
【解析】解:双曲线的a=2,b=4,
c==2,
可得焦点的坐标为(±,0),
渐近线方程为y=±x,即为y=±2x.
故答案为:(±,0),y=±2x.
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.16.【答案】0.6.
【解析】解:随机变量ξ服从正态分布N(2,σ2),
∴曲线关于x=2对称,
∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,
故答案为:0.6.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.
17.【答案】.
【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所
围成的弓形面积S1,由图知,,又,所以
【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.
18.【答案】41.
【解析】
三、解答题
19.【答案】
【解析】解:(1)…(2分)
令解得…
f(x)的递增区间为…(6分)
(2)∵,∴…(8分)
∴,∴…(10分)
∴f(x)的值域是…(12分)
【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.
20.【答案】
【解析】解:(Ⅰ)∵{a n}为等比数列,a1=1,a6=243,
∴1×q5=243,解得q=3,
∴.
∵S n为等差数列{b n}的前n项和,b1=3,S5=35.
∴5×3+d=35,解得d=2,
b n=3+(n﹣1)×2=2n+1.
(Ⅱ)∵T n=a1b1+a2b2+…+a n b n,
∴
①
②
①﹣②得:
,
整理得:.
【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
21.【答案】
【解析】(本小题满分13分)
解:(1)当n=1时,a2=2a,则;
当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,
所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,
∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,
b n==.…
(2)令,则n≤k+,又n∈N*,故当n≤k时,,
当n≥k+1时,.…
|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|
=+()+…+()…
=(k+1+…+b2k)﹣(b1+…+b k)
=[+k]﹣[]
=,
由,得2k2﹣6k+3≤0,解得,…
又k≥2,且k∈N*,所以k=2.…
【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.
22.【答案】
【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,
又∵直线x﹣y﹣2=0经过椭圆的右顶点,
∴右顶点为(2,0),即a=2,c=,b=1,…
∴椭圆方程为:.…
(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)
联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…
则,
于是
…
又直线OM 、MN 、ON 的斜率依次成等比数列. ∴
…
由m ≠0得:
又由△=64k 2m 2﹣16(1+4k 2)(m 2﹣1)=16(4k 2﹣m 2+1)>0,得:0<m 2<2 显然m 2≠1(否则:x 1x 2=0,则x 1,x 2中至少有一个为0,
直线OM 、ON 中至少有一个斜率不存在,与已知矛盾) … 设原点O 到直线的距离为d ,则
∴故由m 的取值范围可得△OMN 面积的取值范围为(0,1)…
【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.
23.【答案】
【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,
∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列.
∴数列}{n a 的通项公式为n
n a 3=.………………5分
24.【答案】
【解析】
【分析】(Ⅰ)连接FO,则OF为△BDE的中位线,从而DE∥OF,由此能证明DE∥平面ACF.(Ⅱ)推导出BD⊥AC,EC⊥BD,从而BD⊥平面ACE,由此能证明BD⊥AE.
【解答】证明:(Ⅰ)连接FO,∵底面ABCD是正方形,且O为对角线AC和BD交点,
∴O为BD的中点,
又∵F为BE中点,
∴OF为△BDE的中位线,即DE∥OF,
又OF⊂平面ACF,DE⊄平面ACF,
∴DE∥平面ACF.
(Ⅱ)∵底面ABCD为正方形,∴BD⊥AC,
∵EC⊥平面ABCD,∴EC⊥BD,
∴BD⊥平面ACE,∴BD⊥AE.。