全等三角形各种类型证明培优(经典)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形
全等图形:能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形.
相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.
如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.
A'
B'C'
D'
E'
E
D
C
B
A
全等三角形:能够完全重合的三角形就是全等三角形.
全等三角形的对应边相等,对应角分别相等;
反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.
全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.
全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. 全等三角形的判定方法:
(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.
(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.
判定三角形全等的基本思路:
SAS HL
SSS →⎧⎪
→⎨⎪→⎩ 找夹角已知两边 找直角 找另一边
ASA AAS SAS AAS ⎧⎪
⎧⎪
⎨⎪
⎨⎪
⎪⎪
⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA
AAS →⎧⎨
→⎩ 找两角的夹边已知两角 找任意一边
全等三角形的图形归纳起来有以下几种典型形式:
⑴ 平移全等型
⑵ 对称全等型
⑶ 旋转全等型
由全等可得到的相关定理:
⑴ 角的平分线上的点到这个角的两边的距离相等. ⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.
⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.
⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.
⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 三角形辅助线做法:
图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

常见辅助线的作法有以下几种:
1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

一、全等三角形的认识与性质
1、在AB 、AC 上各取一点E 、D ,使AE AD =,连接BD 、CE 相交于O 再连结AO 、BC ,若12∠=∠,则图中全等三角形共有哪几对?并简单说明理由.
2
1E O
D
C
B
A
2、如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有几对全
等三角形?请一一找出来,并简述全等的理由.
F
A
E P D
C
B
二、三角形全等的判定与应用
1、如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.
F
E
D
C
B
A
2、已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.
O
D
C
B
A
3、如图,AC 、BD 相交于O 点,且AC BD =,AB CD =,求证:OA OD =.
A
B
C
D
O
4、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.
F E O
D
C
B A
5、已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.
F E C
B
A
6、E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.
P
F
E
D
C
B
A
7、E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求
证:BG CF BC +=.
G
A B
C
D
E
F
8、在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.
M E
D
C B A
三、截长补短类
1、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?
N
E
B M A D
2、如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线
交于点N ,MD 与MN 有怎样的数量关系?
N
C
D
E
B M A
3、如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为 ( )
A . a
B . k
C .
2
k h
+ D . h M
D
C
B
A
4、已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .
F
E
D
C
B
A
5、如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.
N
M D
C
B
A
6、五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE
C
E
D
B A
四、与角平分线有关的全等问题
1、如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.
2、在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.
A
D
O
C B
3、已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.
E
D C
B A
4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.
O
E
D C
B
A
D C B
A
5、如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.
E D
C B A
4
32
1
6、长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB 于F ,则EF =__________.
F
E
D
C
B
A
7、如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥AB
F
A
C
D E B
8、如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为BAC ∠的角平分线.
F G
E D
C
B
A
9、在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.
C
D B P
A
10、如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.
D
C B A
11、如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,
若CF AD ⊥
且交AD 的延长线于F ,求证()1
2
MF AC AB =
-. M
F
D C
B A
12、如图所示,AD 是ABC ∆中BAC ∠的外角平分线,CD AD ⊥于D ,E 是BC 的中点,
求证DE AB ∥ 且1
()2
DE AB AC =+.
E D
C
B A
13、如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.
M
D C
B
A
14、如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.
H
G D A
B C E
15、已知:AD 和BE 分别是ABC △的CAB ∠和CBA ∠的外角平分线,CD AD ⊥,CE BE ⊥,
求证:⑴ DE AB ∥;⑵ ()1
2
DE AB BC CA =++.
E
B
A D C
16、在ABC ∆中,MB 、NC 分别是三角形的外角ABE ∠、ACF ∠的角平分线,AM BM ⊥,
AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()1
2
MN AB AC BC =++
F
E
N M C
B
A
17、在ABC ∆中,MB 、NC 分别是三角形的内角ABC ∠、ACB ∠的角平分线,AM BM ⊥,
AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()1
2
MN AB AC BC =+-
N M
C
B
A
18、如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作E AB CE 于⊥,并且
)(2
1
AD AB AE +=
,则ADC ABC ∠+∠等于多少?
E
D
C
B
A
19、如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.
① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.
E
D
C
B A
四、倍长中线
1、已知:ABC ∆中,AM 是中线.求证:1
()2
AM AB AC <+.
M
C
B A
2、在ABC ∆中,5,9AB AC ==,则BC 边上的中线AD 的长的取值范围是什么?
3、如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.
D
C
B
A
4、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.
F
E
D
C B
A
5、已知△ABC ,∠B =∠C ,D ,E 分别是AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G ,求证GD =GE .
G
E
D
C
B
A
6、已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.
M
F
E
C
B
A
7、在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?
F E
D
C
B
A
8、如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果
2222BM CN DM DN +=+,求证()2221
4
AD AB AC =+.
N
M
D
C
B
A
9、在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.
F
E
D
C
B
A
五、中位线的应用
1、AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:1
3AE AC =
. F
A D
E
C
B
2、如图所示,在ABC ∆中,AB AC =,延长AB 到D ,使BD AB =,E 为AB 的中点,连接CE 、CD ,求证2CD EC =.
E
D
C
B A
3、已知△ABC 中,AB =AC ,BD 为AB 的延长线,且BD =AB ,CE 为△ABC 的AB 边上的中
线.求证CD =2CE
E D
B C
A
4、已知:ABCD 是凸四边形,且AC <BD . E 、F 分别是AD 、BC 的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点. 求证:∠GMN >∠GNM .
N
M G
F
E
D
C
B
A
5、在ABC ∆中,90ACB ∠=︒,1
2
AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.
E
D
C
B
A
6、如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.
E
D
F
C
B
A
7、如图所示,P 是ABC ∆内的一点,PAC PBC ∠=∠,过P 作PM AC ⊥于M ,PL BC ⊥于L ,D 为AB 的中点,求证DM DL =.
L
P
M
D C
B
A
8、如图所示,在ABC ∆中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE DF =.过
E 、
F 分别作直线CA 、CB 的垂线,
相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证:
(1) DEM FDN ∆∆≌; (2) PAE PBF ∠=∠.
N
M
A
B
C
D
E
P
F
E
9、如图,已知AC BD =,AD AC ⊥,BC BD ⊥,求证:AD BC =.
D
C B
A
10、点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .
N
M D
C
B
A
11、在ABC △中,3AB AC =,BAC ∠的平分线交BC 于D ,过B 作BE AD ⊥,E 为垂足,求证:AD DE =.
C E
D
B A
12、如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.
D
C B A
13、如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.
求证:EDB FDC ∠=∠.
D
F
E
C
B
A
14、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE
交AC 于F ,AF 与EF 相等吗?为什么?
F
E
D C
B
A
15、如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.。

相关文档
最新文档