考研数学高等数学公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式篇
·平方关系:
sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
·积的关系:sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα
直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,
·三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
三角函数的角度换算
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotα
部分高等内容 ·高等代数中三角函数的指数表示(由泰勒级数易得):
[][]
[
][]
)
()
()
()()()()()
(tan 2cos 2sin ix ix ix ix ix ix ix ix e e e e x e e x i e e x +-=+=-=
, ,
泰勒展开有无穷级数:
⋯++⋯+++++==!
!4!3!2!11)ex p(4
3
2
n z
z z z z z e n
z
此时三角函数定义域已推广至整个复数集。
·三角函数作为微分方程的解:
对于微分方程组 y=-y'';y=y'''',有通解Q,可证明
Q=Asinx+Bcosx ,因此也可以从此出发定义三角函数。
补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很导数公式: 基本积分表:
三角函数的有理式积分:
a
x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=
'='⋅-='⋅='-='='2
2
22
11
)(11
)(11
)(arccos 11
)(arcsin x arcctgx x arctgx x x x x +-
='+=
'--
='-=
'⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C
a x x a x dx C shx chxdx C chx shxdx C
a a dx a C
x ctgxdx x C
x dx tgx x C
ctgx xdx x dx C tgx xdx x dx x
x
)ln(ln csc csc sec sec csc sin sec cos 222
22
22
2C a
x
x a dx C x a x
a a x a dx C a x a
x a a x dx C a x
arctg a x a dx C
ctgx x xdx C tgx x xdx C
x ctgxdx C
x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2
2222222⎰
⎰⎰⎰⎰++-=-+-+--=-+++++=+-=
==-C
a
x a x a x dx x a C
a x x a a x x dx a x C
a x x a a x x dx a x I n
n xdx xdx I n n n
n arcsin 22ln 22)ln(221
cos sin 22
2222222
2222222
22
2
22
2
π
π
2
22212211cos 12sin u du
dx x tg u u u x u u x +==+-=+=, , ,
一些初等函数: 两个重要极限:
· · ·倍角公式: ·半角公式:
α
α
αααααααααααα
α
ααα
cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12
2
cos 12cos 2cos 12
sin -=
+=-+±=+=-=+-±
=+±=-±=ctg tg
·正弦定理:R C
c B b A a 2sin sin sin === ·余弦定理:C ab b a c cos 22
22-+=
·反三角函数性质:arcctgx arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式:
)
()
()()2()1()(0
)
()()
(!
)1()1(!2)1()
(n k k n n n n n
k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+
'+==---=-∑ΛΛΛ
x
x
arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x
x
x x
x x
x -+=-+±=++=+-==+=
-=
----11ln
21)
1ln(1ln(:2
:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x
x
x x x x ααααα
ααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=α
ααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=
-=-=-=-==2
sin
2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos
2sin 2sin sin βαβαβαβαβαβαβαβαβαβ
αβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβ
αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ
中值定理与导数应用:
拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=
---'=-)(F )
()
()()()()()
)(()()(ξξξ
定积分的近似计算:
⎰⎰⎰----+++++++++-≈
++++-≈
+++-≈
b
a
n n n b
a
n n b
a n y y y y y y y y n
a
b x f y y y y n a b x f y y y n
a
b x f )](4)(2)[(3)(])(2
1
[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:
空间解析几何和向量代数:
(马鞍面)双叶双曲面:单叶双曲面:、双曲面:
同号)
(、抛物面:、椭球面:二次曲面:
参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:
1
1
3,,2221
1};,,{,1
302),,(},,,{0)()()(122
222222
22222
222
22220000002
220000000000=+-=-+=+=++⎪⎩
⎪
⎨⎧+=+=+===-=-=-+++++=
=++=+++==-+-+-c
z b y a x c z b y a x q p z q y p x c z b y a x pt
z z nt
y y mt
x x p n m s t p z z n y y m x x C B A D
Cz By Ax d c
z
b y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ
多元函数微分法及应用
z
y z x y x y x y x y x F F y z
F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x
v
v z x u u z x z y x v y x u f z t
v
v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z
u dy y u dx x u du dy y z dx x z dz -
=∂∂-=∂∂=⋅
-∂∂
-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅
∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=
, , 隐函数+, , 隐函数隐函数的求导公式:
时,
,当
:
多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22
多元函数的极值及其求法:
⎪⎪⎪⎩
⎪⎪⎪
⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22
000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x
常数项级数:
是发散的
调和级数:等差数列:等比数列:n
n
n n q q q q q n
n 1
312112
)1(3211111
2
+++++=
++++--=
++++-ΛΛΛ
级数审敛法:
散。
存在,则收敛;否则发、定义法:
时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:
时,不确定时,级数发散时,级数收敛,则设:别法):
—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩
⎪⎨⎧=><=⎪⎩
⎪⎨⎧=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:
—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n
n n n n u r r u s u u u u u u u u u u u ΛΛ 绝对收敛与条件收敛:
∑∑∑∑>≤-+++++++++时收敛
1时发散p 级数: 收敛;
级数:收敛;
发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;
肯定收敛,且称为绝对收敛,则如果为任意实数;
,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n
n n n Λ
ΛΛΛ
幂级数:
0010)3(lim )3(1111111221032=+∞=+∞===
≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定
时发散时收敛
,使在数轴上都收敛,则必存收敛,也不是在全
,如果它不是仅在原点 对于级数时,发散
时,收敛于
ρρρρρΛΛΛΛ 函数展开成幂级数:
ΛΛΛΛ+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !
)0(!2)0()0()0()(00lim )(,)()!
1()()(!
)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ 一些函数展开成幂级数:
)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+
+=+--x n x x x x x x x n n m m m x m m mx x n n n m ΛΛΛΛΛ 欧拉公式:
⎪⎪⎩
⎪⎪⎨⎧-=+=+=--2sin 2cos sin cos ix ix ix
ix ix e
e x e e x x i x e 或
微分方程的相关概念:
即得齐次方程通解。
,代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成
齐次方程:一阶微分方称为隐式通解。
得:的形式,解法:
为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x
y y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0
),(),(),(ϕϕϕ
一阶线性微分方程:
)1,0()()(2))((0)(,0)()()(1)()()(≠=+⎰+⎰
=≠⎰
===+⎰--n y x Q y x P dx
dy e C dx e x Q y x Q Ce y x Q x Q y x P dx
dy n dx x P dx x P dx x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:
全微分方程: 通解。
应该是该全微分方程的,,其中:分方程,即:
中左端是某函数的全微如果C y x u y x Q y
u y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=∂∂=∂∂=+==+),(),(),(0),(),(),(0),(),( 二阶微分方程:
时为非齐次
时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d 二阶常系数非齐次线性微分方程
型为常数;
型,为常数
,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''
二阶常系数齐次线性微分方程及其解法:
2
122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;
式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:
为常数;
,其中∆'''=++∆=+'+''式的通解:出的不同情况,按下表写、根据(*),321r r。
上的积分=在任意两个不同项的乘积正交性:。
,,,其中,0]
,[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101
0ππωϕϕϕω-====++=++=∑∑∞=∞=ΛΛnx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n。