步进电机

合集下载

步进电机基本参数

步进电机基本参数

步进电机基本参数步进电机(Stepper Motor)是一种将电脑数字信号转变为机械运动的设备,它以离散的方式旋转,每一次脉冲驱动会引起电机一定的运动。

步进电机具有以下几个基本参数。

1. 步数(Step):步进电机的运动是以步为单位的,一步表示电机转动一定的角度或线性距离。

步数也可以用来描述电机的分辨率,即每转多少步,电机转一圈。

通常情况下,步进电机的步数会在说明书或型号参数中给出。

2. 相数(Phase):步进电机的绕组分为几个相,每相两个线圈。

常见的步进电机相数有两相、三相和五相等,不同相数的步进电机在控制方式上有所不同,包括驱动方式和控制电路。

3.驱动方式:步进电机的驱动方式包括全步驱动和半步驱动。

全步驱动是每个脉冲都使电机转动一个步进角度,半步驱动是在全步的基础上细分每一步,在一个脉冲内实现小角度的运动。

半步驱动可以提高电机的分辨率和运动平滑度。

4. 转矩(Torque):步进电机的转矩是指电机产生的旋转力矩。

转矩大小与电机的结构、驱动方式和电流有关,通常在电机的规格表中有相关的数据。

5. 电流(Current):步进电机电流是指电机所需工作电流。

电机的电流大小与驱动方式、负载情况有关。

一般情况下,为了保证电机正常运行,需要匹配合适的电流驱动器。

6. 驱动电压(Voltage):步进电机的驱动电压是指驱动电机所需的电压。

电机的驱动电压应该与驱动器供电电压相匹配。

7. 最大速度(Maximum Speed):步进电机的最大速度是指电机能够达到的最高旋转速度。

最大速度与电机的结构、驱动方式、驱动电压和电流有关。

除了上述基本参数,还有一些其他的参数也需要考虑,比如电机的精度、响应时间、机械惯性等。

这些参数在具体应用中会根据实际需求进行选择和调整。

总的来说,步进电机的基本参数包括步数、相数、驱动方式、转矩、电流、驱动电压和最大速度等。

这些参数决定了电机的性能和适用范围,需要根据具体应用需求进行选择和配置。

步进电机

步进电机
1.1 概述
原理:步进电机是利用电磁铁原理,将脉冲信号
转换成线位移或角位移的电机。每来一个 电脉冲,电机转动一个角度,带动机械移 动一小段距离。 特点:(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
优点
(1)直接实现数字控制;
(2)控制性能好; (3)无接触式; (4)抗干扰能力强; (5)误差不长期积累;
1.3.3 单步运行特性
1.单步运行时的矩角特性和稳定区 以三相单三步运行方式为例,设电机空载时,A相通电 时的矩角特性如图4中的曲线A所示,转子处于稳定平衡点 OA。如加一脉冲,A相断电,B相通电,则矩角特性变为曲 线B。 M
A
A
B
B
OB OA
A
B
θ
b
θ定区
步进电动机的步距角θ b由转子齿数、定子相数和通电 方式所决定,即
360 b mCZ k
式中m为相数。C为状态系数,采用单、双拍通电方式时 C=2,采用单拍或双拍通电方式时C=1。ZK为转子齿数。
若步进电动机所加的通电脉冲频率为f,则其转速为
60 f n mCZ k
1.3 静态运行特性
步进电动机不改变通电状态下的运行特性称
M B M max sin(e 120)
MB 与MA 相距120°电度角。这是一条与A相特性完全相同, 但相位上相差120°(电度角)的特性。当A、B同时通电时,合 成矩角特性应为二者之叠加,即
M AB M A M B M max sin(e 60)
可见MAB是一条幅值与单相通电时相同,相移60°电度角(θt/6) 的正弦曲线,如图3中曲线MAB所示。
1.3.4 连续运行特性

步进电机的分类;简述步进电机的工作原理

步进电机的分类;简述步进电机的工作原理

步进电机的分类;简述步进电机的工作原理一、引言步进电机是一种将电脉冲信号转换成角位移的电动机,广泛应用于打印机、数控机床、纺织、医疗器械、精密仪器仪表等设备中。

本文将围绕步进电机的分类和工作原理展开讨论,通过深度和广度兼具的分析,帮助读者更好地理解和应用步进电机。

二、步进电机的分类1. 按照工作原理分类步进电机可以根据其工作原理分为磁性、霍尔效应和混合式步进电机。

其中,磁性步进电机主要由永磁体和电磁线圈构成,它的工作原理是利用电磁线圈中产生的磁场与永磁体磁场之间的吸引和排斥作用来实现转动。

霍尔效应步进电机则是利用霍尔元件检测转子位置而进行步进运动。

混合式步进电机则是将两种原理进行了有机结合,综合了两者的优点,具有较高的精度和扭矩。

2. 按照结构分类步进电机根据结构不同也可分为单转子步进电机和双转子步进电机。

单转子步进电机结构简单,适用于一般的定位应用;双转子步进电机通过在转子上添加转子齿和隔板,可以大大提高定位精度和抗负载能力,适用于高端控制系统。

三、步进电机的工作原理步进电机的工作原理可以简单概括为根据控制信号实现电磁线圈的通断来控制转子旋转。

具体来说,通过电流控制,电磁线圈产生的磁场与永磁体间不断吸引和排斥,从而实现转子的旋转。

步进电机的角位移是由电脉冲信号的频率和数量决定的,不同的驱动方式会影响步进电机的运动特性,通常可采用全步进、半步进和微步进等方式。

四、结论与展望通过对步进电机的分类和工作原理的深度和广度兼具的讨论,相信读者已经对步进电机有了更清晰的理解。

在今后的应用中,我们还可以深入研究步进电机的控制技术、驱动方式以及在不同领域的应用案例,以期更好地发挥步进电机的优势作用。

步进电机作为一种精密定位设备,必将在工业自动化领域发挥越来越重要的作用。

个人观点和理解:在我看来,步进电机作为一种精密定位设备,在工业生产和日常生活中扮演着非常重要的角色。

其高精度、高可靠性的特点使其在自动控制系统中得到广泛应用。

步进电机的五大优点

步进电机的五大优点

步进电机的五大优点
步进电机是一种常见的电动机,它的优点在很多应用场合得到了广泛的应用。

本文将介绍步进电机的五大优点。

1. 精度高
步进电机的转动角度可以精细控制,每个步进都对应着确定的转动角度,因此步进电机的转动精度非常高。

与传统的直流电机和交流电机相比,步进电机可以更加准确地控制位置和角度,适用于那些需要高精度位置控制的应用场合。

2. 速度调节范围广
步进电机的转速是由驱动电流和电压决定的,因此步进电机可以实现较大范围内的速度调节。

同时,根据不同的负载,步进电机可以通过改变驱动信号来适应负载变化,从而维持恒定的转速。

3. 响应速度快
步进电机的响应速度非常快,可以在毫秒级的时间内完成转动指令。

这是由于步进电机控制方式的特殊性质所决定的。

传统的电机需要经过加速和减速过程来实现转动,而步进电机则通过控制脉冲频率和时间就能够实现快速的转动。

4. 转矩大
步进电机可以产生非常大的转矩,即使是在高速运转的情况下也能够保持较大的转矩。

这是由于步进电机的特殊驱动方式所致,在每个步进周期内都可以保持恒定的转矩输出。

因此步进电机适用于那些需要产生大扭矩的应用场合。

5. 节约成本
步进电机的生产成本较低,占用空间小,易于安装和维护,因此它的使用成本非常低。

同时,由于可以通过控制信号来实现位置和角度控制,因此可以省去传统控制方法中复杂的传感器和控制回路,节约了成本。

综上所述,步进电机具有高精度、速度可调、响应迅速、转矩大和使用成本低等五大优点,因此在许多自动化控制和精密定位的应用领域中得到了广泛的应用。

步进电机的计算方法

步进电机的计算方法

步进电机的计算方法1.根据驱动方式选择步进电机型号:步进电机主要分为两种驱动方式,即双相驱动和四相驱动。

双相驱动的步进电机具有较高的输出转矩,适用于需要较大负载的应用,而四相驱动的步进电机输出转矩较低,适用于速度要求较高的应用。

2.计算步进电机运转速度:步进电机的运转速度主要受到步进角度和脉冲频率的影响。

步进角度一般是固定的,常见的有1.8度和0.9度。

计算步进电机运转速度的公式为:速度=步进角度×脉冲频率。

3.计算步进电机的步进角度:步进电机的步进角度是指每接收到一个脉冲信号,电机旋转的角度。

常见的步进角度有1.8度和0.9度。

计算步进电机的步进角度的公式为:步进角度=360度÷步进电机的相数。

4.计算步进电机的电压和电流:步进电机在运行时需要供应一定的电压和电流来驱动。

计算步进电机的电压和电流的方法是根据电机的工作电压和绕组电阻。

电机的绕组电阻一般可以从电机的技术参数中获取。

计算步进电机的电压的公式为:电压=电流×电阻。

5.计算步进电机的输出功率:步进电机的输出功率是指电机在工作时提供的机械功率。

计算步进电机的输出功率的方法是根据电机的输出转矩和转速。

输出功率的公式为:输出功率=转矩×转速。

6.计算步进电机的加速度和减速度:步进电机的加速度和减速度是指电机从静止状态到达最大速度和从最大速度减速到停止状态所需要的时间。

计算步进电机的加速度和减速度的公式为:加速度(或减速度)=(最大速度-初始速度)÷时间。

7.计算步进电机的负载惯性:步进电机在运行时会受到负载惯性的影响,计算步进电机的负载惯性的方法为负载惯性=负载质量×负载半径的平方。

以上是步进电机的计算方法的一些基本介绍,根据实际需求,其他还有一些特殊的计算方法,比如控制系统的设计和驱动方式的选择等,需要根据具体情况进行进一步的研究和计算。

永磁同步电机和步进电机

永磁同步电机和步进电机

永磁同步电机和步进电机永磁同步电机和步进电机是现代电机控制领域中常见的两种类型。

它们在不同的应用领域中具有不同的特点和优势。

本文将分别介绍永磁同步电机和步进电机的工作原理、特点和应用。

一、永磁同步电机永磁同步电机是一种利用永磁体产生的磁场与电机中的旋转磁场之间的作用力来实现电机运动的电机。

它通常由永磁转子和三相绕组组成。

永磁同步电机具有高效率、高功率因数和高功率密度的特点。

由于永磁体的磁场不需要外部能量来维持,因此永磁同步电机在能源利用效率方面具有明显的优势。

永磁同步电机的工作原理是通过交流电源提供的电流在定子绕组中产生旋转磁场,而永磁体则产生一个固定的磁场。

当定子绕组的磁场与永磁体的磁场达到同步时,永磁同步电机将开始转动。

永磁同步电机的转速可以通过调整交流电源的频率来控制。

永磁同步电机具有快速响应的特点,适用于高速运动和精密控制。

它广泛应用于工业生产线、机床设备、风力发电等领域。

二、步进电机步进电机是一种将电信号转化为机械运动的电机。

它根据输入的脉冲信号来控制转子旋转的步数和方向。

步进电机通常由转子、定子和驱动电路组成。

它具有结构简单、控制方便和定位精度高的特点。

步进电机的工作原理是通过交替激励转子的不同绕组,使转子按照一定的步数和方向旋转。

步进电机的转速可以通过控制脉冲信号的频率来调节。

当输入的脉冲信号停止时,步进电机将保持当前位置不动。

步进电机具有良好的低速运动性能和高精度定位能力,适用于需要精确控制位置和速度的应用。

它广泛应用于打印机、数控机床、纺织机械等领域。

比较与应用永磁同步电机和步进电机在工作原理、特点和应用方面存在一些区别。

在工作原理上,永磁同步电机利用永磁体产生的磁场与电机中的旋转磁场之间的作用力来实现电机运动,而步进电机则通过控制输入的脉冲信号来控制转子的步数和方向。

在特点上,永磁同步电机具有高效率、高功率因数和高功率密度的特点,适用于高速运动和精密控制;而步进电机具有结构简单、控制方便和定位精度高的特点,适用于需要精确控制位置和速度的应用。

步进电机的分类

步进电机的分类

步进电机的分类
步进电机可以分为以下几种分类:
1. 永磁式步进电机:通过在转子内部放置永磁体来生成磁场,转子和定子之间的磁场交互作用产生转矩,实现步进运动。

2. 双绕组式步进电机:包括两个绕组,每个绕组都有自己的阻抗相串联,通过改变绕组的电流方向和大小来控制转子的步进运动。

3. 双极步进电机:拥有两种状态,每次只能从一种状态转换到另一种状态,转子通过磁场的吸引力而产生步进运动。

4. 四相步进电机:有四个相位绕组,通过控制绕组的电流来产生引力转子并实现步进运动。

5. 全/半步进电机:通过变化绕组的电流来控制转子的步进运动。

全步进电机每次只进行一个步进,而半步进电机可以在一个步进中进行更小的增量运动。

6. 隔离式步进电机:在永磁转子和定子之间使用气体或液体作为隔离媒介,以减少摩擦和磨损,并提高步进电机的精度和寿命。

这些是常见的步进电机分类,根据不同的应用需求和工作原理,可能还存在其他
类型的步进电机。

步进电机型号及参数

步进电机型号及参数

步进电机型号及参数1. 引言步进电机是一种常见的电机类型,常用于需要精确运动控制的设备中,如3D打印机、CNC机床等。

本文将介绍步进电机的常见型号及其参数。

了解步进电机的型号和参数对于选择合适的电机非常重要。

2. 型号分类步进电机有多种不同的型号,按照外形、尺寸和电气特性等方面可以进行分类。

常见的步进电机型号包括以下几种:2.1 2相步进电机2相步进电机是最常见的步进电机类型之一。

它包括4个线圈,每个线圈可以由驱动器单独控制,可以实现更精确的旋转控制。

2相步进电机的精度和控制性很高,但相对较贵。

2.2 5相步进电机5相步进电机是一种特殊的步进电机,它包括5个线圈。

相比于2相步进电机,5相步进电机具有更高的分辨率和更平滑的运动。

由于多个线圈的控制,5相步进电机通常可以更准确地定位。

2.3 3D打印机专用步进电机3D打印机专用步进电机一般是为了满足3D打印机高速、高精度的运动要求而设计的。

这些电机通常具有较低的噪音和振动。

常见的型号包括NEMA 17和NEMA 23等。

3. 参数介绍无论是哪种型号的步进电机,都具有一些常见的参数,下面将介绍一些常见的步进电机参数:3.1 步角步角是步进电机旋转一步所需的角度。

通常,步进电机的步角为1.8度,也有一些特殊的步进电机具有0.9度的步角。

步角越小,电机的分辨率越高。

3.2 额定电压和电流额定电压和电流是步进电机正常工作时的电压和电流。

选择适当的额定电压和电流可以保证步进电机的正常运行和寿命。

3.3 扭矩扭矩是步进电机输出的力矩大小。

通常,步进电机的扭矩与电流成正比,但也受到一些其他因素的影响,如电机的设计和进一步细分等。

3.4 驱动方式步进电机的驱动方式包括全步进驱动和细分驱动。

全步进驱动是最常见的驱动方式,它将电流以全功率施加到单个线圈上,能够提供最大的扭矩。

细分驱动将输入电流细分为更小的步进,能够提供更平滑、精确的运动。

4. 总结本文介绍了步进电机的常见型号及其参数。

什么是步进电机?

什么是步进电机?

什么是步进电机?一、步进电机的基本原理步进电机是一种能够精确控制位置和运动的电机,它的工作原理和普通的直流电机有所不同。

普通的直流电机通过通电使得电流在绕组中流动,形成电磁力以产生转矩,从而驱动电机旋转。

而步进电机则是通过不断改变绕组中的电流方向,从而产生磁场的位置变化,实现精确的步进运动和位置控制。

步进电机中最关键的两部分是定子和转子。

定子是一个由绕组组成的磁铁,通常为两极或四极的磁石,而转子则是由磁铁组成的一个或多个磁极,通常为一圆柱形的部件。

二、步进电机的工作模式步进电机有两种常见的工作模式,即全步进和半步进。

1. 全步进模式:在全步进模式下,步进电机会按照固定的角度(通常为1.8°或0.9°)一步一步地转动。

这种模式下,电机的每个脉冲信号都会让电机转动一小步,从而实现位置的精确调整和控制。

2. 半步进模式:在半步进模式下,步进电机可以实现更精确的位置调整,每个脉冲信号可以让电机转动半个步距(通常为0.9°或0.45°)。

通过在全步进模式下的每个步距之间插入一个半步距,电机可以实现更加平滑和精确的运动。

三、步进电机的特点和应用场景步进电机具有以下几个特点,使得它在很多场景下得到广泛应用:1. 高精度:步进电机可以控制位置和转向,精度通常在几个角度或更小。

这使得它在需要精确定位和控制的场景下得到广泛应用,如机器人、三维打印机等。

2. 高效能:步进电机在工作过程中没有摩擦和机械损耗,因此效率较高。

它可以在低速和高负载条件下工作,而且能提供一定的持续转矩。

3. 简单控制:步进电机的控制电路相对较为简单,只需一个控制器和几个驱动器即可实现精确的位置和速度调整。

4. 广泛应用:步进电机广泛应用于各个领域,如电子设备、汽车制造、医疗设备等。

特别是在需要实现精确运动控制的场景下,步进电机更是不可或缺的一种电机。

综上所述,步进电机是一种能够精确控制位置和运动的电机,它通过改变绕组中的电流方向来实现位置的精确调整和控制。

步进电机介绍

步进电机介绍

普通高等教育“十一五”国家级规划教 第十二页,共52页。
4.步进电机
每秒钟输入f 脉冲(màichōng),则转过 f/ZrN 转,故电机转速为:
n 60 f rpm ZrN
4. 小步(xiǎo bù)距角磁阻式步 进电机 转子上有t 均3匀460分0布9的40个齿.
s3 ZrN 6 043 03 61 03
4.步进电机
2. 三相双三拍运行方式 按AB-BC-CA-AB或相反的顺序通电,每次同
时(tóngshí)给两相绕组通电,且三次换接为一个循 环。步距角与三相单三拍运行方式的步距角相同。
AB相导通
BC相导通
普通高等教育“十一五”国家级规划教 第十页,共52页。
4.步进电机
3. 三相单、双六拍运行方式 按A-AB-B-BC-C-CA或相反(xiāngfǎn)顺序通电,即需 要六拍才完成一个循环,s因此6t 步9距60角为15:
低频共振现象
普通高等教育“十一五”国家级规划教 第二十八页,共52页。
4.步进电机
➢脉冲频率很高时的连续运行 ➢ 当控制脉冲的频率很高时,脉 冲间隔的时间很短,电机转子尚未到 达第一次振荡的幅值,甚至还没有到 达新的稳定平衡位置,下一个脉冲就 到来。此时电机的运行已由步进变成 了连续平滑的转动(zhuàn dòng), 转速也比较稳定。 ➢ 当频率太高时,也会产生失步, 甚至还会产生高频振荡。
➢ 一、反应式步进电动机的结构(jiégòu) ➢ 单段式
➢ 多段式
➢ a)径向磁路 ➢ b)轴向磁路
普通高等教育“十一五”国家级规划教 第四页,共52页。
4.步进电机
径向磁路(cílù) 1—线圈;2—定子;3—转子
轴向磁路(cílù) 1—线圈;2—定子;3—磁轭

步进电机基本参数

步进电机基本参数

步进电机基本参数步进电机是一种将电脉冲信号转换为相应的机械转动的电动机。

它是一种开环控制的电动机,具有高可靠性、精确性、稳定性和高效率等特点,广泛应用于机器人、数控机床、自动化设备等领域。

步进电机的基本参数包括步距角、步距、堵转力矩、保持力矩、步进角度、步进角误差等。

1. 步距角(Step Angle):步进电机一个完整的360度旋转等于一个步距角,通常用度(°)表示。

常见的步距角有1.8度、0.9度、0.72度、0.36度等,其中1.8度最为常用。

2. 步距(Step Size):步进电机一次脉冲信号所驱动的转动角度。

步距角是步距的倒数,即步进建为1/步距角。

3. 堵转力矩(Holding Torque):即步进电机在静止状态下可以承受的最大转矩。

堵转力矩是选择步进电机的一个重要参数,决定了步进电机能否承受负载并保持位置。

4. 保持力矩(Detent Torque):在步进电机没有通电情况下,转轴被阻碍转动的力矩,也称为无动力保持力矩。

5. 步进角度(Step Angle Accuracy):步进电机的每个步进角度是否准确。

通常以百分比形式表示,如±5%。

6. 步进角误差(Step Error):步进电机在空载或负载情况下,转动一定步数后,实际位置与理论应到的位置之间的误差。

步进角误差通常由步进电机制造商提供。

除了上述基本参数外,还有一些其他重要的参数需要考虑,如电流、电阻、电感、电感电阻比等。

7. 额定电流(Rated Current):步进电机额定工作时的电流大小。

额定电流决定了步进电机的输出功率和热量产生量。

8. 电阻(Resistance):步进电机内部的绕组电阻,影响电机的电流敏感性和损耗。

9. 电感(Inductance):步进电机内部的绕组电感,与步进电机的响应速度和转速相关。

10. 电感电阻比(Inductance to Resistance ratio):电感与电阻之间的比值,反映了步进电机的电机特性。

无刷电机、有刷电机和步进电机对比介绍

无刷电机、有刷电机和步进电机对比介绍

用场景上各有差异。

首先,有刷电机是一种直流电机,其特点是通过电刷来实现换向,使得电机能够旋转。

有刷电机的优点在于起动和制动平稳,恒速运行时也较为平稳[1]。

然而,有刷电机的噪声较大,寿命相对较低,一般寿命在600小时以下[9]。

此外,有刷电机的工作可以不需要电调,直接将电供给电机就能工作,但这样无法控制电机的转速[21]。

无刷电机(BLDC电机)则是通过电子控制取代了机械换向功能,使用电子换向而不是传统的电刷换向[4]。

无刷电机的优点包括高速运行、低功耗等[16]。

与有刷电机相比,无刷电机的寿命更长,正常情况下可以达到数万小时[9]。

无刷电机的工作必须要有电调,否则是不能转动的,这是因为必须通过无刷电调将直流电转化为三相电源来驱动电机[21]。

步进电机是一种基于电磁学原理工作的电机,它能够将电能转换为机械能,并且可以通过接收外部的控制脉冲来精确控制转子的位置[5][10]。

步进电机的最大特点是其“数字性”,即对于微电脑发过来的每一个脉冲信号,步进电机在其驱动器的推动下运转一个固定角度[14]。

步进电机的优点主要是价格便宜、控制方式简单,但缺点是在高负载或高速运行时可能会出现振动和噪音问题[15]。

综上所述,这三种电机各有特点和适用场景。

有刷电机适合需要平稳起停和运行的应用场合;无刷电机因其高效性和长寿命而被广泛应用于要求高性能和可靠性的领域;步进电机则因其精确控制能力而常用于需要精确位置控制的场合。

#### 无刷电机的电子换向技术是如何工作的?无刷电机的电子换向技术主要依赖于外部控制器来实现换向,而不是通过物理换向器。

这种电机的工作原理是线圈不动,磁极旋转。

通过使用一套电子设备,特别是霍尔元件,来感应永磁体磁极的位置。

根据这种感应,电子线路会适时切换线圈电流的方向,以保证产生正确方向的磁力,从而驱动电机转动[24]。

这种方式消除了有刷电机中电刷和换向器之间的机械接触,因此能够提供更高的效率和更长的寿命[29]。

步进电机ppt

步进电机ppt

A
B'
C'
C
B
A'
总之,每个循环周期,有六种通电状态,所以称 为三相六拍,步距角为15。
2.4、三相双三拍
三相绕组的通电顺序为: AB BC CA AB 共三拍。
A
B'
C'
C
B
A'
A
B'
C'
C
B
A'
AB通电
BC通电
A
B'
C'
C
B
A'
CA通电
工作方式为三相双三 拍时,每通入一个电 脉冲,转子也是转
❖ 这一线性关系的存在,加上步进电机只有周期性的 误差而无累积误差等特点。使得在速度、位置等控 制领域用步进电机来控制变的非常的简单。
2、系统构成:
脉冲信 号输入
脉冲分配器
脉冲放大器
步进 电机
3、步进电机的结构
步进电机的内部结构
步进机主要由两部分构成:定子和转子。它们均由磁性材料构成, 其上分别有六个、四个磁极 。
这种工作方式,因三相绕组中每次只有一相通电, 而且,一个循环周期共包括三个脉冲,所以称三相 单三拍。
三相单三拍的特点:
(1)每来一个电脉冲,转子转过 30。此角称为
步距角,用S表示。
(2)转子的旋转方向取决于三相线圈通电的顺序, 改变通电顺序即可改变转向。
2.3、三相单双六拍
三相绕组的通电顺序为: AABBBCCCAA 共六拍。
30,即 S = 30。
以上三种工作方式,三相双三拍和三相单双六 拍较三相单三拍稳定,因此较常采用。
三、步进电机的三个重要概念

第五章 步进电机

第五章 步进电机
按AB C A ……的顺序给三相绕组 轮流通电,转子便一步一步转动起来。每一拍转
过30°(步距角),每个通电循环周期(3拍)磁场在
空间旋转了360°而转子转过90°(一个齿距角)。
单三拍工作方式特点
三相绕组中每次只有一相通电、一个循环 周期共包括三个脉冲,所以称三相单三拍。 (1)一个电脉冲,转子转过 30
到左图所示位置:1、3齿与A、
A′极对齐。
A
B'
C'
C
B
A'
A
B'
C'
C
B
A'
同理,B相通电时,转子会转过30角,2、4
齿和B、B´ 磁极轴线对齐;当C相通电时,转子 再转过30角,1、3齿和C´、C磁极轴线对齐。
这种工作方式下,三个绕组依次通电一次为 一个循环周期,一个循环周期包括三个工作脉冲, 所以称为三相单三拍工作方式。
• 步距角却因拍数增加1倍而减小到齿距
角的1/6, 即S= 15°。
各种工作方式特点归纳
(1)拍数为N,相数为m 时
若单拍运行,则拍数N=m; 若单双拍运行,则N=2m。 (2)经过一个通电循环,转子转过1个齿。
电机转速():
n 60 f Zr N
从以上对步进电机三种驱动方式的分析可 得步距角计算公式:
θ = ±π 这个位置是不稳定的,两个不稳定点之间的区域构 成静态稳定区。
电磁转矩的最大值称为最大静态转矩Tmax,它表示了步进电动 机承受负载的能力,是步进电动机最主要的性能指标之一。
1) 矩角特性 • 静止时若有外部转矩作用于转轴上,迫使转
子离开初始平衡位置而偏转,转子偏离初始 平衡位置的电角度称为失调角θ • 转子会产生反应转矩,也称静态转矩

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、用途和工作原理本文将为您介绍步进电机的基础知识,包括其工作原理、构造、控制方法、用途、类型及其优缺点。

1)步进电机:步进电机是一种通过步进(即以固定的角度移动)方式使轴旋转的电机。

其内部构造使它无需传感器,通过简单的步数计算即可获知轴的确切角位置。

这种特性使它适用于多种应用。

2)步进电机工作原理:与所有电机一样,步进电机也包括固定部分(定子)和活动部分(转子)。

定子上有缠绕了线圈的齿轮状突起,而转子为永磁体或可变磁阻铁芯。

稍后我们将更深入地介绍不同的转子结构。

图1显示的电机截面图,其转子为可变磁阻铁芯。

图1:步进电机截面图步进电机的基本工作原理为:给一个或多个定子相位通电,线圈中通过的电流会产生磁场,而转子会与该磁场对齐;依次给不同的相位施加电压,转子将旋转特定的角度并最终到达需要的位置。

图2显示了其工作原理。

首先,线圈A通电并产生磁场,转子与该磁场对齐;线圈B通电后,转子顺时针旋转60°以与新的磁场对齐;线圈C通电后也会出现同样的情况。

下图中定子小齿的颜色指示出定子绕组产生的磁场方向。

图2:步进电机的步进3)步进电机的类型与构造步进电机的性能(无论是分辨率/步距、速度还是扭矩)都受构造细节的影响,同时,这些细节也可能会影响电机的控制方式。

实际上,并非所有步进电机都具有相同的内部结构(或构造),因为不同电机的转子和定子配置都不同。

3.1转子步进电机基本上有三种类型的转子:永磁转子:转子为永磁体,与定子电路产生的磁场对齐。

这种转子可以保证良好的扭矩,并具有制动扭矩。

这意味着,无论线圈是否通电,电机都能抵抗(即使不是很强烈)位置的变化。

但与其他转子类型相比,其缺点是速度和分辨率都较低。

图3显示了永磁步进电机的截面图。

图3:永磁步进电机可变磁阻转子:转子由铁芯制成,其形状特殊,可以与磁场对齐(请参见图1和图2)。

这种转子更容易实现高速度和高分辨率,但它产生的扭矩通常较低,并且没有制动扭矩。

步进电机的主要参数

步进电机的主要参数

认识步进电机
二 • 步进电机的结构
6
转 轴 成 平 行 方 向 的 断 面 图
认识步进电机
二 • 步进电机的结构
7
步进电机主要由两个部分构成:定 子和转子。它们均由磁性材料构成, 定子有六个绕组,转子有四个磁极。 步进电机的基本结构
认识步进电机
三 • 步进电机的种类
8
如图按种类划分有2相步进 电机、4相步进电机和5相 步进电机
4
认识步进电机
二 • 步进电机的结构
步进电动机的机座号:主要有35、39、42、57、86、110等。
5
步进电动机构造:由转子, 定子,前后端盖等组成。 最典型两相混合式步进电 机的定子有8个大齿,40个小齿, 转子有50个小齿;三相电机的 定子有9个大齿,45个小齿,转 子有50个小齿。
电动机构造图
认识步进电机

• 步进电机的齿间距
9
认识步进电机
五 • 步进电机的主要参数
步进电动机主要参数
①步进电机的相数:是指电机内部的线圈组数,目前常用的有两相、三相、五 相步进电机。 ②拍数:完成一个磁场周期性变化所需脉冲数或导电状态,用m表示,或指电 机转过一个齿距角所需脉冲数。 ③保持转矩:是指步进电机通电但没有转动时,定子锁住转子的力矩。 ④步距角:对应一个脉冲信号,电机转子转过的角位移。 ⑤定位转矩:电机在不通电状态下,电机转子自身的锁定力矩。 ⑥失步:电机运转时运转的步数,不等于理论上的步数。
10
⑦失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失 调角产生的误差,采用细分驱动是不能解决的。
⑧运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲 线。

步进电动机

步进电动机

Tf
L R'
频率越高,绕组中的平均电 流越小,电机所产生的平均 转矩大大下降,负载能力也 就大大下降了。
附加旋转电势的影响
电机铁心中的涡流损耗
二、静稳定区和动稳定区
通电时,转子每旋转一步最后停留的位置必须在动稳定区 内,即:静、动稳定区必须有所重叠,且从稳定性的角度来看,
重叠区间越大越好,这样,下一步就可继续沿着原来的旋转方
定子
转子
转子 θe
e

2
T正最大
静态转矩
定子
e

2
T负最大
定子
T
T
转子 θe θe
转子
矩角特性
步进电机产生的静态转矩T随失调角θe的变化规律
近似
T f e T j max sin e
Tjmax 稳定平衡点 /2
/2 静稳定区
θ
e
步进电动机的工作过程就是实现失调角为零的过程。
11.5 步进电动机的连续脉冲运行和动特性
连续转动状态 随着脉冲频率 f 的增高,电机转子还未稳定下来时,下一个 脉冲已经到来。 工业应用对步进电机的要求 不丢步/不越步 转子运动平稳 快速性
一、运行矩频特性 步进电机连续转动时的最大输出转矩T与驱动电源脉冲频率f间的关系
定子绕组电感的影响
L Tr R
11.4 步进电动机的单步运行状态
单步运行状态
仅改变一次通电状态或输入脉冲频率非常低
空载
加载
a
Tq
极限负载 or 极限启动转矩 电机以一定通电方式运行时,相邻矩角特性的交点所对应的转矩
3 Tq T j max 2
A
AB
B

步进电机组成及工作原理

步进电机组成及工作原理

步进电机组成及工作原理一、步进电机的组成步进电机是一种组合式电机,它由转子、定子、感应器和控制器等几个部分组成。

1. 转子步进电机的转子通常由一些磁性材料制成,如镍、铁、钴、钢等。

转子的形状通常为圆盘形,中央有一个或多个隆起的齿形结构。

2. 定子步进电机的定子通常也由磁性材料制成,有时会添加一些绝缘材料。

定子的形状通常为环形,有一个或多个钳制定子的爪子。

定子的内部有一些线圈,并联或串联,它们与控制器相连。

3. 感应器步进电机的感应器通常是一些磁性部件,如霍尔元件、磁敏电阻等。

它们的作用是检测转子位置,向控制器反馈转子位置信息。

4. 控制器步进电机的控制器通常是一个设备,它能产生特定的电流/电压波形,驱动步进电机转动。

控制器通常由处理器、驱动电路、信号输入输出接口等几个部分组成。

二、步进电机的工作原理步进电机的工作原理是利用交替磁场和磁学相互作用产生转矩,推动转子转动。

步进电机的驱动方式有两种:全步进驱动和半步进驱动。

1.全步进驱动全步进驱动又称全步进模式,是最常用的步进电机驱动方式。

在全步进模式下,控制器将电流以一定周期分为多个步骤,每一步骤控制电流的大小和方向,产生一定的磁场,推动转子转动。

具体而言,当控制器中的电流向步进电机内部线圈流动时,就会产生一个磁场。

如果电流反向,就会产生另一个磁场。

这两种磁场会相互作用,生成一个转矩,推动转子转动。

在全步进模式下,每一步转动角度是固定的(通常为1.8度或0.9度),因此转子转动也是连续的,不会出现跳动现象。

2.半步进驱动半步进驱动是在全步进模式基础上改进得到的,也称为半步进模式。

在半步进模式下,控制器将电流分为两个步骤,第一步只控制一个电流线圈,第二步则控制两个电流线圈。

这样一来,转子转动角度就可以设置为1.8度的一半(即0.9度)。

半步进驱动可以提高步进电机的分辨率,使得步进电机更加精确。

但同时也会使得驱动电路更加复杂,成本更高。

步进电机是一种精密的电动机,具有结构简单、定位精度高等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进电机控制器摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”。

它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的。

同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目。

关键词:AT89C51芯片;L298驱动;数码管;步进电机1 引言目前,随着数字电子技术、计算机技术和和永磁材料的迅速发展推动了步进电机的快速发展。

在当今的社会中,步进电机运用于各个行业,应用领域涉及机器人、工业电子自动化设备、医疗器械、广告器材、舞台灯光设备、印刷设备、计算机外部应用设备等等。

虽然步进电机已经被广泛地应用了,但步进电机并不能像普通直流电机、交流电机那样在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统才可以使用。

因此,设计步进电机具有重要的现实意义和实用价值。

2 总体设计方案步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

由此可见,电机的位置和速度由导电次数,脉冲数,和频率成一一对应关系。

而方向由导电顺序决定。

不难推出,电机定子上有m相励磁绕阻,其轴线分别与转子轴线偏移1/m,2/m……(m-1)/m,1。

并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。

只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

拍数,完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数 以四相电机为例,有四相四拍运行方式:AB-BC-CD-DA-AB,四相八拍运动方式即A-AB-B-BC-C-CD-D-DA-A。

注意,2相励磁通过的电流是1相励磁时通过电流的2倍。

转矩也是1相励磁的2倍。

此时电机的振动较小且应答频率升高,目前仍广泛使用此种方式。

2.1 设计思路使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如图1所示。

图1 控制系统组成图 脉冲信号一般由单片机或CPU 产生,一般脉冲信号的占空比为0.3-0.4左右,电机转速越高,占空比则越大。

功率放大是驱动系统最为重要的部分。

步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流,而样本上的电流均为静态电流。

平均电流越大电机力矩越大要达到平均电流大这就需要驱动系统尽量克服电机的反电势。

因而不同的场合采取不同的驱动方式。

到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。

为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。

步进电机一经定型,其性能取决于电机的驱动电源。

步进电机转速越高,力矩越大则要求电机的电流越大,驱动电源的电压越高。

控制步进电机的速度如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。

两个脉冲的间隔越短,步进电机就转得越快。

调整单片机发出的脉冲频率,就可以对步进电机进行调速。

具体实现用延时时间的长短来决定,程序如下。

DELAY: MOV R6,#125L1: MOV R5,#200L2: DJNZ R5,L2DJNZ R6,L1 RET2.2 总体设计框图本系统是用单片机软件程序来产生脉冲分配信号,即把数字控制计数的高精度等方面的优势有效地应用于步进电机控制系统,同时本系统设计的步进电机控制器硬件电路十分简单,成本低,使用方便。

本电路包括开关控制电路,时钟电路,功率放大电路等的选择。

主要通过三大块来设计,包括驱动电路的设计、状态显示部分和按键部分是设计。

可以通过控制脉冲个数来控制角位移量,从而精确地控制转动角度;同时可以通过控制脉冲频率来控制电机转动的角度和加速度,从而达到调速的目的。

步进电机的工作就是步进转动,其功用是将脉冲电信号变换为相应的角位移或是直线位移,就是给一个脉冲信号,电动机转动一个角度或是前进一步。

步进电机的角位移量与脉冲数成正比,它的转速与脉冲频率(f)成正比,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

总体设计框图如图2所示。

图2 总体设计框图3 设计原理分析3.1步进电机及单片机的介绍3.1.1步进电机的介绍传统的电机作为机电转换能量装置,在人类的生产和生活进入电气化过程中起着关键的作用。

可是在人类社会进入自动化时代的今天,传统电机的功能已经不能满足工厂自动化和办公自动化等各种运动控制系统的要求。

为了适应这种要求,发展了一系列具备控制功能的电动机系统,其中较有自己特点且应用十分广泛的是步进电机。

现在步进电机已经成为除直流电机和交流电机之外的第三类电动机。

步进电机的发展与计算机工业密切相关。

自从步进电机在计算机外围设备中取代了小型直流电机以后,使其设备的性能提高,很快地促进了步进电机的发展。

另一方面,微型计算机和数字控制技术的发展,又将作为数控系统执行部件的步进电机推广应用到其他领域,如电加工机床、小功率机械加工机床、测量仪器、光学和医疗仪器以及包装机械等。

步进电机最大的生产国是日本,比如日本的伺服公司、东方公司、SANYO DENKI等公司。

步进电机分为三种:永磁式(PM)、反应式(VR)和混合式(HB)。

永磁式步进一般分为两相,转矩和体积小,步进角度一般为7.5度或者15度;反应式步进一般为三相,可以实现大转矩输出,步进角一般为1.5度,但是噪声和振动都很大;混合式步进是指混合了永磁式和反应式的优点,分为两相和五相:两相步进角一般为1.8度,而五相步进角一般为0.72度,这种步进电机应用最为广泛。

3.1.2 单片机的介绍单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

其结构如图3所示。

图3 典型单片机结构图单片机(single-chip microcomputer)是把微型计算机主要部分都集成在一块芯片上的单芯片微型计算机。

图3中表示单片机的典型结构图。

由于单片机的高度集成化,缩短了系统内的信号传送距离,优化了结构配置,大大地提高了系统的可靠性及运行速度,同时它的指令系统又很适合于工业控制的要求,所以单片机在工业过程及设备控制中得到了广泛的应用。

常用的单片机种类有:STC单片机、PIC单片机、EMC单片机、ATMEL单片机、PHLIPIS 51LPC单片机等。

STC公司的单片机主要是基于8051内核,是新一代增强型单片机,指令代码完全兼容传统8051,速度快8到12倍,带ADC、4路PWM,双串口,有全球唯一ID号,加密性能好,抗干扰强。

单片机由运算器、控制器、存储器、输入输出设备构成。

自动完成赋予它的任务的过程,也就是单片机执行程序的过程,即一条条执行的指令的过程,所谓指令就是把要求单片机执行的各种操作用的命令的形式写下来,这是在设计人员赋予它的指令系统所决定的,一条指令对应着一种基本操作;单片机所能执行的全部指令,就是该单片机的指令系统,不同种类的单片机,其指令系统亦不同。

为使单片机能自动完成某一特定任务,必须把要解决的问题编成一系列指令(这些指令必须是选定单片机能识别和执行的指令),这一系列指令的集合就成为程序,程序需要预先存放在具有存储功能的部件——存储器中。

存储器由许多存储单元(最小的存储单位)组成,就像大楼房有许多房间组成一样,指令就存放在这些单元里,单元里的指令取出并执行就像大楼房的每个房间的被分配到了唯一一个房间号一样,每一个存储单元也必须被分配到唯一的地址号,该地址号称为存储单元的地址,这样只要知道了存储单元的地址,就可以找到这个存储单元,其中存储的指令就可以被取出,然后再被执行。

程序通常是顺序执行的,所以程序中的指令也是一条条顺序存放的,单片机在执行程序时要能把这些指令一条条取出并加以执行,必须有一个部件能追踪指令所在的地址,这一部件就是程序计数器PC(包含在CPU中),在开始执行程序时,给PC赋以程序中第一条指令所在的地址,然后取得每一条要执行的命令,PC在中的内容就会自动增加,增加量由本条指令长度决定,可能是1、2或3,以指向下一条指令的起始地址,保证指令顺序执行。

3.2工作原理3.2.1步进电机的工作原理通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。

该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。

当定子的矢量磁场旋转一个角度,转子也随着该磁场转一个角度。

每输入一个电脉冲,电机转动一个角度前进一步。

它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。

改变绕组通电的顺序,电机就会反转。

可以用控制脉冲数量、频率及电机各相绕组的通电顺序来控制步进电机的转动。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”。

它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

如图4所示的步进电机为一四相步进电机,采用单极性直流电源供电。

只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。

该四相反应式步进电机工作原理示意图如图4所示。

图4 四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。

而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A 、D 相绕组磁极产生错齿。

依次类推,A 、B 、C 、D 四相绕组轮流供电,则转子会沿着A 、B 、C 、D 方向转动。

相关文档
最新文档