八年级数学下册第9章中心对称图形—平行四边形9.5三角形的中位线(2)教案苏科版(2021年整理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省淮安市洪泽县黄集镇八年级数学下册第9章中心对称图形—平行四边形9.5 三角形的中位线(2)教案(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省淮安市洪泽县黄集镇八年级数学下册第9章中心对称图形—平行四边形9.5 三角形的中位线(2)教案(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省淮安市洪泽县黄集镇八年级数学下册第9章中心对称图形—平行四边形9.5 三角形的中位线(2)教案(新版)苏科版的全部内容。

课题:9.5 三角形的中位线2
教学目标:
1。

会利用三角形的中位线的性质解决有关问题;
2.理解并掌握中点四边形的特定规律,
教学重点:
掌握中点四边形的特定规律.
教学难点:
体会转化的思想方法,在实际问题中灵活运用。

教学流程:
一、复习旧知
1.什么叫三角形的中位线?三角形的中位线定理。

2。

中位线与中线的区别:
三角形中位线的两端点都是三角形边的中点。

三角形中线只有一个端点是边的中点,另一端点是三角形的一个顶点。

二、探索活动
△ ABC的中位线DE与BC的关系怎样?(从位置和数量关系猜想)
已知:D、E分别是△ABC的边AB、AC的中点。

求证:DE∥BC。

证法一:延长DE至F,使EF=DE,连接CD、AF、CF∵AE=EC DE=EF
∴四边形ADCF是平行四边形∴AD∥且=FC,又D为AB中点,∴DB∥且=FC
∴四边形BCFD是平行四边形,∴DE// BC 且DE=EF=1/2BC
证法二:如图,以点E为旋转中心,把△ADE绕点E,按顺时针方向旋转180゜,得到△CFE,则D,E,F同在一直线上DE=EF,且△ADE≌△CFE。

∴∠ADE=∠F,AD=CF,∴AB∥CF.
又∵BD=AD=CF,∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),∴DF∥BC,∴DE∥且=1/2BC
证法三:过点C作AB的平行线交DE的延长线于F,∵CF∥AB,∴∠A=∠ECF,又AE=EC,∠AED=∠CEF,∴△ADE≌△CFE ∴ AD=FC,又DB=AD,∴DB∥且=FC,∴四边形BCFD是平行四边形,∴DE// BC 且DE=EF=1/2BC
三、例题教学
如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.
(1)求证:AE=AF;
(2)求证:BE=(AB+AC).
分析:(1)欲证明AE=AF,只要证明∠AEF=∠AFE即可.
(2)作CG∥EM,交BA的延长线于G,先证明AC=AG,再证明BE=EG即可解决问题.
证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,
∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).
小结:本题考查三角形中位线定理、角平分线的性质、等腰三角形的判定和性质等知识,解题的关键是添加辅助线,构造等腰三角形,以及三角形中位线,属于中考常考题型.
四、当堂练习
(一)选择题
1。

如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,
则下列结论正确的是()
A.EF=CF B.EF=DE C.CF<BD D.EF>DE
【分析】首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.
【解答】解:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,
∵,
∴△ADE≌△CFE(AAS),∴DE=FE.故选B.
【点评】本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.
2。

如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()
A.7 B.8 C.9 D.10
【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE 是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.
【点评】本题考查三角形中位线定理、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用三角形中位线定理,掌握等腰三角形的判定和性质,属于中考常考题型.
3。

如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()
A.6 B.5 C.4 D.3
【分析】在Rt△ACB中,根据勾股定理求得BC边的长度,然后由三角形中位线定理知DE=BC.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB 于点E,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.
【点评】本题考查了三角形中位线定理、勾股定理.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.
4。

如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )
A.4 B.8 C.2D.4
【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.
【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4,∴AB=2DF=8,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=4,∴BF===4.故选D.
【点评】本题考查三角形中位线性质、含30度角的直角三角形性质、直角三角形斜边中线性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.
5.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()
A.5 B.7 C.9 D.11
【分析】先根据三角形中位线性质得DF=BC=2,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.
【解答】解:∵D、E、F分别为AB、BC、AC中点,
∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,
∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.
【点评】本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一
半.
(二)填空题:
1.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= 4 .【分析】根据三角形的中位线定理得到DE=BC,即可得到答案.
【解答】解:∵D、E分别是边AB、AC的中点,BC=8,∴DE=BC=4.故答案为:4.
【点评】本题主要考查对三角形的中位线定理的理解和掌握,能正确运用三角形的中位线定理进行计算是解此题的关键.
2。

如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= 3 .
【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.
【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.
【点评】本题考查的是三角形的中位线定理、直角三角形的性质、平行四边形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
(三)解答题
1.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据
两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF ∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.,理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.
【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.
2。

D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)
【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,GF∥BC且GF=BC,从而得到DE∥GF,DE=GF,再利用一组对边平行且相等的四边形是平行四边形证明即可;
(2)根据邻边相等的平行四边形是菱形解答.
【解答】(1)证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,且DE=BC,同理,GF∥BC,且GF=BC,∴DE∥GF且DE=GF,∴四边形DEFG是平行四边形;
(2)解:当OA=BC时,平行四边形DEFG是菱形.
【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键.
3.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC
上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;
(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.
【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,
∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,
∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.
【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键。

相关文档
最新文档