1.6_正弦函数、余弦函数的性质_基础
简单易懂的三角函数正弦余弦和正切
简单易懂的三角函数正弦余弦和正切三角函数是数学中重要的概念之一,它们在几何学和三角测量中发挥着至关重要的作用。
本文将详细介绍三角函数中的正弦、余弦和正切,并解释它们的定义、性质和应用。
一、正弦函数(sin)正弦函数是以圆的弧长和半径的比值定义的。
给定一个角度θ(单位为弧度),我们可以通过以下公式来计算它的正弦值:sin(θ) = 对边 / 斜边其中,对边表示角θ对应的直角三角形中与θ相对的边的长度,斜边表示直角三角形中斜边的长度。
正弦函数的定义域是所有实数,其值域在-1到1之间。
正弦函数的图像是一个周期性的波形,它在0到2π之间重复。
正弦函数在数学和物理学中有广泛的应用,比如描绘波动、震动和周期性现象等。
二、余弦函数(cos)余弦函数也是以圆的弧长和半径的比值定义的。
给定一个角度θ,我们可以通过以下公式来计算它的余弦值:cos(θ) = 邻边 / 斜边其中,邻边表示角θ对应的直角三角形中与θ相邻的边的长度。
余弦函数的定义域是所有实数,其值域也在-1到1之间。
余弦函数的图像与正弦函数非常相似,它在0到2π之间同样重复。
余弦函数同样在数学和物理学中有广泛的应用,比如计算力的分解、描述周期性变化等。
三、正切函数(tan)正切函数是以正弦和余弦的比值定义的。
给定一个角度θ,我们可以通过以下公式来计算它的正切值:tan(θ) = 正弦 / 余弦 = 对边 / 邻边正切函数的定义域是所有不等于(2n + 1)π/2的实数,其中n是任意整数。
其值域是所有实数。
正切函数的图像有一些特殊的性质,比如在某些角度上取无穷大的值。
正切函数在解决直角三角形问题、物体运动中的速度和加速度等方面有着重要的应用。
综上所述,三角函数中的正弦、余弦和正切是数学中重要的概念,它们不仅在几何学和三角测量中起到关键作用,而且在物理学、工程学以及其他科学领域中有着广泛的应用。
通过理解和熟练运用这些函数,我们可以更好地理解和解决与角度有关的各种问题。
三角函数的正弦和余弦关系
三角函数的正弦和余弦关系三角函数是数学中重要的概念之一,它在几何、物理、工程等领域中都具有广泛的应用。
其中,正弦函数和余弦函数是最常见和基础的三角函数,它们之间存在着紧密的关系。
一、正弦和余弦的定义和性质正弦函数和余弦函数是定义在单位圆上的函数。
在单位圆上,以原点为中心作一个半径为1的圆,对于任意一点P(x,y),该点到x轴的距离为x,到y轴的距离为y,这时角OPx的弧度就是点P的角度。
定义:对于单位圆上的任意一个点P(x, y),它的角度为θ,则点P的正弦和余弦值分别定义为:sinθ = ycosθ = x性质:1. 在单位圆上,正弦值的取值范围在[-1, 1]之间,而余弦值的取值范围也在[-1, 1]之间。
2. 当角θ为0或2π的整数倍时,正弦值为0,余弦值为1。
当角θ为π的奇数倍时,正弦值为-1,余弦值为0。
3. 对于任意的角θ,有sin^2θ + cos^2θ = 1,这一关系被称为三角恒等式。
二、正弦和余弦的图像特点正弦函数和余弦函数的图像是周期性的波形图,其周期为2π。
正弦函数的图像是一条上下振荡的曲线,而余弦函数的图像则是一条左右偏移的曲线。
1. 正弦函数图像特点:正弦函数图像在θ = 0, π, 2π 等处过零点,即sin(0) = 0, sin(π) = 0, sin(2π) = 0。
在θ = π/2, 3π/2 等处达到最大值1,即sin(π/2) = 1, sin(3π/2) = 1。
在θ = π, 2π 等处达到最小值-1,即sin(π) = -1, sin(2π) = -1。
2. 余弦函数图像特点:余弦函数图像在θ = 0, 2π 等处达到最大值1,即cos(0) = 1, cos(2π) = 1。
在θ = π/2, 3π/2 等处过零点,即cos(π/2) = 0, cos(3π/2) = 0。
在θ = π, 2π 等处达到最小值-1,即cos(π) = -1, cos(2π) = -1。
小学数学中的三角函数初步
小学数学中的三角函数初步三角函数是小学数学中的重要内容之一。
它是描述角度和边长之间关系的数学工具。
通过学习三角函数,可以帮助学生深入理解角的概念,并应用于各种实际问题中。
一、三角函数的定义三角函数包括正弦函数、余弦函数和正切函数。
在初步学习中,我们主要关注正弦函数和余弦函数的定义。
1. 正弦函数(sin):在直角三角形中,正弦函数定义为:三角形的一条直角边与斜边的比值。
即sinA = 对边/斜边。
2. 余弦函数(cos):在直角三角形中,余弦函数定义为:三角形的另一条直角边与斜边的比值。
即cosA = 邻边/斜边。
这两个定义是初学者理解三角函数的基础。
通过计算三角形中的边长比值,我们可以得到一个0到1的比例值,用以表示角度大小。
二、三角函数的性质学习三角函数,我们需要了解它们的一些基本性质。
以下是几个重要的性质:1. 周期性:三角函数具有周期性,即函数值在一定区间内重复。
以正弦函数为例,它的周期是360度或2π弧度。
也就是说,sin(A+360n) = sinA,其中n为整数。
2. 奇偶性:正弦函数是奇函数,即sin(-A) = -sinA;而余弦函数是偶函数,即cos(-A) = cosA。
这意味着正弦函数关于原点对称,而余弦函数关于y轴对称。
3. 单调性:在某个区间内,正弦函数和余弦函数的函数值是单调变化的。
例如,在0到90度的区间内,正弦函数值不断增加,而余弦函数值不断减小。
三、三角函数的应用三角函数的应用广泛,不仅在数学中有重要作用,还涉及到物理、工程、天文等领域。
以下列举几个常见的应用场景:1. 三角函数在测量中的应用:三角函数被用于测量高度、距离和角度等。
例如,在测量一座高楼的高度时,我们可以利用三角函数和测量仪器的数据,通过计算出两个角的大小,从而得到高楼的高度。
2. 三角函数在建筑中的应用:在建筑领域,三角函数常被用于计算斜坡、屋顶的角度等。
通过应用三角函数,可以确保建筑物的结构合理且稳定。
三角函数的定义与性质
三角函数的定义与性质一、三角函数的定义三角函数是解析几何和三角学中非常重要的一类函数。
它们以三角形内的角度作为自变量,返回一个对应于角度的函数值。
在这里,我将介绍三角函数的定义及其性质。
三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
它们的定义如下:1. 正弦函数(sin):对于任意角θ,正弦函数的值定义为三角形中与角θ相对的边的长度与斜边长度的比值。
即sinθ = 对边/斜边。
2. 余弦函数(cos):对于任意角θ,余弦函数的值定义为三角形中与角θ相邻的边的长度与斜边长度的比值。
即cosθ = 邻边 / 斜边。
3. 正切函数(tan):对于任意角θ,正切函数的值定义为正弦函数与余弦函数的比值。
即tanθ = sinθ / cosθ。
4. 余切函数(cot):对于任意角θ,余切函数的值定义为余弦函数与正弦函数的比值。
即cotθ = cosθ / sinθ。
5. 正割函数(sec):对于任意角θ,正割函数的值定义为斜边与邻边的比值。
即secθ = 1 / cosθ。
6. 余割函数(csc):对于任意角θ,余割函数的值定义为斜边与对边的比值。
即cscθ = 1 / sinθ。
以上是三角函数的定义。
它们是以三角形中的长度比值构建的,可以用于解决各种与三角角度有关的问题。
二、三角函数的性质三角函数具有许多重要的性质,包括周期性、偶奇性、界值和定义域等。
1. 周期性:三角函数的周期性是它们最基本的性质之一。
正弦函数和余弦函数的周期都是2π,即sin(x + 2π) = sinx,cos(x + 2π) = cosx。
而正切函数和余切函数的周期是π,即tan(x + π) = tanx,cot(x + π) = cotx。
这意味着在一个周期内,三角函数的值重复出现。
2. 偶奇性:正弦函数和余切函数是奇函数,而余弦函数和正切函数是偶函数。
三角函数正弦余弦正切
三角函数正弦余弦正切三角函数是数学中的重要概念,包括正弦、余弦和正切。
它们在数学、物理和工程等领域有广泛的应用。
本文将对三角函数的定义、性质和应用进行详细论述。
一、正弦函数正弦函数是三角函数中的一种,表示为sin(x),其中x为角度。
正弦函数的定义域是实数集,值域为[-1, 1]。
正弦函数具有以下性质:1. 周期性:正弦函数是周期函数,其最小正周期是2π,即sin(x) = sin(x+2πk),其中k为整数。
2. 对称性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于y轴对称。
3. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于原点对称。
4. 单调性:在定义域内,正弦函数在每个周期内都是单调递增或单调递减的。
5. 正弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。
正弦函数在几何、物理、电路等领域有广泛的应用,如波动、振动、交流电等的描述和计算中都会用到。
二、余弦函数余弦函数是三角函数中的另一种,表示为cos(x),其中x为角度。
余弦函数的定义域是实数集,值域为[-1, 1]。
余弦函数具有以下性质:1. 周期性:余弦函数是周期函数,其最小正周期是2π,即cos(x) = cos(x+2πk),其中k为整数。
2. 对称性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于y轴对称。
3. 奇偶性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于原点对称。
4. 单调性:在定义域内,余弦函数在每个周期内都是单调递减的。
5. 余弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。
余弦函数在几何、物理、信号处理等领域有广泛的应用,如描述分析力学中的运动规律、计算交流电路中的电流和电压等。
三、正切函数正切函数是三角函数中的另一种,表示为tan(x),其中x为角度。
正切函数的定义域是实数集,值域为整个实数集。
正弦函数余弦函数
$number {01}
目 录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的变换 • 正弦函数与余弦函数的特殊值
01
正弦函数与余弦函数的定义
正弦函数的定义
正弦函数是三角函数的一种,定义为y=sinx,其中x是角度,y是对应的正弦值。 正弦函数在直角三角形中可以表示直角边与斜边的比值。 正弦函数具有周期性,周期为360度或2π弧度。
3
正弦函数图像
正弦函数的图像是一个周期为$2pi$的波浪线,最高点为1,最 低点为-1,呈周期性变化。
余弦函数图像
余弦函数的图像也是一个周期为$2pi$的波浪线,最高点为1, 最低点为-1,也呈周期性变化。
图像关系
正弦函数和余弦函数在图像上具有对称性,即当将正弦函数 的图像向右平移$frac{pi}{2}$个单位,即可得到余弦函数的 图像。
在物理中的应用
01
02
03
振动和波动
正弦函数和余弦函数是描 述简谐振动和波动的基本 函数,例如弹簧振动的位 移、声音的传播等。
交流电
正弦函数和余弦函数用于 描述交流电的电压和电流, 广泛应用于电力系统和电 子工程中。
磁场和电场
在电磁学中,正弦函数和 余弦函数用于描述磁场和 电场的变化,如电磁波的 传播等。
03
正弦函数与余弦函数的应用
在三角函数中的应用
三角恒等式证明
利用正弦和余弦函数的性质,证明和推导各种三角恒等式,如正弦和余弦的和差公式、倍角公式 等。
角度计算
利用正弦和余弦函数,将角度转换为弧度,或者将弧度转换为角度,特别是在物理学和工程学中 ,角度和弧度的转换是常见的需求。
初中数学 什么是正弦和余弦
初中数学什么是正弦和余弦正弦和余弦是初中数学中与三角函数相关的两个重要概念。
它们是用来描述和计算三角形中角度和边长之间关系的函数。
在本文中,我们将详细讨论正弦和余弦的定义、性质和应用。
一、正弦函数正弦函数是指一个角的正弦值与其对边与斜边的比值之间的关系。
具体来说,对于一个锐角A,它的正弦值定义为sin(A) = 对边/斜边。
对于钝角A,正弦值定义为sin(A) = -对边/斜边。
正弦函数具有以下几个重要的性质:1. 值域和定义域:正弦函数的值域为[-1, 1],定义域为整个实数集。
2. 周期性质:正弦函数是周期函数,其最小正周期为2π,即sin(A) = sin(A + 2π)。
3. 对称性质:正弦函数是奇函数,即sin(-A) = -sin(A)。
4. 单调性质:在一个周期内,正弦函数在[0, π]上是单调递增的,在[π, 2π]上是单调递减的。
正弦函数在几何学中有着广泛的应用。
它可以用来计算和描述三角形中的角度和边长之间的关系,比如计算角度的正弦值、计算边长的比例等。
此外,正弦函数还可以用来解决关于周期性和周期函数的问题,比如计算函数的周期、求解方程等。
二、余弦函数余弦函数是指一个角的余弦值与其邻边与斜边的比值之间的关系。
具体来说,对于一个锐角A,它的余弦值定义为cos(A) = 邻边/斜边。
对于钝角A,余弦值定义为cos(A) = -邻边/斜边。
余弦函数具有以下几个重要的性质:1. 值域和定义域:余弦函数的值域为[-1, 1],定义域为整个实数集。
2. 周期性质:余弦函数是周期函数,其最小正周期为2π,即cos(A) = cos(A + 2π)。
3. 对称性质:余弦函数是偶函数,即cos(-A) = cos(A)。
4. 单调性质:在一个周期内,余弦函数在[0, π/2]上是单调递减的,在[π/2, 3π/2]上是单调递增的。
余弦函数在几何学中有着广泛的应用。
它可以用来计算和描述三角形中的角度和边长之间的关系,比如计算角度的余弦值、计算边长的比例等。
正弦函数、余弦函数的性质(基础知识+基本题型)(含解析)
5. 4.2正弦函数、余弦函数的性质(基础知识+基本题型)知识点一 周期函数定义:一般地,对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x ,那么函数()f x 就叫做周期函数. 非零常数T 叫做这个函数的周期.由周期函数的定义可知,周期T 并不唯一,若周期函数()f x 的所有周期中存在一个最小的正数,我们便称这个数为最小正周期,以下我们说的周期一般指最小正周期.【拓展】(1)周期函数的定义是对定义域中的每一个x 来说的,只有个别的x 的值满足()()f x T f x 不能说T 是()f x 的周期.(2)从等式“()()f x T f x ”来看,应强调的是自变量x 本身加的非零常数T 才是周期,例如(2)()f x T f x 恒成立,但T 不是()f x 的周期,若写成(2)(2())(2)2T f x T f xf x ,则2T是()f x 的周期.(3)如果T 是函数()f x 的周期,那么(,0)kT kZ k也一定是函数()f x 的周期.(4)周期函数的定义域不一定是R ,但是一定是无限集.(5)对于周期函数来说,并不是所有的函数都有最小正周期,如函数0,y x R . 【拓展】求三角函数的周期的常见方法(1)公式法:对于sin()y A x ωϕ=+或cos()y A x ωϕ=+(A ,ω,φ是常数,且A ≠0,ω≠0),2||T πω=. (2)观察法(图象法):画出函数图象,观察图象可得函数周期. 知识点二 正弦函数、余弦函数的性质R R【拓展】(1)正弦函数(余弦函数)不是定义域上的单调函数.另外,说“正弦函数(余弦函数)在第一象限内是增(减)函数”是错误的,因为在第一象限内,即使是终边相同的角,它们也可以相差2π的整数倍.(2)正弦曲线(余弦曲线)的对称轴一定过正弦曲线(余弦曲线)的最高点或最低点,即此时的正弦值(余弦值)取最大值或最小值.(3)正弦曲线(余弦曲线)的对称中心一定是正弦曲线(余弦曲线)与轴的交点,即此时的正弦值(余弦值)为0.考点一函数的奇偶性问题【例1】若函数()siny x xϕ=+(0ϕπ≤≤)是R上的偶函数,则φ可以等于A. 0B.4πC.2πD. π解析:因为sin cos 2y x x π⎛⎫=+= ⎪⎝⎭,而cos y x =是R 上的偶函数,所以2πϕ=,故选C. 答案:C总结:判断一个函数或者是否具备奇偶性,关键是看它能否通过诱导公式转化为或中的一个。
三角函数的正负性质
三角函数的正负性质三角函数是数学中重要的概念,在解决各种三角问题中发挥着重要作用。
正负性质是指在不同的象限中,三角函数的值的正负情况。
本文将详细介绍正弦函数、余弦函数和正切函数的正负性质。
一、正弦函数的正负性质在单位圆上,将圆周分成四个等份,得到四个象限:第一象限、第二象限、第三象限和第四象限。
根据三角函数的定义可知,在不同的象限中,正弦函数的正负情况如下:1. 第一象限(0° ~ 90°):在第一象限中,正弦函数是正值,即sinθ > 0。
2. 第二象限(90°~ 180°):在第二象限中,正弦函数仍然是正值,即sinθ > 0。
3. 第三象限(180° ~ 270°):在第三象限中,正弦函数变为负值,即sinθ < 0。
4. 第四象限(270°~ 360°):在第四象限中,正弦函数仍然是负值,即sinθ < 0。
二、余弦函数的正负性质与正弦函数类似,余弦函数也可以根据单位圆在不同象限的位置判断其正负情况:1. 第一象限(0° ~ 90°):在第一象限中,余弦函数是正值,即cosθ > 0。
2. 第二象限(90°~ 180°):在第二象限中,余弦函数仍然是负值,即cosθ < 0。
3. 第三象限(180° ~ 270°):在第三象限中,余弦函数也是负值,即cosθ < 0。
4. 第四象限(270°~ 360°):在第四象限中,余弦函数仍然是正值,即cosθ > 0。
三、正切函数的正负性质正切函数是正弦函数与余弦函数之商,因此其正负性质与正弦函数和余弦函数有所不同:1. 第一象限(0° ~ 90°):在第一象限中,正切函数是正值,即tanθ > 0。
2. 第二象限(90° ~ 180°):在第二象限中,正切函数变为负值,即tanθ < 0。
初中数学:三角函数
初中数学:三角函数三角函数是数学中经典的概念之一,是数学分析、数学物理、工程等领域的基础工具。
本篇文章将从初中三角函数的定义、性质、常见角度及其应用等方面进行介绍。
一、三角函数的定义1. 正弦函数正弦函数Sine,简写为sin,是一个经典的周期函数,它的周期是2π。
在数学上,正弦函数可以用一个圆上的角的对边长度与斜边长度之比来定义。
设一个半径为r的圆上有一个角α,则该角的正弦值为:sinα = 对边/ 斜边2. 余弦函数余弦函数Cosine,简写为cos,同样是一个经典的周期函数,它的周期也是2π。
在数学上,余弦函数可以用一个圆上的角的邻边长度与斜边长度之比来定义。
设一个半径为r的圆上有一个角α,则该角的余弦值为:cosα = 邻边/ 斜边3. 正切函数正切函数Tangent,简写为tan,用一个直角三角形的对边长度与邻边长度之比来描述。
设一个直角三角形中的一个角为α,则该角的正切值为:tanα = 对边/ 邻边4. 余切函数余切函数Cotangent,简写为cot,是正切函数的倒数,它用邻边长度与对边长度之比来描述。
设一个直角三角形中的一个角为α,则该角的余切值为:cotα = 邻边/ 对边二、三角函数的性质1. 正弦函数和余弦函数的特点正弦函数与余弦函数具有如下特点:(1)周期性:正弦函数和余弦函数都是周期函数,周期均为2π。
(2)奇偶性:正弦函数是奇函数,余弦函数是偶函数。
(3)取值范围:正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。
2. 正切函数和余切函数的特点正切函数与余切函数具有如下特点:(1)周期性:正切函数和余切函数都是周期函数,周期均为π。
(2)奇偶性:正切函数是奇函数,余切函数也是奇函数。
(3)取值范围:正切函数的取值范围是R(实数集),余切函数的取值范围也是R,但余切函数的定义域不包括π的整数倍。
三、常见角度的三角函数值1. 30°、45°、60°三角函数值(1)30°角正弦函数:sin30° = 1/2余弦函数:cos30° = √3/2正切函数:tan30° = 1/√3余切函数:cot30° = √3(2)45°角正弦函数:sin45° = √2/2余弦函数:cos45° = √2/2正切函数:tan45° = 1余切函数:cot45° = 1(3)60°角正弦函数:sin60° = √3/2余弦函数:cos60° = 1/2正切函数:tan60° = √3余切函数:cot60° = 1/√32. 常用角度的三角函数值(1)0°和180°角正弦函数:sin0° = 0,sin180° = 0余弦函数:cos0° = 1,cos180° = -1正切函数:tan0° = 0,tan180° = 0余切函数:cot0° = 无穷大,cot180° = 无穷大(2)90°和270°角正弦函数:sin90° = 1,sin270° = -1余弦函数:cos90° = 0,cos270° = 0正切函数:tan90° = 无穷大,tan270° = 无穷大余切函数:cot90° = 0,cot270° = 0四、三角函数的应用1. 三角函数在直角三角形中的应用在直角三角形中,三角函数可以用来计算三角形的各个边与角。
三角函数入门什么是正弦余弦和正切
三角函数入门什么是正弦余弦和正切三角函数入门:什么是正弦、余弦和正切三角函数是数学中的重要概念,在数学、物理、工程等领域都有广泛的应用。
其中,正弦、余弦和正切是三个基本的三角函数,今天我们就来探讨一下它们的定义和性质。
一、正弦函数(sin)正弦函数是最基本的三角函数之一,它描述了一个角度对应的正弦值。
在直角三角形中,正弦值等于对边与斜边的比值。
以角记作θ,那么正弦函数sinθ可以表示为:sinθ = 对边 / 斜边其中,对边指的是角θ的对边的边长,斜边指的是角θ对应直角三角形的斜边的边长。
在单位圆中,以圆心为原点,角θ的顶点P(x, y)位于圆上。
这时,对边就是点P的纵坐标y,斜边则是单位圆的半径1。
因此,我们可以将正弦函数sinθ定义为:sinθ = y正弦函数sinθ的定义域是所有实数,值域在[-1, 1]之间。
二、余弦函数(cos)余弦函数是另一个基本的三角函数,它描述了一个角度对应的余弦值。
在直角三角形中,余弦值等于邻边与斜边的比值。
以角记作θ,那么余弦函数cosθ可以表示为:cosθ = 邻边 / 斜边其中,邻边指的是角θ的邻边的边长。
在单位圆中,以圆心为原点,角θ的顶点P(x, y)位于圆上。
这时,邻边就是点P的横坐标x,斜边仍然是单位圆的半径1。
因此,我们可以将余弦函数cosθ定义为:cosθ = x余弦函数cosθ的定义域是所有实数,值域在[-1, 1]之间。
三、正切函数(tan)正切函数是三角函数中的第三个基本函数,它描述了一个角度对应的正切值。
在直角三角形中,正切值等于对边与邻边的比值。
以角记作θ,那么正切函数tanθ可以表示为:tanθ = 对边 / 邻边其中,对边指的是角θ的对边的边长,邻边指的是角θ的邻边的边长。
在单位圆中,以圆心为原点,角θ的顶点P(x, y)位于圆上。
这时,对边就是点P的纵坐标y,邻边就是点P的横坐标x。
因此,我们可以将正切函数tanθ定义为:tanθ = y / x正切函数tanθ的定义域是所有不等于π/2 + kπ(k为整数)的实数,值域是整个实数集。
正弦函数余弦函数的图像与性质
三角函数在物理学中的应用
振动与波动
正弦和余弦函数是描述简谐振动和波动的基本函 数,广泛应用于声学、光学等领域。
交流电
交流电的电压和电流是时间的正弦或余弦函数, 用于驱动各种电器设备。
磁场与电场
在电磁学中,正弦和余弦函数用于描述磁场和电 场的分布和变工程中的许多振动问题都可以用 正弦和余弦函数来描述,如桥梁 振动、车辆振动等。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比值,记作 cos(x)。
周期性
余弦函数也具有周期性,其周期为2π。
奇偶性
余弦函数是偶函数,满足cos(-x) = cos(x)。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
奇函数满足$f(-x) = -f(x)$,偶函数满 足$f(-x) = f(x)$。对于正弦函数, $sin(-x) = -sin(x)$;对于余弦函数, $cos(-x) = cos(x)$。
最值与振幅
总结词
正弦函数和余弦函数都具有最大值和最小值,这取决于它们的振幅。
正弦函数余弦函数的图像与性质
目录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的图像 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的扩展知识
01 正弦函数与余弦函数的定 义
正弦函数的定义
定义
正弦函数是三角函数的 一种,定义为直角三角 形中锐角的对边与斜边 的比值,记作sin(x)。
三角函数的性质知识点总结
三角函数的性质知识点总结三角函数是数学中重要的一部分,主要涉及到正弦函数、余弦函数和正切函数。
它们在数学、物理、工程等学科中都有广泛的应用。
本文将对三角函数的性质进行总结,包括周期性、对称性、函数值范围等方面的内容。
一、正弦函数的性质1. 周期性:正弦函数的周期是2π,即sin(x+2π) = sin(x),其中x表示角度。
2. 对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
3. 函数值范围:正弦函数的函数值范围在[-1, 1]之间。
二、余弦函数的性质1. 周期性:余弦函数的周期也是2π,即cos(x+2π) = cos(x)。
2. 对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
3. 函数值范围:余弦函数的函数值范围同样在[-1, 1]之间。
三、正切函数的性质1. 周期性:正切函数的周期是π,即tan(x+π) = tan(x),其中x表示角度。
2. 对称性:正切函数关于原点对称,即tan(-x) = -tan(x)。
3. 函数值范围:正切函数的函数值范围是整个实数集。
1. 正弦函数和余弦函数的特殊角度值如下: sin(0) = 0, cos(0) = 1;sin(π/6) = 1/2, cos(π/6) = √3/2;sin(π/4) = √2/2, cos(π/4) = √2/2;sin(π/3) = √3/2, cos(π/3) = 1/2;sin(π/2) = 1, cos(π/2) = 0;2. 正切函数的特殊角度值如下:tan(0) = 0;tan(π/4) = 1;tan(π/3) = √3;tan(π/2) 没有定义。
五、三角函数的基本关系1. 正切函数与正弦函数和余弦函数的关系: tan(x) = sin(x) / cos(x)。
2. 正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 1。
1. 正弦函数和余弦函数的图像是波形振动,具有周期性和对称性。
知识讲解_正弦函数、余弦函数的性质_基础
【变式】已知函数 .
(1)画出函数的简图;
(2)这个函数是周期函数吗?如果是,求出它的最小正周期;
(3)指出这个函数的单调增区间.
【解析】(1)
.
函数图象如右图所示.
(2)由图象知函数的周期是2π.
(3)由图象知函数的单调区间为 (k∈Z)
【总结升华】本题易犯的错误是求得周期为π,实际上通过图象可知,在一个区间长为2π的区间内函数值才发生周期性变化.
令 ,
解得 ,k∈Z,
令k=0,可得 ,
令k=-1,可得 ,
∵x∈[-2π,2π],
∴函数的单调递增区间为: 和 .
类型三:正弦函数、余弦函数的奇偶性
例4.判断下列函数的奇偶性:
(1) ;
(2) ;
【思路点拨】(1)先利用诱导公式化简为 ,再按步骤去判断.(2)先求函数的定义域,然后判断.
【解析】(1)函数定义域为R,且 ,显然有 恒成立.
举一反三:
【高清课堂:正弦函数、余弦函数的性质394836例1】
【变式1】指出下列函数的对称轴与对称中心
(1) ;(2) .
【解析】(1)令 ,则 的对称轴方程是 (k∈Z),即 (k∈Z),解得 (k∈Z).
∴函数 的对称轴方程是 (k∈Z).
同理,对称中心的横坐标为 , ,即对称中心为 .
(2)令 ,则 的对称轴方程是 (k∈Z),即 (k∈Z),解得 (k∈Z).
(1)定义域:
(2)值域:
(3)单调区间:求形如 与函数 的函数的单调区间可以通过解不等式的方法去解答,即把 视为一个“整体”,分别与正弦函数 ,余弦函数 的单调递增(减)区间对应解出 ,即为所求的单调递增(减)区间.比如:由 解出 的范围所得区间即为增区间,由 解出 的范围,所得区间即为减区间.
正弦函数余弦函数的性质(单调性)
正弦函数余弦函数的性质(单调性)正弦函数和余弦函数是高中数学中常见的函数,它们具有许多重要的性质。
单调性是其中之一。
本文将重点介绍正弦函数和余弦函数的单调性,希望能对读者加深对这两个函数的理解。
我们先来介绍一下正弦函数和余弦函数的定义。
正弦函数记作y=sin(x),其中x表示自变量,y表示函数值。
余弦函数记作y=cos(x),同样x表示自变量,y表示函数值。
这两个函数都是周期函数,其周期为2π。
下面我们分别来介绍它们的单调性。
正弦函数的单调性:正弦函数在每一个周期内都是先增后减或者先减后增的。
具体来说,当自变量x增大时(在0到π/2之间),y=sin(x)也逐渐增大,当自变量x继续增大(在π/2到π之间),y=sin(x)逐渐减小,当自变量x继续增大(在π到3π/2之间),y=sin(x)又逐渐增大,以此类推。
从图上来看,正弦函数的图像会呈现出一种周期性的波动,这体现了正弦函数的周期性。
我们可以得出结论,正弦函数在每一个周期内都是先增后减或者先减后增的。
正弦函数和余弦函数在各自的周期内的单调性是不同的。
正弦函数是先增后减或者先减后增的,而余弦函数是先减后增或者先增后减的。
这也是因为正弦函数和余弦函数的定义和性质不同所导致的。
通过对这两个函数的单调性进行分析,可以帮助我们更好地理解它们的规律和特点。
除了单调性以外,正弦函数和余弦函数还有许多其他重要的性质,比如周期性、奇偶性、图像特点等。
这些性质都是我们在学习和应用这两个函数时需要重点关注的内容。
希望通过本文的介绍,读者能够对正弦函数和余弦函数的单调性有更清晰的认识,并能够更好地应用这些知识解决实际问题。
三角函数基本性质
三角函数基本性质三角函数是数学中常见的函数类型,它们在解决几何、物理和工程问题中起到了重要的作用。
本文将介绍三角函数的基本性质,包括定义域、值域、周期性等。
1. 正弦函数(sin)的基本性质:正弦函数的定义域为实数集R,值域为闭区间[-1, 1]。
其图像为一条连续的曲线,通过坐标原点,关于y轴对称。
正弦函数是一个周期函数,其周期为2π(或360度)。
在定义域内,正弦函数是奇函数,即满足sin(-x) = -sin(x)。
2. 余弦函数(cos)的基本性质:余弦函数的定义域为实数集R,值域为闭区间[-1, 1]。
其图像为一条连续的曲线,通过坐标原点,关于x轴对称。
余弦函数也是一个周期函数,其周期为2π(或360度)。
在定义域内,余弦函数是偶函数,即满足cos(-x) = cos(x)。
3. 正切函数(tan)的基本性质:正切函数的定义域为实数集R,在其定义域内,正切函数有无穷多个极值点。
其图像没有定义域内的极值点,但在周期性为π的点处有无穷多个间断点。
正切函数的值域为实数集R。
4. 余切函数(cot)的基本性质:余切函数的定义域为实数集R,在其定义域内,余切函数有无穷多个极值点。
其图像没有定义域内的极值点,但在周期性为π的点处有无穷多个间断点。
余切函数的值域为实数集R。
5. 正割函数(sec)的基本性质:正割函数的定义域为实数集R,其在定义域内没有极值点。
其图像在周期性为2π的点处有无穷多个间断点。
注意到正割函数与余弦函数的关系,即sec(x) = 1/cos(x)。
6. 余割函数(csc)的基本性质:余割函数的定义域为实数集R,其在定义域内没有极值点。
其图像在周期性为2π的点处有无穷多个间断点。
注意到余割函数与正弦函数的关系,即csc(x) = 1/sin(x)。
三角函数的基本性质对于解决几何、物理和工程问题至关重要。
在解决角度、周期性、波动等问题时,我们可以利用这些性质计算和推导。
三角函数还与复数、级数等数学概念有着广泛的联系,为更深入的数学研究提供了基础。
正弦、余弦、正切函数
三角函数的积化和差公式
三角函数的积化和差公式是另一组重要的公式,它们可以将 两角之积的三角函数转化为和的三角函数形式。例如,$sin x cos y = frac{1}{2}[sin(x + y) + sin(x - y)]$、$cos x cos y = frac{1}{2}[cos(x + y) + cos(x - y)]$等。
这些恒等式揭示了三角函数之间的内在关系,使得我们可以通过已知的三角函数值来计算其他三角函 数值,或者将复杂的三角函数表达式化简为更简单的形式。
三角函数的和差化积公式
三角函数的和差化积公式是三角函数中一系列重要的公式,它们可以将两角差的 三角函数转化为和的三角函数形式。例如,$cos(x - y) = cos x cos y + sin x sin y$、$sin(x - y) = sin x cos y - cos x sin y$等。
三角恒等式。
解决三角方程
03
正切函数在解三角方程时也很有用,如求解正切函数的定义域
和值域等问题。
04
三角恒等式与变换
三角恒等式
三角恒等式是三角函数中一些重要的等式,它们在三角函数的计算、化简和证明中有着广泛的应用。 例如,$sin^2 x + cos^2 x = 1$、$sin(x + y) = sin x cos y + cos x sin y$等。
正弦、余弦、正切函数
汇报人: 2024-01-09
目录
• 函数定义与性质 • 函数图像与特点 • 函数的应用 • 三角恒等式与变换 • 特殊角度的三角函数值
三角函数的图像与性质详解
三角函数的图像与性质详解在数学领域中,三角函数是一组常见且重要的函数。
它们不仅具有许多实际应用,同时也有着丰富的图像特性和数学性质。
本文将详细介绍三角函数的图像和性质,以帮助读者更好地理解和应用这些函数。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,用符号sin表示。
正弦函数的图像是一个连续的波形,具有以下性质:1. 周期性:正弦函数的图像在一个周期内重复。
正弦函数的周期由2π决定。
2. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。
3. 范围:正弦函数的值在[-1, 1]的范围内变化。
二、余弦函数的图像与性质余弦函数是另一个常见的三角函数,用符号cos表示。
余弦函数的图像也是一个连续的波形,具有以下性质:1. 周期性:余弦函数的图像也在一个周期内重复。
余弦函数的周期同样由2π决定。
2. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。
3. 范围:余弦函数的值同样在[-1, 1]的范围内变化。
三、正切函数的图像与性质正切函数是三角函数中的另一个重要成员,用符号tan表示。
正切函数的图像具有以下性质:1. 周期性:正切函数的图像在每个π的倍数处出现垂直渐近线。
因此,正切函数没有固定的周期。
2. 对称性:正切函数的图像关于原点对称,即f(x) = -f(-x)。
3. 范围:正切函数在定义域内可以取任何实数值。
四、其他三角函数除了正弦、余弦和正切函数之外,还有许多与三角函数相关的函数,例如反正弦、反余弦和反正切函数。
这些函数的图像和性质相对复杂,超出了本文的范围。
感兴趣的读者可以进一步学习和了解这些函数的性质。
综上所述,三角函数是数学中常见而重要的函数。
它们的图像和性质有助于我们理解和应用这些函数。
通过研究三角函数的性质,我们可以更好地解决与周期性和周期性相关的问题,例如波动、震动和周期性运动。
希望本文的内容能够对读者在学习和应用三角函数时有所帮助。
正弦函数和余弦函数的性质
正弦函数和余弦函数的性质
1 正弦函数及其性质
正弦函数也称曲线函数,是坐标系中把角度和弧度的定义用一般的数学形式来表示的函数。
正弦函数的视觉影响可以归结为一条垂直于极轴的曲线。
正弦函数的特征有:
1. 正弦函数是一个周期函数,它的周期是2π,也就是说,它在每个2π的区间里会重复出现相同的函数形式。
2. 正弦函数具有范围称属性,它的值始终在-1和1之间,也就是它以0为中心围绕-1和1旋转2π。
3. 正弦函数具有导数特性,它的导数与其幅值成反比关系,公式为(d/dx)*sin(x)=cos(x)。
2 余弦函数及其性质
余弦函数是正弦函数的镜面对称函数,它以直角坐标系中的水平轴(y轴)为镜面中心反射得到的。
正弦函数和余弦函数有以下相同的性质:
1. 都是周期函数,周期性问题都是2π,且在每个2π的区间里重复出现函数形式相同的函数形式。
2. 都具有范围称属性,它们的值始终在 -1 和 1 之间。
3. 具有导数特性,余弦函数的导数与它的幅值成反比关系,公式为(d/dx)*cos(x)=-sin(x)。
就正弦函数和余弦函数的性质而言,它们都有着类似的特征,这突出了它们是一种互补的函数关系。
正弦函数和余弦函数具有极大的应用性,广泛应用于力学,信号处理,通信等领域。
正弦函数和余弦函数的图像与性质
D
矩形 A' B'C ' D' 周长最大? a B' B
b
D' C
C'
课堂练习答案
1.(1) y cos x 3
当 x 6k , k Z 时,ymin 1
当 x 6k 3 , k Z 时,ymax 1
(2) y (sin x 1)2 3
当 x 2k , k Z 时,ymax 3
6
P
30
3x
课堂练习
1.求下列函数的最大值与最小值,及取到最值时
的自变量 x 的值.
(1) y cos x (2) y cos2 x 2sin x 1 3
2.要求同第1题.
(1) y cos(2x ) (2) y 2 cos2 x sin 2x
4
A'
3.如图,当 为何值时, A
这个函数的周期.
思考 2T ,3T , 4T , 也是周期吗? 周期函数有多少个周期?
一、函数周期性的定义
一般地,对于函数 f (x) ,如果存在非零常数 T
使得对于定义域内的每一个自变量 x 值,都有 f (x+T ) f (x)
那么函数 f (x) 叫做周期函数,非零常数 T 叫做
这个函数的周期. 最小正周期 一个周期函数的全部周期中 若存在一个最小正数,那么这个最小的正数 就叫做这个周期函数的最小正周期.
正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
二、正弦函数的图像
正弦函数 y sin x在区间[0, 2 ]上的图像.
思考 如何利用正弦线确定点(x0 , sin x0 ) 的坐标?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6正弦函数、余弦函数的性质【学习目标】1.了解周期函数、周期、最小正周期的定义;2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】要点一:周期函数的定义函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期.要点诠释:1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足)()(x f T x f =+都不能说T 是)(x f y =的一个周期.2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期.要点诠释:(1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域.(2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求sin()y x =-的单调递增区间时,应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先求定义域.要点三:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>的性质.函数sin()y A x ωϕ=+与函数cos()y A x ωϕ=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到:(1)定义域:R (2)值域:[],A A -(3)单调区间:求形如sin()y A x ωϕ=+与函数cos()(,0)y A x A ωϕω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ωϕ+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间.(4)奇偶性:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>不一定具备奇偶性.对于函数sin()y A x ωϕ=+,当()k k z ϕπ=∈时为奇函数,当()2k k z πϕπ=±∈时为偶函数;对于函数cos()y A x ωϕ=+,当()k k z ϕπ=∈时为偶函数,当()2k k z πϕπ=±∈时为奇函数.要点诠释:判断函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件.(5)周期:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期与解析式中自变量x 的系数有关,其周期为2T πω=.(6)对称轴和对称中心与正弦函数sin y x =比较可知,当()2x k k z πωϕπ+=±∈时,函数sin()y A x ωϕ=+取得最大值(或最小值),因此函数sin()y A x ωϕ=+的对称轴由()2x k k z πωϕπ+=±∈解出,其对称中心的横坐标()x k k z ωϕπ+=∈,即对称中心为,0()k k z πϕω-⎛⎫∈ ⎪⎝⎭.同理,cos()y A x ωϕ=+的对称轴由()x k k z ωϕπ+=∈解出,对称中心的横坐标由()2x k k z πωϕπ+=±∈解出.要点诠释:若x R ∉,则函数sin()y A x ωϕ=+和函数cos()y A x ωϕ=+不一定有对称轴和对称中心. 【典型例题】类型一:正弦函数、余弦函数的定义域与值域 例1.求函数y =的定义域;【答案】2222,33x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭【解析】 为使函数有意义,需满足2sin 2x+cos x -1≥0,即2cos 2x ―cos x ―1≤0,解得1cos 12x -≤≤. 画出余弦函数的图象或单位圆,如下图所示.∴定义域为2222,33x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭. 【总结升华】求三角函数的定义域要注意三角函数本身的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步都保持恒等,即不能改变原函数的自变量的取值范围.举一反三:【变式1】求函数lg(2sin 1)y x =-的定义域【解析】依题意得2sin x -1>0,即1sin 2x >,∴52266k x k ππππ+<<+(k ∈Z ),∴函数的定义域为522,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭. 例2.求下列函数的值域:(1)y=3―2sin x (2)2sin 23y x π⎛⎫=+⎪⎝⎭,,66x ππ⎡⎤∈-⎢⎥⎣⎦; (3)cos 2cos 1x y x -=-.【答案】(1)[1,5](2)[0,2](3)3,2⎡⎫+∞⎪⎢⎣⎭【解析】 (1)∵-1≤sin x ≤1,∴-2≤2sin x ≤2,∴-2≤-2sin x ≤2,∴1≤3-2sin x ≤5,∴函数的值域为[1,5].(2)∵66x ππ-≤≤,∴20233x ππ≤+≤. ∴0sin 213x π⎛⎫≤+≤ ⎪⎝⎭.∴02sin 223x π⎛⎫≤+≤ ⎪⎝⎭, ∴0≤y ≤2.∴函数的值域为[0,2].(3)∵cos 2cos 1111cos 1cos 11cos x x y x x x---===+---,当cos x=-1时,min 13122y =+=,∴函数的值域为3,2⎡⎫+∞⎪⎢⎣⎭.【总结升华】 一般函数的值域求法有:观察法、配方法、判别式法、反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质.举一反三:【变式1】 求y=cos 2x+4sin x ―2的值域. 【解析】y=cos 2x+4sin x ―2=―sin 2x+4sin x ―1 =―(sin x ―2)2+3. ∵-1≤sin x ≤1,∴当sin x=―1时,y min =―6;当sin x=1时,y max =2. ∴函数的值域为[-6,2].类型二:正弦函数、余弦函数的单调性例3.(2016 浙江温州期末)设函数()sin(2)3f x a x b π=++(1)若a >0,求f (x )的单调递增区间; (2)当[0,]4x π∈时,f (x )的值域为[1,3],求a ,b 的值.【思路点拨】(1)由复合函数的单调性,解不等式222232k x k πππππ-≤+≤+可得答案;(2)由[0,]4x π∈,可得1sin(2)123x π≤+≤,结合题意可得03112a a b a b ⎧⎪>⎪+=⎨⎪⎪+=⎩或01132a ab a b ⎧⎪<⎪+=⎨⎪⎪+=⎩,解方程组可得.【答案】(1)5[,]()1212k k k Z ππππ-+∈;(2)41a b =⎧⎨=-⎩或45a b =-⎧⎨=⎩ 【解析】(1)∵a >0,由222232k x k πππππ-≤+≤+可得51212k x k ππππ-≤≤+, ∴f (x )的单调递增区间为5[,]()1212k k k Z ππππ-+∈;(2)当[0,]4x π∈时,52336x πππ≤+≤,∴1sin(2)123x π≤+≤, ∵f (x )的值域为[1,3],∴03112a a b a b ⎧⎪>⎪+=⎨⎪⎪+=⎩,或01132a ab a b ⎧⎪<⎪+=⎨⎪⎪+=⎩, 分别可解得41a b =⎧⎨=-⎩或45a b =-⎧⎨=⎩举一反三:【变式1】(2015春 河南期中)已知函数1sin()32y x π=-(1)求该函数的周期,并求函数在区间[0,π]上的值域; (2)求该函数在[-2π,2π]上的单调增区间. 【答案】(1)T=4π,1[2-;(2)单调递增区间为:[2,]3ππ--和5[,2]3ππ.【解析】(1)由题意函数的周期2412T ππ==, ∵x ∈[0,π],∴1[,]3263x πππ-∈-,∴11sin()[,3222x π-∈-, 即函数在区间[0,π]上的值域为1[,22-;(2)原函数可化为1sin()23y x π=--,原函数的增区间即为1sin()23y x π=-的减区间,令13222232k x k πππππ+≤-≤+,解得5114433k x k ππππ+≤≤+,k ∈Z , 令k =0,可得51133x ππ≤≤, 令k =-1,可得733x ππ-≤≤-, ∵x ∈[-2π,2π],∴函数的单调递增区间为:[2,]3ππ--和5[,2]3ππ. 类型三:正弦函数、余弦函数的奇偶性例4.判断下列函数的奇偶性: (1)5())2f x x π=+;(2)()f x ;【思路点拨】(1)先利用诱导公式化简为()f x x =,再按步骤去判断.(2)先求函数的定义域,然后判断.【解析】(1)函数定义域为R ,且5()2s i n 2c o s 222f x x x x ππ⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,显然有()()f x f x -=恒成立.∴函数5()22f x x π⎛⎫=+ ⎪⎝⎭为偶函数.(2)由2sin x -1>0,即1sin 2x >,得函数定义域为52,266k k ππππ⎛⎫++ ⎪⎝⎭(k ∈Z ),此定义域在x 轴上表示的区间不关于原点对称.∴该函数不具有奇偶性,为非奇非偶函数.【总结升华】 判断函数奇偶数时,必须先检查定义域是否是关于原点的对称区间.如果是,再验证()f x -是否等于()f x -或()f x ,进而判断函数的奇偶性;如果不是,则该函数必为非奇非偶函数. 举一反三:【变式】关于x 的函数)(x f =sin(x+ϕ)有以下命题: ①对任意的ϕ,)(x f 都是非奇非偶函数; ②不存在ϕ,使)(x f 既是奇函数,又是偶函数; ③存在ϕ,使)(x f 是奇函数; ④对任意的ϕ,)(x f 都不是偶函数.其中一个假命题的序号是_____.因为当ϕ=_____时,该命题的结论不成立. 【思路点拨】当ϕ=2k π,k ∈Z 时,)(x f =sinx 是奇函数. 当ϕ=2(k+1)π,k ∈Z 时x x f sin )(-=仍是奇函数.当ϕ=2k π+2π,k ∈Z 时,)(x f =cosx ,当ϕ=2k π-2π,k ∈Z 时,)(x f =-cosx ,)(x f 都是偶函数. 所以②和③都是正确的.无论ϕ为何值都不能使)(x f 恒等于零.所以)(x f 不能既是奇函数又是偶函数.①和④都是假命题.【解析】①,k π(k ∈Z );或者①,2π+k π(k ∈Z );或者④,2π+k π(k ∈Z )类型四:正弦函数、余弦函数的对称性例5.(2015春 湖南益阳月考)已知函数()2sin(2)4f x x π=-.(1)求函数的最值及相应的x 值集合; (2)求函数的单调区间;(3)求函数f (x )的图象的对称轴与对称中心. 【思路点拨】(1)根据正弦函数的最值性质即可求函数的最值及相应的x 值集合; (2)根据三角函数的单调性即可求函数的单调区间;(3)根据三角函数的对称性即可求函数f (x )的图象的对称轴与对称中心. 【解析】(1)当sin(2)14x π-=,即2242x k πππ-=+,k ∈Z ,即38x k ππ=+,k ∈Z ,此时函数取得最大值为2;故f (x )的最大值为2,使函数取得最大值的x 的集合为3{|,}8x x k k Z ππ=+∈; (2)由222242k x k πππππ-+≤-≤+,得388k x k ππππ-+≤≤+,k ∈Z . ∴函数f (x )的单调递增区间为3[,]88k k ππππ-++,k ∈Z . 由3222242k x k πππππ+≤-≤+,得3788k x k ππππ+≤≤+,k ∈Z . ∴函数f (x )的单调递减区间为37[,]88k k ππππ++,k ∈Z . (3)由242x k πππ-=+,得3182x k ππ=+,k ∈Z . 即函数f (x )的图象的对称轴为3182x k ππ=+,k ∈Z . 由24x k ππ-=,得182x k ππ=+,k ∈Z ,即对称中心为1(,0)82k ππ+,k ∈Z .【总结升华】(1)正弦曲线、余弦曲线的对称轴一定分别过正弦曲线、余弦曲线的最高点或最低点,即此时的正弦值、余弦值取最大值或最小值.(2)正弦曲线、余弦曲线的对称中心一定分别过正弦曲线、余弦曲线与x 轴的交点,即此时的正弦值、余弦值都为0.举一反三: 【变式1】指出下列函数的对称轴与对称中心 (1)sin()4y x =+π;(2)cos(2)3y x =-π.【解析】(1)令4t x π=+,则s i n s i n 4y x t π⎛⎫=+= ⎪⎝⎭的对称轴方程是2t k ππ=+(k ∈Z ),即42x k πππ+=+(k ∈Z ),解得4x k ππ=+(k ∈Z ).∴函数sin 4y x π⎛⎫=+⎪⎝⎭的对称轴方程是4x k ππ=+(k ∈Z ).同理,对称中心的横坐标为4x k ππ+=,4x k ππ∴=-,即对称中心为,04k ππ⎛⎫-⎪⎝⎭. (2)令23t x π=-,则cos 2cos 3y x t π⎛⎫=-= ⎪⎝⎭的对称轴方程是t k π=(k ∈Z ),即23x k ππ-=(k ∈Z ),解得26k x ππ=+(k ∈Z ). ∴函数cos 23y x π⎛⎫=-⎪⎝⎭的对称轴方程是26k x ππ=+(k ∈Z ). 同理,对称中心的横坐标为232x k πππ-=+,5212k x ππ∴=+,即对称中心为5,0212k ππ⎛⎫+ ⎪⎝⎭(k ∈Z ). 类型五:正弦函数、余弦函数的周期 例6.求下列函数的周期: (1)sin 3y x π⎛⎫=+⎪⎝⎭;(2)cos 2y x =;(3)3sin 23x y π⎛⎫=+ ⎪⎝⎭; (4)112sin cos 2326y x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭【解析】(1)①令3z x π=+,而sin(2)sin z z π+=,即(2)()f z f z π+=.(2)33f x f x πππ⎡⎤⎛⎫++=+ ⎪⎢⎥⎣⎦⎝⎭.∴T=2π.②令z=2x ,则()cos 2cos cos(2)cos(22)cos[2()]f x x z z x x πππ===+=+=+, 即()()f x f x π+=,∴T=π.③令23x z π=+,则4()3sin 3sin(2)3sin 23sin (4)2323x x f x z z f x ππππππ+⎛⎫⎛⎫==+=++=+=+ ⎪ ⎪⎝⎭⎝⎭, ∴T=4π④∵原式111112sin cos 2cos cos cos 22626262626x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+---=---=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,∴2412T ππ==. 举一反三:【变式1】判断下列函数是否是周期函数.若是周期函数,求其最小正周期. (1)|sin |y x =; (2)sin ||y x =; (3)sin(2)3y x =-π.【答案】(1)是 T π= (2)不是 (3)22T ππ== 类型六:正弦函数、余弦函数性质的综合应用 例7.已知函数12()log |sin |f x x =.(1)求其定义域和值域; (2)判断奇偶性;(3)判断周期性,若是周期函数,求周期; (4)写出单调区间.【思路点拨】在(3)中,可画出图象求周期,除了用周期函数的定义求周期外,作图也是一种基本的方法.在(4)中,可以将12()log |sin |f x x =看成是由12log y u =,u=|t|,t=sin x 复合而成.【解析】(1)由|sin |0x >,得sin 0x ≠,∴x ≠k π,k ∈Z .∴函数的定义域为{x|x ≠k π,k ∈Z}. ∵0|sin |1x <≤,∴12log |sin |0x ≥,∴函数的值域为{y|y ≥0}.(2)∵1122()log |sin()|log |sin |()f x x x f x -=-==,∴函数()f x 是偶函数.(3)∵1122()log |sin()|log |sin |()f x x x f x ππ+=+==,∴函数()f x 是周期函数,且周期是π.(可结合图象验证) (4)设t=|sin x|, 当,2x k k πππ⎛⎤∈+⎥⎝⎦时,sin x >0,t=|sin x|为增函数;当,2x k k πππ⎡⎫∈-⎪⎢⎣⎭时,sin x <0,t=|sin x|为减函数. 又∵函数12log y t =为减函数,∴函数()f x 的单调增区间为,2k k πππ⎡⎫-⎪⎢⎣⎭,k ∈Z ;单调减区间为,2k k πππ⎛⎤+ ⎥⎝⎦,k ∈Z . 举一反三: 【变式】已知函数11cos |cos |22y x x =+. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期; (3)指出这个函数的单调增区间.【解析】 (1)11cos |cos |22y x x =+ cos , 2,2()2230, 2,2()22x x k k k Z x k k k Z ππππππππ⎧⎡⎤∈-+∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪∈++∈⎢⎥⎪⎣⎦⎩. 函数图象如右图所示.(2)由图象知函数的周期是2π. (3)由图象知函数的单调区间为2,22k k πππ⎡⎤-⎢⎥⎣⎦(k ∈Z ) 【总结升华】本题易犯的错误是求得周期为π,实际上通过图象可知,在一个区间长为2π的区间内函数值才发生周期性变化.【巩固练习】1.下列函数是以π为周期的函数的是( )A .1sin2y x = B .y=cos2x C .y=1+sin3x D .y=cos3x 2.下列函数中是偶函数的是( )A .y=sin2xB .y=-sin xC .y=sin |x|D .y=sin x+1 3.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( )A .2π B .4π- C .4π D .34π4.设函数()sin 22f x x π⎛⎫=-⎪⎝⎭,x ∈R ,则()f x 是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 5.下列区间中,使函数y=sin x 为增函数的是( )A .[0,π]B .3,22ππ⎡⎤⎢⎥⎣⎦ C .,22ππ⎡⎤-⎢⎥⎣⎦D .[π,2π] 6.为得到函数sin(3)3y x =-π的图象,可以将函数sin 3y x =的图象( ).A . 向左平移3π个单位 B . 向右平移3π个单位 C . 向左平移9π个单位 D . 向右平移9π个单位7.已知a ∈R ,函数()sin ||f x x a =-,x ∈R ,为奇函数,则a 的值为( )A .0B .1C .-1D .±1 8.(2015春 广东揭阳月考)函数y =2sin x 在区间4[,)63ππ的值域是( )A.1[)2 B.( C.1[2 D.[ 9.函数()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω=________.10.(2015春湖南娄底期末)函数y =________.11.(2016 黑龙江期末)已知函数cos(2)3,[0,]32y a x x ππ=++∈的最大值为4,则实数a 的值为________.12.(2016宁夏金凤区月考)求函数y =定义域是多少?13.求函数2cos sin y x x =-,[]0,x π∈上的值域.14.(2015春 湖南株洲月考)已知定义在[,]62x ππ∈-上的函数()sin(2)f x x π=-.(1)求()f x 的单调递增区间;(2)若方程()f x a =只有一个解,求实数a 的取值范围.15.设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a ,试确定满足1()2f a =的a 的值,并对此时的a 值求y 的最大值.【答案与解析】1.【答案】B【解析】y=sin ωx 与y=cos ωx 的周期2T ππω==,∴ω=2.2.【答案】C【解析】 当()sin ||f x x =时,()()f x f x -=成立. 3.【答案】C【解析】对称轴过最高点或最低点,()1,sin(2)128882f k ππππϕϕπ=±⨯+=±⇒⨯+=+,4k k Z πϕπ=+∈.4.【答案】B【解析】()sin 2sin 2sin 2cos 2222f x x x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=-=--=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴T=π,偶函数. 5.【答案】C【解析】y=sin x 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z )的每一个区间上递增.6.【答案】D7.【答案】A【解析】由(0)0f =可知a=0. 8.【答案】B 【解析】∵463x ππ≤<, ∴当2x π=时,函数y =2sin x 取得最大值,此时最大值为2,当43x π=时,函数y =2sin x取得最小值,此时最小值为2(⨯= ∵463x ππ≤<,∴2y ≤,即函数的值域为(, 故选:B .9.【答案】10 【解析】由2(0)105ππωωω=>⇒=.10.【答案】272[,]()123363k k k Z ππππ++∈.【解析】y =0≥,即5232()646k x k k Z πππππ+≤+≤+∈, 要求单调递减区间只需令:5232246k x k πππππ+≤+≤+, 解得:272()123363k k x k Z ππππ+≤≤+∈.所以递减区间为:272[,]()123363k k k Z ππππ++∈.故答案为:272[,]()123363k k k Z ππππ++∈. 11.【答案】2或―1. 【解析】∵[0,]2x π∈,∴42[,]333x πππ+∈, ∴11cos(2)32x π-≤+≤,当a >0时,1cos(2)32a a x a π-≤+≤, ∵y m ax =4, ∴1342a +=, ∴a =2; 当a <0时,1cos(2)23a a x a π≤+≤- 同理可得3-a =4,∴a =―1.综上所述,实数a 的值为2或―1. 故答案为:2或―1. 12.【答案】[2,2)(2,2]()4664k k k k k Z ππππππππ-+++∈【解析】若保证函数有意义则保证:2cos 02sin 10x x ⎧⎪⎨-≠⎪⎩即cos 1sin 2x x ⎧≥⎪⎪⎨⎪≠⎪⎩,解得[2,2]4452266x k k x k x k ππππππππ⎧∈-+⎪⎪⎨⎪≠+≠+⎪⎩且(k ∈Z ) ∴函数定义域为[2,2)(2,2]()4664k k k k k Z ππππππππ-+++∈ .13.【答案】[]1,1-【解析】2cos sin y x x =-=)1sin 0(,45)21(sin 1sin sin 22≤≤++-=+--x x x x . 14.【答案】(1)[,]64ππ-;(2){|01}a a a ≤<=或. 【解析】(1)定义在[,]62ππ-上的函数()sin(2)sin 2f x x x π=-=,它的最小正周期为22ππ=, 令22222k x k ππππ-≤≤+,k ∈Z ,求得44k x k ππππ-≤≤+,可得函数的增区间为[,]44k k ππππ-+,k ∈Z .再结合[,]62x ππ∈-,可得函数的增区间为[,]64ππ-.(2)由方程f (x )=a 只有一个解, 可得函数f (x )的图象和直线y =a 在[,]62ππ-上只有一个交点,[,]2[,]sin 2[6232x x x ππππ∈-⇒∈-⇒∈-,如图所示:可得[2a ∈-或a =1, 即实数a的取值范围为{|01}a a a ≤<=或. 15.【解析】令cos ,[1,1]x t t =∈-,则222(21)y t at a =--+,对称轴2a t =, 当12a <-,即2a <-时,[1,1]-是函数y 的递增区间,min 112y =≠; 当12a >,即2a >时,[1,1]-是函数y 的递减区间,min 141,2y a =-+=得18a =,与2a >矛盾;当112a -≤≤,即22a -≤≤时,22min 121,43022a y a a a =---=++= 得1,a =-或3a =-,1a ∴=-,此时max 415y a =-+=.。