2004年高考数学章节分类试题 《基本初等函数、函数的应用》
2004年成人高考数学试题及答案(高起点理工类)
高中数学公式 一、函数1、若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
二次函数c bx ax y ++=2的图象的对称轴方程是ab x 2-=,顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 4422,。
用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx axx f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( (顶点式)。
二、 三角函数1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=ry ,cos α=rx ,tg α=xy ,ctg α=yx ,sec α=xr ,csc α=yr 。
2、同角三角函数的关系中,平方关系是:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ; 倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα; 相除关系是:αααcos sin =tg ,αααsin cos =ctg 。
3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。
4、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线By =的交点都是该图象的对称中心。
5、三角函数的单调区间:x y s i n =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgxy =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈6、和角、差角公式:=±)sin(βαβαβαsin cos cos sin ± =±)c o s (βαβαβαs i n s i n c o s c o s m=±)(βαtg βαβαtg tg tg tg ⋅±m 17、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21- tg2α=αα212tg tg -。
高考数学一轮复习第二章函数的概念基本初等函数(Ⅰ)及函数的应用2.6函数与方程习题理
§2.6函数与方程1.函数的零点(1)定义:对于函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的________,也是函数y=f(x)的图象与x轴的________.(2)函数有零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴⇔函数y=f(x) .由此可知,求方程f(x)=0的实数根,就是确定函数y=f(x)的________.一般地,对于不能用公式求根的方程f(x)=0来说,我们可以将它与________联系起来,利用函数的性质找出零点,从而求出方程的根.2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈,使得,这个c 也就是方程f(x)=0的根.3.二次函数的零点分布(即一元二次方程根的分布,见2.4节“考点梳理”5)自查自纠1.(1)f(x)=0 实数根交点的横坐标(2)有交点有零点零点函数y=f(x)2.f(a)·f(b)<0 (a,b) (a,b) f(c)=0(2015·安徽)下列函数中,既是偶函数又存在零点的是( )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1解:y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点.故选A.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3解:易知函数f (x )=2x+x 3-2单调递增,∵f (0)=1-2=-1<0,f (1)=2+1-2=1>0,∴函数f (x )在区间(0,1)内零点的个数为1.故选B .(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解:在同一平面直角坐标系中分别画出函数y =f (x ),y =g (x )的图象.如图所示,方程f (x )=g (x )有两个不相等的实根,等价于两个函数的图象有两个不同的交点.结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.故选B .方程ln x =8-2x 的实数根x ∈(k ,k+1),k ∈Z ,则k =________.解:构造函数f (x )=ln x +2x -8,∴f ′(x )=1x+2>0(x >0),则f (x )在(0,+∞)上单调递增,又f (1)=-6<0,f (2)=ln2-4<0,f (3)=ln3-2<0,f (4)=ln4>0,∴f (x )的唯一零点在(3,4)内,因此k =3.故填3.(2014·苏锡模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (x 2)+f (k -x )只有一个零点,则实数k 的值是________.解:由f (x 2)+f (k -x )=0得f (x 2)=-f (k -x ),因为f (x )是奇函数,有-f (k -x )=f (x -k ),故有f (x 2)=f (x -k ),又f (x )是R 上的单调函数,所以方程x 2=x -k 即x 2-x +k=0有唯一解,由Δ=0解得k =14,故填14.类型一 判断函数零点所在的区间(2014·北京)已知函数f (x )=6x-log 2x .在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解:f (x )在(0,+∞)为减函数,又f (1)=6>0,f (2)=2>0,f (4)=32-2=-12<0.故选C .【点拨】要判断在给定区间连续的函数是否存在零点,只需计算区间端点的函数值是否满足零点存在性定理的条件;如果题目没有给出具体区间,则需要估算函数值并利用函数的单调性等性质来求.但应注意到:不满足f (a )·f (b )<0的函数也可能有零点,此时,应结合函数性质分析判断.(2013·北京朝阳检测)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)解:∵f ′(x )=1x +2x 2>0(x >0),∴f (x )在(0,+∞)上单调递增,又f (3)=ln3-23>0,f (2)=ln2-1<0,∴f (2)·f (3)<0,∴f (x )唯一的零点在区间(2,3)内.故选B .类型二 零点个数的判断(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0, 0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.解:由题意知,方程|f (x )+g (x )|=1实根的个数即为函数y =f (x )与y =1-g (x )交点个数及函数y =f (x )与y =-1-g (x )交点个数之和,而y =1-g (x )=⎩⎪⎨⎪⎧1, 0<x ≤1,7-x 2,x ≥2,x 2-1,1<x <2,作图易知函数y =f (x )与y =1-g (x )有两个交点,又y =-1-g (x )=⎩⎪⎨⎪⎧-1, 0<x <1,5-x 2,x ≥2,x 2-3,1<x <2,作图易知函数y =f (x )与y =-1-g (x )有两个交点,因此共有4个交点.故填4.【点拨】(1)连续函数在区间[a ,b ]上满足f (a )·f (b )<0时,函数在(a ,b )内的零点至少有一个,但不能确定究竟有多少个.要更准确地判断函数在(a ,b )内零点的个数,还得结合函数在该区间的单调性、极值等性质进行判断;(2)对于解析式较复杂的函数,可根据解析式特征化为f (x )=g (x )的形式,通过考察两个函数图象的交点个数来求原函数的零点个数;(3)有时求两函数图象交点的个数,不仅要研究其走势(单调性、极值点、渐近线等),而且要明确其变化速度快慢.(2014·福建)函数f (x )=⎩⎪⎨⎪⎧x 2-2, x ≤0,2x -6+ln x ,x >0的零点个数是________. 解:当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0]上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x ,解法一:令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图象,易得两函数图象只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点.解法二:f ′(x )=2+1x,由x >0知f ′(x )>0,∴f (x )在(0,+∞)上单调递增, 而f (1)=-4<0,f (e)=2e -5>0,f (1)f (e)<0,从而f (x )在(0,+∞)上只有一个零点.综上可知,函数f (x )的零点个数是2.故填2.类型三 已知零点情况求参数范围(2014·江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解:函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数f (x )在一个周期[0,3)上的图象如图,可知当0<a <12时满足题意.故填⎝ ⎛⎭⎪⎫0,12. 【点拨】(1)解答本题的关键在于依据函数的对称性、周期性等知识作出函数图象,将函数的零点个数问题转化为求两个函数的交点个数问题;(2)对于含参数的函数零点问题,一般先分离参数,针对参数进行分类讨论,按照题目所给零点的条件,找出符合要求的参数值或范围,但讨论要注意全面及数形结合.(2015·河南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解:∵f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,∴g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2, x >a ,x 2+3x +2,x ≤a .方程-x +2=0的解为x =2,方程x 2+3x +2=0的解为x =-1或-2.若函数g (x )=f (x )-2x 恰有三个不同的零点,则⎩⎪⎨⎪⎧a <2,-1≤a ,-2≤a ,解得-1≤a <2,即实数a的取值范围是[-1,2).故选D .1.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x 轴交点的横坐标,注意它是数而不是点.2.判断函数在给定区间零点的步骤(1)确定函数的图象在闭区间[a,b]上连续;(2)计算f(a),f(b)的值并判断f(a)·f(b)的符号;(3)若f(a)·f(b)<0,则有实数解.除了用上面的零点存在性定理判断外,有时还需结合相应函数的图象来作出判断.3.确定函数f(x)零点个数(方程f(x)=0的实根个数)的方法:(1)判断二次函数f(x)在R上的零点个数,一般由对应的二次方程f(x)=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f(x)在[a,b]上的图象是连续不断的一条曲线,且是单调函数,又f(a)·f(b)<0,则y=f(x)在区间(a,b)内有唯一零点.1.函数y =x 12-⎝ ⎛⎭⎪⎫12x 的零点个数为( ) A .0B .1C .2D .3解:在同一坐标系内分别做出y 1=x ,y 2=⎝ ⎛⎭⎪⎫12x的图象,根据图象可以看出交点的个数为1.故选B .2.(2015·青岛模拟)若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .a >15B .a >15或a <-1C .-1<a <15D .a <-1解:由题可知函数f (x )的图象是一条直线,所以f (x )在区间(-1,1)上存在一个零点等价于f (-1)f (1)<0,即(1-5a )(a +1)<0.解得a >15或a <-1.故选B .3.(2013·天津)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1B .2C .3D .4解:判断函数f (x )的零点个数可转化为判断方程f (x )=2x|log 0.5x |-1=0的根的个数,由此得到|log 0.5x |=⎝ ⎛⎭⎪⎫12x ,设y 1=|log 0.5x |,y 2=⎝ ⎛⎭⎪⎫12x,则两个函数y 1与y 2的交点个数即为所求,如图所示,可知交点有两个.故选B .4.已知x 0是函数f (x )=2x+11-x的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解:由于函数g (x )=11-x =-1x -1在(1,+∞)上单调递增,函数h (x )=2x在(1,+∞)上单调递增,故函数f (x )=h (x )+g (x )在(1,+∞)上单调递增,所以函数在(1,+∞)上只有唯一的零点x 0,且在(1,x 0)上,f (x 1)<f (x 0)=0;在(x 0,+∞)上,f (x 2)>f (x 0)=0.故选B .5.(2014·黄冈九月质检)函数f (x )=⎝ ⎛⎭⎪⎫1+x -x 22+x 33cos2x 在区间[-3,3]上零点的个数为( )A .3B .4C .5D .6解:令g (x )=1+x -x22+x33, 则g ′(x )=1-x +x 2>0,故g (x )在R 上单调递增,而g (-3)g (3)<0,故g (x )在(-3,3)上仅有1个零点.作图易知y =cos2x 在[-3,3]上有4个零点,且易判断这5个零点互不相同.故选C .6.(2015·浙江模拟)函数y =ln|x -1|的图象与函数y =-2cos πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .8B .6C .4D .2解:作出两函数的大致图象如图所示.两函数图象都关于直线x =1对称,且共有6个交点, 故所有交点的横坐标之和为6.故选B .7.设f (x )=2x-x -4,x 0是函数f (x )的一个正数零点,且x 0∈(a ,a +1),其中a ∈N ,则a = .解:∵x 0是函数f (x )的一个正数零点,即f (x 0)=2x 0-x 0-4=0,知f (2)=22-2-4<0,f (3)=23-3-4>0,∴x 0∈(2,3),再由y =2x与y =x +4在(0,+∞)上只有一个交点知a 值惟一.又∵a ∈N ,∴a =2.故填2.8.(2014·安庆六校联考)已知函数f (x )=⎩⎪⎨⎪⎧|x |, x >0,-x 2-2x +1,x ≤0, 若函数g (x )=f (x )+2m 有三个零点,则实数m 的取值范围是________.解:作出函数f (x )=⎩⎪⎨⎪⎧|x |,x >0,-x 2-2x +1,x ≤0 的图象如图所示,令g (x )=f (x )+2m =0,则f (x )=-2m ,由图象知,当1≤-2m <2,即-1<m ≤-12时,直线y =-2m 与y =f (x )的图象有三个交点.故填⎝⎛⎦⎥⎤-1,-12.9.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,求函数y =f (f (x ))+1的所有零点构成的集合.解:先解方程f (t )=-1,即⎩⎪⎨⎪⎧t ≤0,t +1=-1或⎩⎪⎨⎪⎧t >0,log 2t =-1. 得t =-2或t =12.再解方程f (x )=-2和f (x )=12.即⎩⎪⎨⎪⎧x ≤0,x +1=-2或⎩⎪⎨⎪⎧x >0,log 2x =-2和⎩⎪⎨⎪⎧x ≤0,x +1=12或⎩⎪⎨⎪⎧x >0,log 2x =12. 得x =-3或x =14和x =-12或x = 2.故所求为⎩⎨⎧⎭⎬⎫-3,-12,14,2.10.若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,求实数a 的取值范围. 解:f (x )在(0,1)上恰有一个零点,显然a ≠0. ∴有两种情形:①f (0)f (1)<0,得(-1)·(2a -2)<0⇒a >1;②Δ=0且方程f (x )=0的根在(0,1)内,令Δ=0⇒1+8a =0⇒a =-18,得f (x )=-14(x 2+4x +4),此时f (x )=0的根x 0=-2∉(0,1).综上知a >1,即实数a 的取值范围为(1,+∞). 11.已知二次函数f (x )=ax 2+bx +c (a ≠0). (1)若f (-1)=0,试判断函数f (x )的零点个数;(2)若对任意x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),试证明存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立. 解:(1)∵f (-1)=0,∴a -b +c =0,b =a +c . ∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2, 当a =c 时,Δ=0,函数f (x )有一个零点; 当a ≠c 时,Δ>0,函数f (x )有两个零点.(2)证明:令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f (x 1)-f (x 2)2,g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f (x 2)-f (x 1)2,∴g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2.∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0,即g (x )=0在(x 1,x 2)内必有一个实根.即存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=||x cos (πx ),则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( ) A .5B .6C .7D .8解:原问题可转化为函数f (x )与g (x )的图象在[-12,32]上的交点个数问题.由题意知函数f (x )为偶函数,且周期为2.当x =32,12,0,-12时,g (x )=0,当x =1时,g (x )=1,且g (x )是偶函数,g (x )≥0,由此可画出函数y =g (x )和函数y =f (x )的大致图象如图所示,由图可知在⎣⎢⎡⎦⎥⎤-12,32上两函数图象有6个交点,故选B .。
2004年高考数学试题(湖南理)及答案
2004年高考试题湖南卷数学试题(理工类)数学(理工农医类)试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项最符合题目要求的。
(1)复数41(1)t+的值是(A )4t (B )4t - (C )4 (D )4-(2)如果双曲线2211312x y -=上点PP 到右准线的距离是(A )135 (B )13 (C )5 (D )513(3)设1()f x -是函数2()log (1)f x x =+的反函数,若11[1()][1()]8f a f b --++=,则()f a b -的值是 (A )1 (B )2 (C )3 (D )2log 3(4)把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点且当棱锥体积最大时,直线BD 和平面ABC 所成的角的度数为(A )90(B )60(C )45(D )30(5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②。
则完成①、②这两项调查宜采用的抽样方法依次是(A )分层抽样法,系统抽样法 (B )分层抽样法,简单随机抽样法 (C )系统抽样法,分层抽样法 (D )简单随机抽样法,分层抽样法(6) 设函数2,0,()2,0.x bx c x f x x ⎧++=⎨>⎩… 若(4)(0),(2)2f f f -=-=-,则关于x 的方程()f x x =的个数为(A )1 (B )2 (C )3 (D )4 (7)设0,0a b >>,则以下不等式中不恒成立的是(A )11()()4a b a b++… (B )3322a b ab +… (C )22222a b a b +++… (D(8)数列{}n a 中,*11116,,N 55n n n a a a n ++=+=∈,则120lim()n n a a a →++⋅⋅⋅+=(A )25 (B )27 (C )14 (D )425(9)设集合{(,)|R,y R}U x y x =∈∈,{(,)|20}A x y x y m =-+>,{(,)B x y x y n =+-0}…,那么点(2,3)()U P A C B ∈ 的充要条件是(A )1,5m n >-< (B ) 1,5m n <-< (C )1,5m n >-> (D )1,5m n <->(10)从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为 (A )56 (B )52 (C )48 (D )40(11)农民收入由工资性收入和其他收入两部分构成。
高考数学:专题一第四讲 基本初等函数及函数的应用配套限时规范训练
第四讲 基本初等函数及函数的应用(推荐时间:50分钟)一、选择题1.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为( ) A.13B.23C .1D .22.如果函数f (x )=ax 2+bx +c (a >0)对任意实数t 都有f (2+t )=f (2-t ),那么( )A .f (1)< f (2)< f (4)B .f (2)< f (1)< f (4)C .f (2)< f (4)< f (1)D .f (4)< f (2)< f (1) 3.已知函数f (x )=⎩⎪⎨⎪⎧log 21-x ,x ≤0,f x -1+1,x >0,则f (2 013)等于( ) A .2 010 B .2 011 C .2 012D .2 0134.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x, x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫19的值为( ) A .4B.14 C .-4D .-145.若函数f (x )=若f (a )>f (-a ),则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知函数f (x )=⎩⎪⎨⎪⎧12x,x ≥4f x +1,x <4,则f (2+log 23)的值为( )A.124 B.112 C.16D.137.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则m 的取值范围为( )A .[1,+∞)B .[0,2]C .(-∞,-2]D .[1,2]8.(2011·天津)对实数a和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1] 二、填空题9.(2011·陕西)则f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x,x ≤0,则f (f (-2))=____________.10.(2011·江苏)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.11.方程2-x +x 2=3的实数解的个数为________.12.(2011·湖北)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍. 三、解答题13.(2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时x 的取值范围.14.已知函数f (x )=x 3,g (x )=x +x .求函数h (x )=f (x )-g (x )的零点个数,并说明理由.答案1.B 2.B 3.D 4.B 5.C 6.A 7.D 8.B 9.-210.-3411.212.6 10 00013.解 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,则f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2). ∵2x 1<2x 2,a >0⇒a (2x 1-2x2)<0, 3x 1<3x 2,b >0⇒b (3x 1-3x2)<0,∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0,当a <0,b >0时,⎝⎛⎭⎫32x >-a 2b ,则x >log 1.5⎝⎛⎭⎫-a2b ;当a >0,b <0时,⎝⎛⎭⎫32x <-a 2b ,则x <log 1.5⎝⎛⎭⎫-a2b .14.解 由题意知,x ∈[0,+∞),h (x )=x 3-x -x ,h (0)=0,且h (1)=-1<0,h (2)=6-2>0,则x =0为h (x )的一个零点,且h (x )在(1,2)内有零点.因此,h (x )至少有两个零点.方法一 h ′(x )=3x 2-1-12x 21-,记φ(x )=3x 2-1-12x 21-,则φ′(x )=6x +14x 23-.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ(33)<0,则φ(x )在(33,1)内有零点,所以φ(x )在(0,+∞)内有且只有一个零点.记此零点为x 1,则当x ∈(0,x 1)时,φ(x )<φ(x 1)=0;当x ∈(x 1,+∞)时,φ(x )>φ(x 1)=0.所以当x ∈(0,x 1)时,h (x )单调递减,而h (0)=0,则h (x )在(0,x 1]内无零点; 当x ∈(x 1,+∞)时,h (x )单调递增,则h (x )在(x 1,+∞)内至多只有一个零点,从而h (x )在(0,+∞)内至多只有一个零点.综上所述,h (x )有且只有两个零点.方法二 由h (x )=x (x 2-1-x -12),记φ(x )=x 2-1-x -12,则φ′(x )=2x +12x 23-.当x ∈(0,+∞)时,φ′(x )>0,从而φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.因此h (x )在(0,+∞)内也至多只有一个零点. 综上所述,h (x )有且只有两个零点.。
2004年高考数学试题(全国4文)及答案
2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。
2004年高考理科数学全国卷(word版含答案)
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
2004年全国各地高考试题分类解析(函数部分)
04高考函数一)选择题1 (2004. 天津卷)若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =(A)(A)42 (B)22(C)41 (D)212. (2004.江苏)若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( A ) (A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 23. (2004.江苏)设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( B ) (A)3 (B)32 (C)43 (D)654.(2004.全国理)已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( B )A .bB .-bC .b 1D .-b15.(2004.全国理)函数)1(11≥+-=x x y 的反函数是( B )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1)6、(2004.上海理)若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O 逆时针旋转2π得到,则 f(x)=( A )(A) 10-x -1. (B) 10x -1. (C) 1-10-x . (D) 1-10x. 7、(2004. 上海卷文科)若函数y=f(x)的图象与函数y=lg(x+1)的图象关于直线x-y=0对称,则 f(x)=( A )(A)10x -1. (B) 1-10x . (C) 1-10-x . (D) 10-x-1.8.(2004.湖北理)已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为 ( C ) A .21x x+ B .212x x+-C .212x x+ D .21x x+-9.(2004.湖北理)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A .41B .21 C .2D .410.(2004. 福建理)已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是 ( B )11 (2004. 天津卷)函数123==x y )01(<≤-x 的反函数是(D)(A))31(log 13≥+=x x y (B))31(log 13≥+-=x x y(C))131(log 13≤<+=x x y (D))131(log 13≤<+-=x x y12.(2004. 福建理)定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( D ) A .f (sin 6π)<f (cos 6π) B .f (sin1)>f (cos1)C .f (cos 32π)<f (sin 32π) D .f (cos2)>f (sin2)13.(2004. 重庆理)函数y =的定义域是:( D )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]14.(2004. 重庆理)一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( C )A .0a <B .0a >C .1a <-D .1a >15.(2004. 辽宁卷)对于10<<a ,给出下列四个不等式D ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是 A .①与③B .①与④C .②与③D .②与④(16) (2004. 天津卷)定义在R 上的函数)(x f 既是偶函数又是周期函数。
2004年全国高考数学试题(全国卷理科word版)
2004年全国高考数学(人教版)试题(理科)一、选择题(每小题5分,共60分)1、设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为( )A 、1B 、2C 、3D 、42、函数2sin x y =的最小正周期是( ) A 、 2π B 、 π C 、π2 D 、π4 3、设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则( )A 、54S S <B 、54S S =C 、56S S >D 、56S S =4、圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A 、023=-+y xB 、043=-+y xC 、043=+-y xD 、023=+-y x5、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设复数z 的辐角的主值为32π,虚部为3,则2z =( ) A 、i 322-- B 、i 232-- C 、i 32+ D 、i 232+7、设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( ) A 、5 B 、 5 C 、25 D 、45 8、不等式311<+<x 的解集为( )A 、()2,0B 、())4,2(0,2 -C 、()0,4-D 、())2,0(2,4 --9、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A 、322B 、2C 、32D 、324 10、在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A 、223B 、233 C 、23 D 、3311、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 -12、将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A 、12种B 、24种C 、36种D 、48种二、填空题(每小题4分,共16分)13、用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球的表面积的比值为 .14、函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 . 15、已知函数)(x f y =是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g .16、设P 是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17、(12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值。
2004年普通高等学校招生全国统一考试数学试卷(全国卷.理)
读一切好书,就是和许多高尚的人谈话。
——笛卡尔web试卷生成系统谢谢使用一、填空题(每空?分,共?分)1、已知函数的最小正周期为3,则A= .2、设满足约束条件:则的最大值是.二、选择题(每空?分,共?分)3、在△ABC中,AB=3,BC=,AC=4,则边AC上的高为A. B. C.D.4、设集合U={1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M∩(U N)=(A){5} (B){0,3} (C){0,2,3,5}(D) {0,1,3,4,5}5、函数的反函数为(A)(B)(C)(D)6、正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为(A)(B)(C)(D)7、函数在处的导数等于(A)1 (B)2 (C)3 (D)48、为了得到函数的图像,可以把函数的图像(A)向左平移3个单位长度(B)向右平移3个单位长度(C)向左平移1个单位长度(D)向右平移1个单位长度9、等差数列中,,则此数列前20项和等于(A)160 (B)180 (C)200(D)22010、已知函数的图象有公共点A,且点A的横坐标为2,则(A)(B)(C)(D)11、已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为(A )(B )(C )(D )12、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有(A)210种(B)420种(C)630种(D)840种13、函数的最小值等于(A)-3 (B)-2 (C)-1 (D)-14、已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平面ABC的距离为(A)1 (B)(C ) (D)215、△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC 的面积为,那么b=A.B. C.D.16、已知函数(A)(B)-(C)2 (D)-217、函数的反函数是A. B.C. D.18、的展开式中常数项是(A)14 (B)-14 (C)42 (D)-4219、设若则=A. B. C. D.420、设抛物线的准线与轴交于点Q,若过点Q的直线与抛物线有公共点,则直线的斜率的取值范围是A. B.[-2,2] C.[-1,1] D.[-4,4]21、已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T ,则等于A. B. C. D.22、从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A. B. C.D.三、计算题(每空?分,共?分)23、已知数列{}为等比数列,(Ⅰ)求数列{}的通项公式;(Ⅱ)设是数列{}的前项和,证明24、已知直线为曲线在点(1,0)处的切线,为该曲线的另一条切线,且(Ⅰ)求直线的方程;(Ⅱ)求由直线、和轴所围成的三角形的面积.25、双曲线的焦距为2c ,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.参考答案一、填空题1、3/22、2二、选择题3、B4、B5、C6、A7、D8、D9、B10、A11、D12、B13、C14、A15、B16、B17、B18、A19、B20、C21、A22、C三、计算题23、解:(I)设等比数列{a n}的公比为q,则a2=a1q, a5=a1q4.a1q=6,依题意,得方程组a1q4=162.解此方程组,得a1=2, q=3.故数列{a n}的通项公式为a n=2・3n-1.(II)24、解:(Ⅰ)y′=2x+1.直线l1的方程为y=3x-3.设直线l2过曲线y=x2+x-2上的点B(b, b2+b-2),则l2的方程为y=(2b+1)x-b2-2 因为l1⊥l2,则有2b +1=所以直线l2的方程为(II)解方程组得所以直线l1和l2的交点的坐标为l1、l2与x轴交点的坐标分别为(1,0)、.所以所求三角形的面积25、解:直线的方程为,即由点到直线的距离公式,且,得到点(1,0)到直线的距离,同理得到点(-1,0)到直线的距离由即于是得解不等式,得由于所以的取值范围是读一切好书,就是和许多高尚的人谈话。
2004年普通高等学校招生全国统一考试文 科 数 学
2004年普通高等学校招生全国统一考试文 科 数 学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂= ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x } 2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x yB .)(5R x x y ∈+=C .)0(51≠+=x xyD .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为 ( )A .1)1(22=++y x B .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式 V=334R π, 其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 ( )A .75°B .60°C .45°D .30° 7.函数xe y -=的图象( )A .与x e y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x ey -=的图象关于y 轴对称D .与xey -=的图象关于坐标原点对称8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 ( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |= ( )A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( )A .56个B .57个C .58个D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a .14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心的原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{n a },.21,952==a a (Ⅰ)求{n a }的通项公式; (Ⅱ)令na nb 2=,求数列}{n b 的前n 项和S n .18.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高.19.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支. 求:(Ⅰ)A、B两组中有一组恰有两支弱队的概率;(Ⅱ)A组中至少有两支弱队的概率.20.(本小题满分12分)如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.21.(本小题满分12分)若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间 (6,+∞)上为增函数,试求实数a 的取值范围.22.(本小题满分14分)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若,求l 在y 轴上截距的变化范围.2004年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)参考答案一、选择题C A B C A CD B D B B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.21- 14.5 15.1222=+y x 16.②④ 三、解答题17.本小题主要考查等差、等比数列的概念和性质,考查运算能力,满分12分. 解:(Ⅰ)设数列}{n a 的公差为d ,依题意得方程组⎩⎨⎧=+=+,214,911d a d a 解得.4,51==d a所以}{n a 的通项公式为.14+=n a n(Ⅱ)由,21414+=+=n n n b n a 得所以}{n b 是首项512=b ,公式42=q 的等比数列. 于是得}{n b 的前n 项和 .15)12(3212)12(24445-⨯=--⨯=n n n S 18.本小题主要考查三角函数概念,两角和、差的三角函数值以及应用、分析和计算能力,满分12分. (Ⅰ)证明:,51)sin(,53)sin(=-=+B A B A Θ .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 所以.tan 2tan B A =(Ⅱ)解:ππ<+<B A 2Θ,,43)tan(,53)sin(-=+∴=+B A B A 即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得 .01tan 4tan 22=--B B解得262tan ±=B ,舍去负值得262tan +=B , .62tan 2tan +==∴B A 设AB 边上的高为CD. 则AB=AD+DB=.622tan tan +=+CDB CD A CD 由AB=3,得CD=2+6. 所以AB 边上的高等于2+6.19.本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用 数学知识解决问题的能力,满分12分.(Ⅰ)解法一:三支弱队在同一组的概率为 .7148354815=+C C C C故有一组恰有两支弱队的概率为.76711=-解法二:有一组恰有两支弱队的概率.76482523482523=+C C C C C C (Ⅱ)解法一:A 组中至少有两支弱队的概率 21481533482523=+C C C C C C 解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为.2120.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.满分12分.解法一:(Ⅰ)如图,连结CA 1、AC 1、CM ,则CA 1=.2∵CB=CA 1=2,∴△CBA 1为等腰三角形,又知D 为其底边A 1B 的中点,∴CD ⊥A 1B. ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3又BB 1=1,A 1B=2. ∵△A 1CB 为直角三角形,D 为A 1B 的中点, ∴CD=21A 1B=1,CD=CC 1,又DM=21AC 1=22,DM=C 1M.∴△CDM ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM.因为A 1B 、DM 为平在BDM 内两条相交直线,所以CD ⊥平面BDM. (Ⅱ)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG//CD ,FG=21CD. ∴FG=1,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D 知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形. 于是B 1G ⊥BD ,B 1G=.23∴∠B 1GF 是所求二面角的平面角, 又 B 1F 2=B 1B 2+BF 2=1+(2)22=23, ∴ .332123223)21()23(2cos 221212211-=⋅⋅-+=⋅-+=∠FGC B FB FG G B GF B即所求二面角的大小为.33arccos -π 解法二:如图,以C 为原点建立坐标系.(Ⅰ)B (2,0,0),B 1(2,1,0),A 1(0,1,1),D ()21,21,22,M (22,1,0),),21,21,0(),1,1,2(),21,21,22(1-=--==DM B A CD 则,0,01=⋅=⋅DM CD B A CD ∴CD ⊥A 1B ,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM. (Ⅱ)设BD 中点为G ,连结B 1G ,则G (41,41,423),22(-=BD 、21、21),),41,43,42(1--=G B .,.,0111面角等于所求的二面角的平的夹角与又θG B BD BD CD G B BD G B BD ∴⊥⊥∴=⋅∴.33||||cos 11-=⋅=∴G B CD θ 所以所求的二面角等于.33arccos-π 21.本小题主要考查导数的概念的计算,应用导数研究函数单调性的基本方法,考查综合运解:函数)(x f 的导数 .1)(2-+-='a ax x x f 令0)(='x f ,解得),1(,)1,1(,)1,()(,211,),1()(,211.11+∞---∞>>-+∞≤≤--==a a x f a a x f a a a x x 在内为减函数在上为增函数在函数时即当不合题意上是增函数在函数时即当或为增函数.依题意应有 当.0)(,),6(,0)(,)4,1(>'+∞∈<'∈x f x x f x 时当时所以 .614≤-≤a 解得.75≤≤a所以a 的取值范围是[5,7].22.本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和综合解题能力。
2004高考数学全国卷及答案理
2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=BC PB 于是有所以θ的夹角,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772cos -==θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+ 如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅ 柱体(棱柱、圆柱)的体积公式Sh V =柱体 其中S 表示柱体的底面积,h 表示柱体的高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,3)2)(1(ii i ++-=( )A . i +1B . i --1C . i 31+D . i 31-- 2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[∞+-C . ]1,(--∞D . ),0(]1,(∞+--∞Y3.若平面向量与向量)2,1(-=的夹角是︒180,且53||=,则= ( )A . )6,3(-B . )6,3(-C . )3,6(-D . )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( )A . 1或5B . 6C . 7D . 95.若函数log )(=x f aA .42ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 ( ) A . 510 B .515C .54 D . 32 7. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( )A . 03=--y xB . 032=-+y xC . 01=-+y xD . 052=--y x8. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的( )A . 必要而不充分条件B . 充分而不必要条件C . 充要条件D . 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )A . ]3,0[πB . ]127,12[ππC . ]65,3[ππD . ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA 。
2004年高考数学试题(全国3理)及答案
2004年高考试题全国卷Ⅲ 理工类数学试题(人教版旧教材)第I 卷(A )一、选择题: ⑴设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( ) A.1 B.2C.3D.4⑵函数sin 2xy =的最小正周期是( ) A.2πB.πC.2πD.4π ⑶设数列{}n a 是等差数列,26,a =- 86a =,S n 是数列{}n a 的前n 项和,则( )A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 5⑷圆2240x y x +-=在点(P 处的切线方程是( ) A.20x +-=B.40x -=C.40x -+=D.20x+=⑸函数y =(),-1)],-1)) C.[-2,-1)(1,2] D.(-2,-1)(1,2)⑹设复数z 的幅角的主值为23π2z =( )A. 2--B. 2i -C. 2+D. 2i⑺设双曲线的焦点在x轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A. 5B.C. 2D. 54⑻不等式113x <+<的解集为( )A.()0,2B.()()2,02,4- C.()4,0- D.()()4,20,2--⑼正三棱柱的底面边长为2,侧面均为直角三角形,则此三棱柱的体积为( )A.B.C. 3D.⑽在ABC ∆中,3,4AB BC AC===,则边AC 上的高为( )A.B.C. 32D.⑾设函数2(1)1()41x x f x x ⎧+<⎪=⎨-≥⎪⎩,则使得f (x )≥1的自变量x 的取值范围为( )A.(-∞,-2][0,10]B.(-∞,-2][0,1]C.(-∞,-2][1,10]D.[-2,0][1,10]⑿4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) A. 12 种 B. 24 种 C 36 种 D. 48种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. ⒀用平面α截半径为R 的球,如果球心到截面的距离为2R,那么截得小圆的面积与球的表面积的比值为________ ⒁函数sin y x x =+在区间[0,2π]的最小值为__________C⒂已知函数y =f (x )是奇函数,当x ≥0时, f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___⒃设P 为曲线y 2=4(x -1)上的一个动点,则点P 到点(0,1)的距离与点P 到y 轴的距离之和的最小值为_________三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤 ⒄(本小题满分12分)已知α为锐角,且tg α=12,求sin 2cos sin sin 2cos 2ααααα-的值. ⒅(本小题满分12分)解方程4x +|1-2x |=11.⒆(本小题满分12分)某村计划建造一个室内面积为 800m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留 l m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?⒇(本小题满分12分)三棱锥P-ABC 中,侧面P AC 与底面ABC 垂直,P A =PB =(1)求证 AB ⊥BC ;(II)如果AB=BC=AC 与侧面P AC 所成角的大小.(21) (本小题满分12分)设椭圆2211xy m +=+的两个焦点是 F 1(-c ,0), F 2(c ,0)(c >0),且椭圆上存在点P ,使得直线 PF 1与直线PF 2垂直.(I)求实数 m 的取值范围.(II)设l 是相应于焦点 F 2的准线,直线PF 2与l 相交于点Q.若22||2||QF PF =,求直线PF 2的方程.(22)(本小题满分14分)已知数列{a n }的前n 项和S n 满足:S n =2a n +(-1)n ,n ≥1.⑴写出求数列{a n }的前3项a 1,a 2,a 3; ⑵求数列{a n }的通项公式; ⑶证明:对任意的整数m >4,有4511178m a a a +++<.C 2004年高考试题全国卷3 理工类数学试题(人教版旧教材)(内蒙、海南、西藏、陕西、广西等地区)参考答案一、选择题:1.B2.C3.B4.D5.A6.A7.C 8.D9.C 10.B 11.C 12.C二、填空题:13、3:16 14、1 . 15、-3 16三、解答题:17.解:∵12tgα=,α为锐角∴cosα=∴2sin2cos sin sin(2cos1)1sin2cos22sin cos cos22cos4ααααααααααα--===.18.解:当x≤0时, 有:4x+1-2x=11 化简得:(2x)2-2x-10=0解之得:122x=或122x=(舍去).又∵x≤0得2x≤1, 故122x+=不可能舍去.当x<0时, 有:4x-1+2x=11化简得:(2x)2+2x-12=0解之得:2x=3或2x= -4(舍去)∴2x=3 x=log23综上可得原方程的解为x=log23.19.解:设温室的长为xm,则宽为800mx,由已知得蔬菜的种植面积S为:8001600(2)(4)80048S x xx x=--=--+4008084()648xx=-+≤(当且仅当400xx=即x=20时,取“=”). 故:当温室的长为20m, 宽为40m时,蔬菜的种植面积最大,最大面积为648m2.20.⑴证明:取AC中点O, 连结PO、BO.∵P A=PC∴PO⊥AC又∵侧面P AC⊥底面ABC∴PO⊥底面ABC又P A=PB=PC∴AO=BO=CO∴△ABC为直角三角形∴AB⑵解:取BC的中点为M,连结OM,PM,所以有OM=12∴PO==由⑴有PO⊥平面ABC,OM⊥BC,由三垂线定理得PM⊥BC ∴平面POM⊥平面PBC,又∵.∴△POM是等腰直角三角形,取PM的中点N,连结ON, NC则ON⊥PM, 又∵平面POM⊥平面PBC, 且交线是PM, ∴ON⊥平面PBC∴∠ONC即为AC与平面PBC所成的角.12ON PM OC====∴1sin2ONONCOC∠==∴6ONCπ∠=. 故AC与平面PBC所成的角为6π.21.解:⑴∵直线PF1⊥直线PF2∴以O为圆心以c为半径的圆:x2+y2=c2与椭圆:2211xym+=+有交点.即2222211x y cxym⎧+=⎪⎨+=⎪+⎩有解又∵c 2=a 2-b 2=m +1-1=m >0 ∴222101m x a m m-≤=<=+ ∴1m ≥ ⑵设P (x,y ), 直线PF 2方程为:y =k (x -c )∵直线l的方程为:2a x c ==Q 的坐标为∵22||2||QF PF = ∴点P 分有向线段2QF所成比为3 ∵F 2∴P) ∵点P 在椭圆上21=∴k =直线PF 2的方程为:y=x).22.解:⑴当n =1时,有:S 1=a 1=2a 1+(-1) a 1=1;当n =2时,有:S 2=a 1+a 2=2a 2+(-1)2⇒a 2=0;当n =3时,有:S 3=a 1+a 2+a 3=2a 3+(-1)3⇒a 3=2;综上可知a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+---- 化简得:1122(1)n n n a a --=+-可化为:1122(1)2[(1)]33n n n n a a --+-=+- 故数列{2(1)3n n a +-}是以112(1)3a +-为首项, 公比为2的等比数列. 故121(1)233n n n a -+-= ∴121222(1)[2(1)]333n n n nn a --=--=--数列{n a }的通项公式为:22[2(1)]3n nn a -=--.⑶由已知得:232451113111[]221212(1)m mm a a a -+++=+++-+-- 23111111[]2391533632(1)m m -=++++++-- 11111[1]2351121=+++++11111[1]2351020<+++++511(1)1452[]12312m --=+-514221[]23552m -=+- 51311131041057()1552151201208m -=-<=<=. 故4511178m a a a +++<( m >4).。
2004全国高考数学-2014全国高考数学
2004全国高考数学一.选择题1.复数的运算2函数的奇偶性3向量的运算4反函数5二项式定理6集合7圆锥曲线8圆锥曲线9三角函数图像10立体几何11概率12最值二.填空题13解不等式14轨迹方程15数列16空间中的平行垂直三.解答题17.三角函数18概率19.导数单调区间20立体几何21圆锥曲线22数列2005全国高考数学一.选择题1.复数2.集合3立体几何4平面解析集合5立体几何6圆锥曲线7三角函数8.函数图像9.函数10线性规划11三角函数12立体几何二.填空题13.指数函数14二项式定理15平面向量16立体几何三.解答体17三角函数18立体几何19数列20概率21圆锥曲线22导数2006全国高考数学一.选择题1平面向量的运算2集合3反函数4圆锥曲线5数列6三角函数7平面解析几何8三角函数9立体几何10二项式定理11圆锥曲线12最值二.填空题13.函数奇偶性14立体几何15线性规划16排列组合三.解答题17.数列18三角函数19概率20立体几何21圆锥曲线22导数2007全国高考数学一.选择题1三角函数2复数3平面向量4圆锥曲线5集合6线性规划7立体几何8对数函数9逻辑用语10二项式定理11圆锥曲线12三角函数二.填空题13.排列组合14反函数15数列16立体几何17三角函数18概率19立体几何20导数21圆锥曲线22数列2008全国高考数学一.选择题1.集合2.复数3.函数对称4对数函数比较大小5线性规划6排列组合7二项式定理8三角函数9圆锥曲线10立体几何11平面解析集合12立体几何二.填空题13.平面向量14.导数集合意义15圆锥曲线16逻辑用语三.解答题17三角函数18.概率19立体几何20数列21圆锥曲线22导数2009全国高考数学一.选择题1集合2复数3不等式4圆锥曲线5排列组合6向量运算7立体几何8三角函数9导数几何意义10立体几何11函数性质12圆锥曲线二.填空题13.填空题14数列15立体几何16导数三角函数三.解答题17三角函数18立体几何19概率20数列21圆锥曲线22导数2010全国高考数学一.选择题1复数2三角函数3线性规划4数列5二项式定理6排列组合7立体几何8函数比较大小9圆锥曲线10函数图像11向量12立体几何二.填空题13.不等式14三角函数15函数对称性16圆锥曲线三.解答题17三角函数18概率19立体几何20导数21圆锥曲线22数列2011全国高考数学一.选择题1复数2反函数3逻辑用语4数列5三角函数6立体几何7概率8导数几何意义9函数周期性10圆锥曲线11立体几何12最值13.二项式定理14三角函数15圆锥曲线16立体几何三.解答题17.三角函数18概率19立体几何20数列21立体几何22导数2012全国高考数学一.选择题1集合2排列组合3复数4圆锥曲线5数列6 算法7立体几何8圆锥曲线9三角函数10函数图像11圆锥曲线12导数二.填空题13向量14线性规划15概率16数列三解答题17三角函数18概率19立体几何20圆锥曲线21导数2013全国高考数学一.选择题1集合2复数3概率4圆锥曲线5算法6立体集合7数列8立体几何9二项式定理10圆锥曲线11函数12数列二.填空题13向量运算14数列15三角函数16函数对称三解答题17三角函数18立体几何19概率20圆锥曲线21导数2014全国高考数学一选择题1集合2复数3函数4圆锥曲线5概率6函数图像7算法8三角函数9不等式逻辑用语10圆锥曲线11函数零点12立体几何二填空题13二项式定理14概率15向量16三角函数最值三解答题17数列18概率19立体几何20圆锥曲线21导数。
13-1-高考2004年归类(导数基础)
导数在2004年高考中的基础知识考查广东省中山市东升高中 高建彪导数是新教材的内容,是与大学内容接轨最重要的知识点,所以高考中有时以大题出现,有时也以小题出现,它常与函数式、单调性、最大值与最小值等问题综合在一起,下面以2004年的高考题中的基础性问题进行分析.一、曲线的切线:例1.(04年全国卷二.文3)曲线1323+-=x x y 在点)1,1(-处的切线方程为( ). A. 43-=x y B. 23+-=x y C. 34+-=x y D. 54-=x y【解】点评:利用导数求曲线)(x f y =的切线,先求导数)('x f ,过曲线上某点),(00y x 的切线斜率k 就是该点导数值,即)(|0''9x f y k x x ===.练 1.(04年重庆卷.理14)曲线2212x y -=与2413-=x y 在交点处的切线夹角是 .(以弧度数作答)练2.(04年重庆卷.文15)已知曲线31433y x =+,则过点(2,4)P 的切线方程是 .练3.(04年湖南卷.文13)过点(1,2)P -且与曲线2342y x x =-+在点(1,1)M 处的切线平行的直线方程是 .二、函数单调性:例2.(04年全国卷一.理19)已知R a ∈,求函数ax e x x f 2)(=的单调区间.【解】点评:利用导数求函数)(x f 的单调区间,先求函数导数)('x f ,再解0)('>x f 得到递增区间,解0)('<x f 得到递减区间. 此题中,解不等式时要对参数a 分“0=a 、0>a 、0<a ”三种情况讨论,为何如此分,同学们可以思考后说说.练4.(04年全国卷一.文19)已知函数13)(23+-+=x x ax x f 在R 上是减函数,求a 的范围.三、函数的最大值、最小值:例3.(04年全国卷四.理18)求241)1l n ()(x x x f -+=在区间]2,0[的最大值和最小值. 【解】点评:利用导数求函数)(x f 的最大值与最小值,先求函数的导数)('x f ,再解0)('=x f 得到极值点,最后列表分析得出结论. 注意区间、端点、定义域.练5.(04年江苏卷.10)函数13)(3+-=x x x f 在闭区间]0,3[-的最大值、最小值分别是( ). A. 1,-1 B. 1,-17 C. 3,-17 D. 9,-19四、含参数的问题:例4.(04年全国卷二.文21)若函数1)1(2131)(23+-+-=x a ax x x f 在区间)4,1(内为减函数,在区间),6(+∞为增函数,试求实数a 的取值范围.【解】点评:关键由利用导数求单调区间的理论,将已知转化为)('x f 在递增区间内为正,在递减区间内为负.将导数式的研究变成二次函数的图像分布研究,由)('x f 的图像分布规律得到)('x f 值的符号不等式.此解先用等价转化思想方法,再用数形结合思想方法.练6.(04年浙江卷.文21)已知a 为实数,))(4()(2a x x x f --=. (Ⅰ)求导数)('x f ;(Ⅱ)若0)1('=-f ,求)(x f 在]2,2[-上的最大值和最小值;(Ⅲ)若)(x f 在]2,(--∞和),2[+∞上都是递增,求a 的范围.小结语:利用导数可以求曲线的切线斜率,函数单调性,函数最大值与最小值. 解决这三类问题时,我们一定要注意基本的解题步骤,且不能混淆,例如,解0)('>x f 得到的是单调区间,而解0)('=x f 是研究极值,且还需要列表分析. 已知函数式的单调区间或极值,求函数式中参数的值或范围的问题,也是常考之题型,它是逆向思维的运用.(写于2005年1月30日)答案: 例1~4. B , 略, 最大值412ln -,最小值为0, 75≤≤a ,练1~6.4π,440x y --=,240x y -+=,3-≤a ,C ,最大值29,最小值2750-,22≤≤-a 2004年高考卷归类练习(导数基础)一、曲线的切线:例1.(04年全国卷二.文3)曲线1323+-=x x y 在点)1,1(-处的切线方程为( ).练 1.(04年重庆卷.理14)曲线2212x y -=与2413-=x y 在交点处的切线夹角是 .(以弧度数作答)练2.(04年重庆卷.文15)已知曲线31433y x =+,则过点(2,4)P 的切线方程是 .练3.(04年湖南卷.文13)过点(1,2)P -且与曲线2342y x x =-+在点(1,1)M 处的切线平行的直线方程是 .二、函数单调性:例2.(04年全国卷一.理19)已知R a ∈,求函数ax e x x f 2)(=的单调区间. 练4.(04年全国卷一.文19)已知函数13)(23+-+=x x ax x f 在R 上是减函数,求a 的范围.三、函数的最大值、最小值:例3.(04年全国卷四.理18)求241)1l n ()(x x x f -+=在区间]2,0[的最大值和最小值.练5.(04年江苏卷.10)函数13)(3+-=x x x f 在闭区间]0,3[-的最大值、最小值分别是( ).四、含参数的问题:例4.(04年全国卷二.文21)若函数1)1(2131)(23+-+-=x a ax x x f 在区间)4,1(内为减函数,在区间),6(+∞为增函数,试求实数a 的取值范围.练6.(04年浙江卷.文21)已知a 为实数,))(4()(2a x x x f --=. (Ⅰ)求导数)('x f ;(Ⅱ)若0)1('=-f ,求)(x f 在]2,2[-上的最大值和最小值;(Ⅲ)若)(x f 在]2,(--∞和),2[+∞上都是递增,求a 的范围.。
2004高考数学函数试题选编(附答案)
高考数学函数试题选编答案函数是解决实际问题的有力工具。
客观世界是不断运动、变化的,运动的规律、变化的趋势,需要用变量来刻划,用函数来研究。
而“构造函数”法就是将那变化不定、灵活性强,具有非常规性的问题,构造成函数模型,利用函数知识来求解。
“构造函数”法是一种重要解题方法,也是培养学生创新能力的一种有效途径。
本文就如何运用此方法解题举例说明。
一、构造一次函数例1对于满足0≤P≤4的所有实数P,使不等式x2+px>4x+p-3都成立的绵取值范围是____解:原不等式化为:x2+(x-1)p-4x+3>0设f(p)=(x-1)p+x2--4x+3问题转化为求使f(p)>0的取值范围∵x-1≠0(否则原不等式不成立)∴f(p)为一次函数,要便f(p)在0≤p≤4内恒大于0,则有f(0)>0f(4)>0x2-4x+3>0x2-1>0解得:x<-1或x>3例2已知|a|<1、|b|<1、|c|<1,求证ab+bc+ac+1>0证明:将字母a作为变元,构造函数f(x)=(b+c)x+bc+1只证|x|<1时f(x)>0而f(1)=b+c+bc+1=(b+1)(c+1)>0f(-1)=-b-c+bc+1=(b-1)(c-1)>0且f(x)是有单调性∴-1<X<1时,F(X)位于F(-1)与F(-1)之间即|a|<1时,f(a)=ab+bc+ac+1>0成立.评析构造函数法解题的思维过程具有一定灵活性和创造性,运用此法解题不仅需要掌握数学知识之间的联系,而且具有较强的思维能力和创新意识。
以上两例通过巧妙地选择变量构造一次函数,从而达到解题目的。
二、构造二次函数例3(1993高考题)已知关于x的实系数方程x2+ax+b=0有二实根α、β,且2|a|<4+b|b|<4求证|α|<2.|β|<2证明:构造二次函数f(x)=x2+ax+b与x轴交于两点A(α0)、B(β0)只需证A、B在(-22)内.即证f(-2)>0f(2)>0顶点横坐标|x0|<2即可.事实上:2|a|<4+b即4±2a+b>0即f(2)>0f(-2)>0又|b|<4∴|a|<2+|b|2<4∴|x0|=|-a2|<2∴A、B两点横坐标α、β满足|α|<2|β|<2.例4已知a、b、c、d、e∈R且满足a+b+c+d+e=8a2+b2+c2+d2+e2=16,求e的最大值.解构造二次函数y=4x2+2(a+b+c+d)x+(a2+b2+c2+d2)则y=(x+a)2+(x+b)2+(x+c)2+(x+d)2≥0由于二次函数的图像开口向上,且图像上的点都在x轴及其上方.△=4(a+b+c+d)2-16(a2+b2+c2+d2)≤0△=(8-e)2-16(16-e2)≤0∴0≤e≤165故e的最大值为165评析构造二次函数可借助其判别式、韦达定理及函数图像来帮助分析解题。
04年~11年对口高考数学——函数
2004年~2011年对口高考数学函数部分(2004年)3.下列函数既是奇函数又是单调增加函数的是(A )y= 33x x + (B )y=sin3x (C )y=ln(x 2+1) (D )y=tan(e x )(2004年)14.函数y=2cos 3sin x x -的定义域是 。
(2004年)20(本题12分)设函数y=f(x)且lg(lgy)=lg(2x)+lg(2-x).求:(1)函数f(x)的解析表达式及其定义域;(2)函数f(x)的单调区间。
(2005年)3.若lgx=b+lga ,则x= ( )(A )b ×10a (A)a+10b (C)b+10a (D)a ×10b(2005年)16.已知f(x)是二次函数,且满足f(0)=3,f(x+1)-f(x)=4x,则f(x)=(2005年)24(本题12分):已知函数3()31x f x a =-+(R a ∈)。
(1)指出该函数的定义域,判断)(x f 在定义域上的单调性;(2)试确定a 的值,使f(x)为奇函数(3)当f(x)为奇函数时,解不等式f(x)>0(2006年)3.函数25(,1)1x y x R x x -=∈≠-的反函数是 ( ) (A )25(,1)1x y x R x x -=∈≠- (B )5(,2)2x y x R x x -=∈≠- (C )2(,5)5x y x R x x -=∈≠- (D )5(,1)2x y x R x x -=∈≠-(2006年)25.已知函数312()ln 2x f x x x +=--。
求: (1)求函数f(x)的定义域;(4分)(2)讨论f(x)的奇偶性; (3分)(3)讨念论函数f(x)的单调性。
3分)(2008年)(12)计算: 2.53(3.2)log 4= (结果保留4位小数)(2008年)(22)某一新产品问世后,公司为了推销这一新产品要花大量的广告费,但随着产品在市场上被认可,广告的作用会越来越小。
北京2004年春季高考数学(理)
绝密★启用前2004年普通高等学校春季招生考试数 学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页.第Ⅱ卷3至9页. 共150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21sin cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.在函数2,cos ,sin ,2sin xtgy x y x y x y ====中,最小正周期为π的函数是 ( )A .x y 2sin =B .x y sin =C .x y cos =D .2x tgy =12<<m 正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c ',c 分别表示上、下底面周长,l 表示斜高或母线长球体的体积公式334R V π=球A .第一象限B .第二象限C .第三象限D .第四象限3.双曲线19422=-y x 的渐近线方程是( )A .x y 23±=B .x y 32±=C .x y 49±=D .x y 94±=4.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为 ( )A .30°B .45°C .60°D .75° 5.在极坐标系中,圆心在),2(π且过极点的圆的方程为( )A .θρcos 22=B .θρcos 22-=C .θρsin 22=D .θρsin 22-=6.已知0)cos(,0)sin(>-<+πθπθ,则下列不等关系中必定成立的是 ( )A .22θθctgtg< B .22θθctgtg>C .2cos2sinθθ< D .2cos2sinθθ>7.已知三个不等式:0,0,0>->->b da c ad bc ab (其中dc b a ,,,均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个 数是 ( )A .0B .1C .2D .38.两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一 个新长方体,在这些新长方体中,最长的对角线的长度是( )A .cm 77B .cm 27C .cm 55D .cm 2109.在100件产品中有6件次品. 现从中任取3件产品,至少有1件次品的不同取法的种数是( )A .29416C CB .29916C CC .3943100C C -D .3943100P P- 10.期中考试以后,班长算出了全班40个人数学成绩的平均分为M. 如果把M 当成一个同( )A .4140B .1C .4041D .2绝密★启用前2004年普通高等学校春季招生考试数 学(理工农医类)(北京卷)第Ⅱ卷(非选择题 共100分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上.11.若)(1x f -为函数)1lg()(+=x x f 的反函数,则)(1x f -的值域是 . 12.αααcos )30sin()30sin(︒--︒+的值为 .13.据某校环保小组调查,某区垃圾量的年增长率为b ,2003年产生的垃圾量为a 吨. 由此预测,该区下一年的垃圾量为 吨,2008年的垃圾量为 吨.14.若直线30322=+=-+y x ny mx 与圆没有公共点,则m ,n 满足的关系式为 ; 以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有 个.三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)当10<<a 时,解关于x 的不等式212--<x x a a.16.(本小题满分13分)在△ABC 中,c b a ,,分别是C B A ∠∠∠,,的对边长. 已知c b a ,,成等比数列,且bc ac c a -=-22,求A ∠的大小及c Bb sin 的值.17.(本小题满分15分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BC SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.18.(本小题满分15分)已知点A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线px y 22上,△ABC 的重心与 此抛物线的焦点F 重合(如图).(1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点M 的坐标; (3)求BC 所在直线的方程.19.(本小题满分14分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元. 该厂为鼓励销售商 订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就 降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数)(x f P 的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)20.(本小题满分14分)下表给出一个“等差数阵”:a表示位于第i行第j列的数.其中每行、每列都是等差数列,ija的值;(1)写出45a的计算公式;(2)写出ij(3)证明:正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.绝密★启用前2004年普通高等学校春季招生考试数学参考解答(理工农医类)(北京卷)一、选择题:本大题主要考查基本知识和基本运算. 每小题5分,满分50分. 1.A 2.D 3.A 4.C 5.B 6.B 7.D 8.C 9.C 10.B二、填空题:本大题主要考查基本知识和基本运算. 每小题4分,满分16分.11.),1(+∞- 12.1 13.5)1()1(b a b a ++ 14.3022<+<n m 2三、解答题:本大题共6小题,共84分. 解答应写出文字说明,证明过程或演算步骤. 15.本小题主要考查不等式的解法、指数函数的性质等基本知识,考查运算能力和逻辑思想能力. 满分13分.解:由10<<a ,原不等式可化为212->-x x .这个不等式的解集是下面不等式组①及②的解集的并集:⎩⎨⎧<-≥-;02012x x ① 或⎪⎩⎪⎨⎧->-≥-≥-.)2(12,02,0122x x x x ②解不等式组①得解集}221|{<≤x x ,解不等式组②得解集}52|{<≤x x ,所以原不等式的解集为}521|{<≤x x力. 满分13分.解:(1)c b a ,, 成等比数列, .2ac b =∴又.,22222bc a c b bc ac c a =-+∴-=-在△ABC 中,由余弦定理得 2122c o s 222==-+=bc bc bc a c b A , ︒=∠∴60A(2)解法一:在△ABC 中,由正弦定理得a Ab B sin sin =.2360sin 60sin sin ,60,22=︒=︒=∴︒=∠=ca b c B b A ac b 解法二:在△ABC 中,由面积公式得.sin 21sin 21B ac A bc =.23s i n s i n ,s i n s i n ,60,22==∴=∴︒=∠=A c B b B b A bc A ac b17.本小题主要考查直线与平面的位置关系等基本知识,考查空间想象能力、逻辑思维能力和运算能力. 满分15分. (1)证法一:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC.∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC. 证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC. 图1 ∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D , ∴BC ⊥平面SDC ,∴BC ⊥SC. (2)解法一:∵SD ⊥底面ABCD ,且ABCD 为正方形,面ASD 与面BSC 所成的二面角就是面ADSA 1与面BCSA 1所成的二面角,∵SC ⊥BC ,BC//A 1S ,∴SC ⊥A 1S ,又SD ⊥A 1S∴∠CSD 为所求二面角的平面角.在Rt △SCB 中,由勾股定理得SC=2,在Rt △SDC 中,由勾股定理得SD=1.∴∠CSD=45°.即面ASD 与面BSC 所成的二面角为45°.解法二:如图3,过点S 作直线,//AD ll ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.(以下同解法一)(3)解法一:如图3,∵SD=AD=1,∠SDA=90°,∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA. ∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB.∴异面直线DM 与SB 所成的角为90°.解法二:如图4,取AB 中点P ,连结MP ,DP.在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP ,又,25)21(1,222=+==DP DM∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP∴异面直线DM 与SB 所成的角为90°.18.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力. 满分15分.解(1)由点A (2,8)在抛物线px y 22=上,有2282⋅=p ,解得p=16.所以抛物线方程为x y 322=,焦点F 的坐标为(8,0). (2)如图,由于F (8,0)是△ABC 的重心,M 是BC 的中点,所以F 是线段AM 的 定比分点,且2=FM AF设点M 的坐标为),(00y x ,则02128,8212200=++=++y x ,解得4,1100-==y x ,所以点M 的坐标为(11,-4) (3)由于线段BC 的中点M 不在x 轴上,所以BC 所在的直线不垂直于x 轴.设BC 所 在直线的方程为).0)(11(4≠-=+k x k y由⎩⎨⎧=-=+x y x k y 32),11(42消x 得0)411(32322=+--k y ky ,所以k y y 3221=+.由(2)的结论得4221-=+y y ,解得.4-=k因此BC 所在直线的方程为),11(44--=+x y 即.0404=-+y x19.本小题主要考查函数的基本知识,考查应用数学知识分析问题和解决问题的能力. 满分14分.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为0x 个,则.55002.051601000=-+=x因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当1000≤<x 时,P=60;当550100<<x 时,5062)100(02.060x x P -=--=;当.51,550=≥P x 时 所以 ⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<==.550,51)(,550100,5062,1000,60)(x N x x x x x f P(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<=-=.550,11)(,550100,5022,1000,20)40(2x x N x x x x x x x P L当x =500时,L=6000;当x =1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.20.本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力. 满分14分.解:(1).4945=a(2)该等差数阵的第一行是首项为4,公差为3的等差数列;)1(341-+=j a j ;第二行是首项为7,公差为5的等差数列:)1(572-+=j a j ;……第i 行是首项为)1(34-+i ,公差为12+i 的等差数列,因此,.)12(2)1)(12()1(34j j i j i ij j i i a ij ++=++=-++-+=(3)必要性:若N 在该等差数阵中,则存在正整数i ,j 使得j j i N ++=)12(,从而).12)(12(12)12(212++=+++=+j i j j i N即正整数2N+1可以分解成两个不是1的正整数之积.充分性:若2N+1可以分解成两个不是1的正整数之积,由于2N+1是奇数,则它必为 两个不是1的奇数之积,即存在正整数k ,l ,使得),12)(12(12++=+l k N从而kl a l l k N =++=)12(,可见N 在该等差数阵中.综上所述,正整数N 在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整 数之积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(人教A 版《必修一》)高考数学章节分类试题 第二、三章 《基本初等函数、函数的应用》初等函数及其性质一、选择题1. 【04江苏】 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 A .a=2,b=2 B .= 2 ,b=2 C .a=2,b=1 D .a= 2 ,b= 22. 【04辽宁】对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④ 3.【04福建 理】已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是4.【04湖北 理】函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为A .41B .21 C .2 D .45.【04湖北 文】若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6.【04全国Ⅰ·理】已知函数=-=+-=)(.)(.11lg)(a f b a f x xx f 则若 A .b B .-b C .b 1 D .-b 17.【04全国Ⅰ·文】已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 A .21 B .-21C .2D .-28.【04全国Ⅱ·理】函数y =-e x 的图象A .与y =e x 的图象关于y 轴对称B .与y =e x 的图象关于坐标原点对称C .与y =e -x 的图象关于y 轴对称D .与y =e -x 的图象关于坐标原点对称9.【04全国Ⅲ·理】函数y =C.[-2,-1] (1,2)D.(-2,-1) (1,2)10.【04全国Ⅳ·文】为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度11.【04全国Ⅳ·文】已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则kA .41-B .41 C .21-D .21 12.【04上海·理】若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O 逆时针旋转2π得到,则 f(x)= A .10-x -1. B .10x -1. C .1-10-x . D . 1-10x .13.【04上海·文】 若函数)(x f y =的图象与函数)1lg(+=x y 的图象关于直线0=-y x 对称,则)(x f = A .110-xB .x101- C .x--101 D .110--x14.【04天津·理】若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.21 15.【04浙江·文】若函数)1,0)(1(log )(≠>+=a a x x f a 的定义域和值域都是[0,1],则a=A .31 B .2 C .22D .2 16.【04重庆·理】 函数)23(log 21-=x y 的定义域是A .),1[+∞B .),32(+∞ C . ]1,32[ D .]1,32( 17.【04湖南 理】设)(1x f-是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b f a f ,则)(b a f +的值为A .1B .2C .3D .3log 218.【04湖南 文】设)(1x f -是函数f(x)=x 的反函数,则下列不等式中恒成立的是A .12)(1-≤-x x f B .12)(1+≤-x x fC .12)(1-≥-x x fD .12)(1+≥-x x f19.【04全国Ⅰ·理】函数1(1)y x ≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y20.【04全国Ⅱ·文】函数y =51+x (x ≠-5)的反函数是 A .y =x 1-5(x ≠0) B .y =x +5(x ∈R ) C .y =x1+5(x ≠0) D .y =x -5(x ∈R )21.【04全国Ⅲ·文】记函数13xy -=+的反函数为()y g x =,则(10)g =A. 2B. 2-C. 3D. 1- 22.【04全国Ⅳ·理】函数)(2R x e y x ∈=的反函数为 A .)0(ln 2>=x x y B .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 23.【04天津·理】函数123-=xy (01<≤-x )的反函数是 A. )31(log 13≥+=x x yB. )31(log 13≥+-=x x yC. )131(log 13≤<+=x x yD. )131(log 13≤<+-=x x y24.【04天津·文】函数)01(31<≤-=+x y x 的反函数是A. )0(log 13>+=x x yB. )0(log 13>+-=x x yC. )31(log 13<≤+=x x yD. )31(log 13<≤+-=x x y函数的应用25.【04湖南 理】设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为 A .1 B .2 C .3 D .426.【04浙江·理】若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不.可能..是 A .512-+x x B .512++x x C .512-x D .512+x二、填空题1.【04上海 春季】方程1)3(lg lg =++x x 的解=x __________. 2.[04北京 理] 方程lg()lg lg 4223x x +=+的解是___________ 3.【04北京 文】 方程lg()lg lg x x 223+=+的解是______________ 4.【04北京春招 理】若fx -1()为函数f x x ()lg()=+1的反函数,则fx -1()的值域是_________5.【04全国Ⅲ·文】函数y =__________.6.【04广东】函数10)f x In x =>())(的反函数1()f x -= . 7.【04北京春招 文】若fx -1()为函数f x x ()lg()=-1的反函数,则fx -1()的值域是 8.【04上海·理】 设集合A={5,log 2(a+3)},集合B={a,b}.若A∩B={2},则A ∪B= 。
9.【04上海 春季】 已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x _______。
三、计算题1.【04全国Ⅲ·理】 解方程4x +|1-2x |=11.[解] ① 当x ≤0时, 有:4x +1-2x =11 化简得:(2x )2-2x -10=0解之得:122x=122x=舍去)。
又∵x ≤0得2x ≤1, 故122x=② 当x >0时, 有:4x -1+2x =11 化简得:(2x )2+2x -12=0 解之得:2x =3或2x = -4(舍去) ∴2x =3 x=log 23 综上可得原方程的解为x=log 23.2.【04全国Ⅲ·文】 解方程4x -2x +2-12=0.[解] 设2x =t (t >0)则原方程可化为:t 2-4t -12=0 解之得:t =6或t = -2(舍)∴x =log 26=1+log 23∴原方程的解集为{x |x =1+log 23}.3.【04上海·理】 记函数f(x)=132++-x x 的定义域为A, g(x)=lg[(x -a -1)(2a -x)](a<1) 的定义域为B. (1) 求A ;(2) 若B ⊆A, 求实数a 的取值范围. [解] (1)2-13++x x ≥0, 得11+-x x ≥0, x<-1或x≥1 即A=(-∞,-1)∪[1,+ ∞)(2) 由(x -a -1)(2a -x)>0, 得(x -a -1)(x -2a)<0. ∵a<1,∴a+1>2a, ∴B=(2a,a+1).∵B ⊆A, ∴2a≥1或a+1≤-1, 即a≥21或a≤-2, 而a<1, ∴21≤a<1或a≤-2, 故当B ⊆A 时, 实数a 的取值范围是 (-∞,-2)∪[21,1]选择题与填空题答案一、选择题1.A 2.D 3.C 4.B 5.C 6.B 7.B 8.D 9.A 10.D 11.A 12.A 13.A 14.A 15.D 16.D 17.B 18.C 19.B 20.A 21.B 22.C 23.D 24.D 25.C 26.B二、填空题1. 2 2. x x 1201==, 3. x x 1212==,4. ()-+∞1, 5. [ 6. )(22R x e e xx∈+7.()1,+∞ 8.{1,2,5} 9.1。