高一数学:1.2.1直线的点斜式方程 课件 (北师大必修2)(2)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
x1
y1
Ⅱ当过 P ( x1 , y1 ) 点直线 1 的倾斜角为0°时, 直 线的方程是 y y1 上一页
图2
例2 已知直线 l 的斜率为 k ,与y轴的 交点是 P(0, b),求直线 l 的方程。
解: 由直线的点斜式方程知
y
.
. Q
k2
1
y b k ( x 0)
即
斜率
3– P
返回
2. 已知直线 l 过点P(1,4),且与两坐标轴在第一象 限围成的三角形面积为8,求直线 l 的方程。
解: 设直线的方程为y-4=k(x-1)
则它与两坐标轴的交点分别为(1-4/k,0)和(0,4-k) 由题意知k<0且有 1/2(1-4/k)(4-k)=8 整理得
(k 4) 2 0
例1 一条直线过点 P (2,3) ,斜率为2, 1 求这条直线的方程。
解: 由直线的点斜式方程知
y 3 2( x 2)
即
2 x y 7 0.
0 变式: 一条直线过点 P (2,3),倾斜角为 45, 1 求这条直线的方程。
x y 5 0
上一页
练习2:根据下列条件,分别写 -1
y kx b.
o
x
此方程由直线 l 的斜率和它在 y轴上的截距确定, 所以这个方程也叫作直线的斜截式方程。
斜截式是点斜式的特例。只适用于斜率 存在的情形。
上一页
例3.写出下列直线的方程:
(1)斜率为
3 2
,在y轴上的截距是-2. y
3 2
x2
(2)倾斜角是135°,在y轴上的截距是3.y x 3
作业:
1.作业:课课练 P43
2.练习: 课本P75练习
上一页
直线的点斜式方程
复习
1.倾斜角 的定义及其取值范围;
2. 已知直线上两点 ( x1 , y1 ), Q( x2 , y2 ),如果x2 x1 , P 那么直线PQ的斜率.
当x2 x1 , 那么直线 的斜率不存在。 PQ
练习
问题:确定一条直线需要知道哪些条件?
例如:一个点 P(0,3) 和斜率为k=2就能确定 一条直线 l . 思考:取这条直线上不同于点P的任意 一点 Q( x, y) ,它的横坐标x与纵坐标y满 足什么关系? l y 3 2 y 3 2(x 0) x0
直线与方程有什么联系?
-1
y .
. Q
k2
1
3– P
–
o
x
上一页
y
(过点P(0,3)斜率为2确定的)方程 y-3=2(x-0)是直线 l 的方程,且 l 称为直线 l 的点斜式方程。
.
. Q
k2
1
3– P –
-1
o
x
一般的,设直线l经过点 P ( x1 , y1 ),斜 1 率为 k 则方程 y y1 k ( x x1 )叫做直线 的点斜式方程。 局限性:只适用于斜率存在的情形。 上一页
1. 求与两坐标轴围成的三角形周长
为9,且斜率为-3/4的直线方程。 解: 设直线的方程为y=-3x/4+b
则它与两坐标轴的交点分别为(3b/4,0)和(0,b) 由题意知
|
整理得
3b 4
||b|
9b 2 16
b2 9
| b | 3
b 3
所以直线得方程为y=-3x/4+3或y=-3x/4-3
(1)经过点(4,-2),斜率为3;
3x-y-14=0
(2)经过点(3,1),斜率为1/2; x/2-y-1/2=0 (3)经过点(2,3),倾斜角为0 ;
0
y-3=0
(4)经过点(2,5),倾斜角为900; X-2=0
2x-y+14=0 (5)斜率为2,与x轴交点的横坐标为-7;
上一页
Ⅰ 当过 P ( x1 , y1 ) 点直线的倾 1 斜角为90°时, 斜率不存在, 它的方程不能用点斜式表示。 它的方程是 x x1
(3)斜率为3,与y轴交点的纵坐标为-1;y=3x-1 (4)过点(3,1),垂直于x轴; x-3=0
垂直于y轴; y-1=0 上一页
思考:
1. 求与两坐标轴围成的三角形周长
为9,且斜率为-3/4的直线方程。
2. 已知直线 l 过点P(1,4),且与两坐
标轴在第一象限围成的三角形面积 为8,求直线 l 的方程。
k 4
所以直线得方程为y-4=-4(x-1) 即y=-4x+8
返回
小
点斜式:
斜截式:
结
y y1 k ( x x1 )
(1)介绍了直线的方程涵义及直线方程的 两种形式:
y kx b.
(2)要注意两种形式的使用范围.
已知直线上的两点坐标是A(-5,0)、 B(3,-3),求这两点所在直线的方程. 上一页
x1
y1
Ⅱ当过 P ( x1 , y1 ) 点直线 1 的倾斜角为0°时, 直 线的方程是 y y1 上一页
图2
例2 已知直线 l 的斜率为 k ,与y轴的 交点是 P(0, b),求直线 l 的方程。
解: 由直线的点斜式方程知
y
.
. Q
k2
1
y b k ( x 0)
即
斜率
3– P
返回
2. 已知直线 l 过点P(1,4),且与两坐标轴在第一象 限围成的三角形面积为8,求直线 l 的方程。
解: 设直线的方程为y-4=k(x-1)
则它与两坐标轴的交点分别为(1-4/k,0)和(0,4-k) 由题意知k<0且有 1/2(1-4/k)(4-k)=8 整理得
(k 4) 2 0
例1 一条直线过点 P (2,3) ,斜率为2, 1 求这条直线的方程。
解: 由直线的点斜式方程知
y 3 2( x 2)
即
2 x y 7 0.
0 变式: 一条直线过点 P (2,3),倾斜角为 45, 1 求这条直线的方程。
x y 5 0
上一页
练习2:根据下列条件,分别写 -1
y kx b.
o
x
此方程由直线 l 的斜率和它在 y轴上的截距确定, 所以这个方程也叫作直线的斜截式方程。
斜截式是点斜式的特例。只适用于斜率 存在的情形。
上一页
例3.写出下列直线的方程:
(1)斜率为
3 2
,在y轴上的截距是-2. y
3 2
x2
(2)倾斜角是135°,在y轴上的截距是3.y x 3
作业:
1.作业:课课练 P43
2.练习: 课本P75练习
上一页
直线的点斜式方程
复习
1.倾斜角 的定义及其取值范围;
2. 已知直线上两点 ( x1 , y1 ), Q( x2 , y2 ),如果x2 x1 , P 那么直线PQ的斜率.
当x2 x1 , 那么直线 的斜率不存在。 PQ
练习
问题:确定一条直线需要知道哪些条件?
例如:一个点 P(0,3) 和斜率为k=2就能确定 一条直线 l . 思考:取这条直线上不同于点P的任意 一点 Q( x, y) ,它的横坐标x与纵坐标y满 足什么关系? l y 3 2 y 3 2(x 0) x0
直线与方程有什么联系?
-1
y .
. Q
k2
1
3– P
–
o
x
上一页
y
(过点P(0,3)斜率为2确定的)方程 y-3=2(x-0)是直线 l 的方程,且 l 称为直线 l 的点斜式方程。
.
. Q
k2
1
3– P –
-1
o
x
一般的,设直线l经过点 P ( x1 , y1 ),斜 1 率为 k 则方程 y y1 k ( x x1 )叫做直线 的点斜式方程。 局限性:只适用于斜率存在的情形。 上一页
1. 求与两坐标轴围成的三角形周长
为9,且斜率为-3/4的直线方程。 解: 设直线的方程为y=-3x/4+b
则它与两坐标轴的交点分别为(3b/4,0)和(0,b) 由题意知
|
整理得
3b 4
||b|
9b 2 16
b2 9
| b | 3
b 3
所以直线得方程为y=-3x/4+3或y=-3x/4-3
(1)经过点(4,-2),斜率为3;
3x-y-14=0
(2)经过点(3,1),斜率为1/2; x/2-y-1/2=0 (3)经过点(2,3),倾斜角为0 ;
0
y-3=0
(4)经过点(2,5),倾斜角为900; X-2=0
2x-y+14=0 (5)斜率为2,与x轴交点的横坐标为-7;
上一页
Ⅰ 当过 P ( x1 , y1 ) 点直线的倾 1 斜角为90°时, 斜率不存在, 它的方程不能用点斜式表示。 它的方程是 x x1
(3)斜率为3,与y轴交点的纵坐标为-1;y=3x-1 (4)过点(3,1),垂直于x轴; x-3=0
垂直于y轴; y-1=0 上一页
思考:
1. 求与两坐标轴围成的三角形周长
为9,且斜率为-3/4的直线方程。
2. 已知直线 l 过点P(1,4),且与两坐
标轴在第一象限围成的三角形面积 为8,求直线 l 的方程。
k 4
所以直线得方程为y-4=-4(x-1) 即y=-4x+8
返回
小
点斜式:
斜截式:
结
y y1 k ( x x1 )
(1)介绍了直线的方程涵义及直线方程的 两种形式:
y kx b.
(2)要注意两种形式的使用范围.
已知直线上的两点坐标是A(-5,0)、 B(3,-3),求这两点所在直线的方程. 上一页