【重磅】新课标高中数学必修5全套教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§1.1.1
正弦定理
授课类型:新授课
●教学目标
知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点
正弦定理的探索和证明及其基本应用。

●教学难点
已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入
如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否 用一个等式把这种关系精确地表示出来?CB Ⅱ.讲授新课
[探索研究](图1.1-1)
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函
数的定义,有
sin a A c =,sin b B c =,又sin 1c
C c ==,A
则sin sin sin a b c c A B C
===bc 从而在直角三角形ABC 中,sin sin sin a b c
A B C
==
Ca (图1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则
sin sin a
b
A
B
=
,C
同理可得
sin sin c
b
C
B
=
,ba
从而
sin sin a
b
A
B
=
sin c
C
=
AcB
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥,C
由向量的加法可得AB AC CB =+ 则()j AB j AC CB ⋅=⋅+AB
∴j AB j AC j CB ⋅=⋅+⋅j
()(00cos 900cos 90-=+j AB A j CB
∴sin sin =c A a C ,即
sin sin =a c
A C
同理,过点C 作⊥j BC ,可得sin sin =b c B C
从而
sin sin a
b
A
B =
sin c
C
=
类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。

(由学生课后自己推导)
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
sin sin a
b
A
B
=
sin c
C
=
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)
sin sin a
b
A
B
=
sin c
C
=
等价于
sin sin a
b
A
B
=

sin sin c
b
C
B
=

sin a
A
=
sin c
C
从而知正弦定理的基本作用为:
①已知三角形的任意两角及其一边可以求其他边,如sin sin b A
a B
=
; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b
=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]
例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。

解:根据三角形内角和定理,
0180()=-+C A B
000180(32.081.8)=-+
066.2=;
根据正弦定理,
00
sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;
根据正弦定理,
00
sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A
评述:对于解三角形中的复杂运算可使用计算器。

例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,
sin 28sin40sin 0.8999.20
==≈b A B a
因为00<B <0180,所以064≈B ,或0116.≈B
⑴当064≈B 时,
00000180()180(4064)76=-+≈-+=C A B ,
00
sin 20sin7630().sin sin40==≈a C c cm A
⑵当0116≈B 时,
00000180()180(40116)24=-+≈-+=C A B ,
00
sin 20sin2413().sin sin40==≈a C c cm A
评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

Ⅲ.课堂练习
第5页练习第1(1)、2(1)题。

[补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)
Ⅳ.课时小结(由学生归纳总结) (1)定理的表示形式:
sin sin a
b
A B =
sin c
C
=
=
()0sin sin sin a b c
k k A B C
++=>++;
或sin a k A =,sin b k B =,sin c k C =(0)k >
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

Ⅴ.课后作业
第10页[习题1.1]A 组第1(1)、2(1)题。

●板书设计 ●授后记
课题:§1.1.2
余弦定理
授课类型:新授课
●教学目标
知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

●教学重点
余弦定理的发现和证明过程及其基本应用; ●教学难点
勾股定理在余弦定理的发现和证明过程中的作用。

●教学过程 Ⅰ.课题导入
C
如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c, 已知a,b 和∠C ,求边cba
AcB
(图1.1-4)
Ⅱ.讲授新课 [探索研究]
联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A
如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则b c
()()
2
22
2 2c c c a b a b
a a
b b a b
a b a b
=⋅=--=⋅+⋅-⋅=+-⋅C a B
从而2222cos c a b ab C =+-(图1.1-5)
同理可证2222cos a b c bc A =+-
2222cos b a c ac B =+-
于是得到以下定理
余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即2222cos a b c bc A =+-
2222cos b a c ac B =+-
2222cos c a b ab C =+-
思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?
(由学生推出)从余弦定理,又可得到以下推论:
222
cos 2+-=
b c a A bc 222
cos 2+-=
a c
b B a
c 222
cos 2+-=
b a
c C ba
[理解定理]
从而知余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?
(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

[例题分析]
例1.在∆ABC 中,已知=a c
060=B ,求b 及A ⑴解:∵2222cos =+-b a c ac B
=
222+-⋅cos 045 =
2121)+- =8 ∴=b
求A 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos 2221
,22+-=
b c a A bc
∴0
60.=A
解法二:∵sin 0sin sin45,=a A B b
2.41.4
3.8,+=
21.8 3.6,⨯=
∴a <c ,即00<A <090,
∴0
60.=A
评述:解法二应注意确定A 的取值范围。

例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形
(见课本第8页例4,可由学生通过阅读进行理解) 解:由余弦定理的推论得:
cos 222
2+-=b c a A bc
222
87.8161.7134.6287.8161.7+-=
⨯⨯
0.5543,≈ 05620'≈A ;
cos 222
2+-=c a b B ca
222
134.6161.787.82134.6161.7+-=
⨯⨯
0.8398,≈ 03253'≈B ;
0000180()180(56203253)
''=-+≈-+C A B Ⅲ.课堂练习
第8页练习第1(1)、2(1)题。

[补充练习]在∆ABC 中,若222a b c bc =++,求角A (答案:A=1200) Ⅳ.课时小结
(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

Ⅴ.课后作业
①课后阅读:课本第9页[探究与发现]
②课时作业:第11页[习题1.1]A 组第3(1),4(1)题。

●板书设计 ●授后记
课题:§1.1.3
解三角形的进一步讨论
授课类型:新授课
●教学目标
知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。

●教学重点
在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。

●教学难点
正、余弦定理与三角形的有关性质的综合运用。

●教学过程 Ⅰ.课题导入 [创设情景]
思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。

(由学生阅读课本第9页解答过程)
从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。

下面进一步来研究这种情形下解三角形的问题。

Ⅱ.讲授新课 [探索研究]
例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况
分析:先由sin sin b A
B a
=可进一步求出B ; 则0180()C A B =-+ 从而sin a C
c A
=
1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。

2.当A 为锐角时, 如果a ≥b ,那么只有一解;
如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。

(以上解答过程详见课本第910页)
评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且
sin b A a b <<时,有两解;其它情况时则只有一解或无解。

[随堂练习1]
(1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

(2)在∆ABC 中,若1a =,1
2
c =,040C ∠=,则符合题意的b 的值有_____个。

(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,
求R 的取值范围。

(答案:(1)有两解;(2)0;(3
)2x <<
例2.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。

分析:由余弦定理可知
222222222是直角ABC 是直角三角形
是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆ (注意:是锐角A ⇔ABC 是锐角三角形∆)
解:222753>+,即222a b c >+, ∴ABC 是钝角三角形∆。

[随堂练习2]
(1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。

(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。

(答案:(1
)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形) 例3.在∆ABC 中,060A =,1b =,面积为
2,求sin sin sin a b c A B C
++++的值 分析:可利用三角形面积定理111
sin sin sin 222
S ab C ac B bc A ===以及正弦定理
sin sin a b
A B =sin c C ==
sin sin sin a b c
A B C
+++ 解:由1sin 22
S bc A ==得2c =,
则2222cos a b c bc A =+-=3,即a =
从而
sin sin sin a b c A B C ++++2sin a
A
==
Ⅲ.课堂练习
(1)在∆ABC 中,若55a =,16b =,且此三角形的面积S = C (2)在∆ABC 中,其三边分别为a 、b 、c ,且三角形的面积222
4
a b c S +-=,求角C
(答案:(1)060或0120;(2)045) Ⅳ.课时小结
(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; (2)三角形各种类型的判定方法;
(3)三角形面积定理的应用。

Ⅴ.课后作业
(1)在∆ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况。

(2)设R 、R+1、R+2是钝角三角形的三边长,求实数R 的取值范围。

(3)在∆ABC 中,060A =,1a =,2b c +=,判断∆ABC 的形状。

(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根, 求这个三角形的面积。

●板书设计 ●授后记
课题:§2.2
解三角形应用举例
第一课时
授课类型:新授课
●教学目标
知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语
过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。

其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。

对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正
情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点
实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点
根据题意建立数学模型,画出示意图
●教学过程 Ⅰ.课题导入 1、[复习旧知]
复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境]
请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。

于是上面介绍的问题是用以前的方法所不能解决的。

今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

Ⅱ.讲授新课
(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解
[例题讲解]
(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。

求A 、B 两点的距离(精确到0.1m)
启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。

解:根据正弦定理,得
ACB AB ∠sin =ABC
AC ∠sin AB=ABC
ACB AC ∠∠sin sin
=ABC
ACB ∠∠sin sin 55
=
)
7551180sin(75sin 55︒-︒-︒︒ =︒
︒54sin 75sin 55
≈65.7(m)
答:A 、B 两点间的距离为65.7米
变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于akm,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型。

解略:2akm
例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。

首先需要构造三角形,所以需要确定C 、D 两点。

根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,
∠ ACD=β,∠CDB=γ,∠BDA=δ,在∆ADC 和∆BDC 中,应用正弦定理得
AC =)](180sin[)sin(δγβδγ++-︒+a =)sin()sin(δγβδγ+++a
BC =
)](180sin[sin γβαγ++-︒a =)
sin(sin γβαγ++a 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离 AB =αcos 222BC AC BC AC ⨯-+
分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。

变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠ACD=30︒,
∠CDB=45︒,∠BDA=60︒
略解:将题中各已知量代入例2推出的公式,得AB=206
评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。

学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。

Ⅲ.课堂练习
课本第14页练习第1、2题
Ⅳ.课时小结
解斜三角形应用题的一般步骤:
(1)分析:理解题意,分清已知与未知,画出示意图
(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解
(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解
Ⅴ.课后作业
课本第22页第1、2、3题
●板书设计
●授后记
课题:§2.2解三角形应用举例
第二课时
授课类型:新授课●教学目标
知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题
过程与方法:本节课是解三角形应用举例的延伸。

采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架。

通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法。

教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯。

作业设计思考题,提供学生更广阔的思考空间
情感态度与价值观:进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力
●教学重点
结合实际测量工具,解决生活中的测量高度问题
●教学难点
能观察较复杂的图形,从中找到解决问题的关键条件
●教学过程
Ⅰ.课题导入
提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题
Ⅱ.讲授新课
[范例讲解]
例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB 长的关键是先求AE ,在∆ACE 中,如能求出C 点到建筑物顶部A 的距离CA ,
再测出由C 点观察A 的仰角,就可以计算出AE 的长。

解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上。

由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD=a ,测角仪器的高是h ,那么,在∆ACD 中,根据正弦定理可得
AC =)sin(sin βαβ-a AB =AE+h
=AC αsin +h
=)
sin(sin sin βαβα-a +h 例2、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'︒,在塔底C 处测得A 处的俯角β=501'︒。

已知铁塔BC 部分的高为27.3m,求出山高CD(精确到1m)
师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在∆ABD 中求
CD ,则关键需要求出哪条边呢?
生:需求出BD 边。

师:那如何求BD 边呢?
生:可首先求出AB 边,再根据∠BAD=α求得。

解:在∆ABC 中,∠BCA=90︒+β,∠ABC=90︒-α,∠BAC=α-β,∠BAD=α.根据正弦定理,
)sin(βα-BC =)
90sin(β+︒AB 所以AB =)sin()90sin(βαβ-+︒BC =)
sin(cos βαβ-BC 解Rt ∆ABD 中,得BD=ABsin ∠BAD=
)
sin(sin cos βααβ-BC 将测量数据代入上式,得 BD=)
1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'
''︒︒︒ ≈177(m)
CD=BD-BC ≈177-27.3=150(m)
答:山的高度约为150米.
师:有没有别的解法呢?
生:若在∆ACD 中求CD ,可先求出AC 。

师:分析得很好,请大家接着思考如何求出AC ?
生:同理,在∆ABC 中,根据正弦定理求得。

(解题过程略)
例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.
师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?
生:在∆BCD 中 师:在∆BCD 中,已知BD 或BC 都可求出CD,根据条件,易计算出哪条边的长? 生:BC 边
解:在∆ABC 中,∠A=15︒,∠C=25︒-15︒=10︒,根据正弦定理,
A BC sin =C
AB sin , BC=C
A A
B sin sin =︒︒10sin 15sin 5 ≈7.4524(km)
CD=BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m)
答:山的高度约为1047米
Ⅲ.课堂练习
课本第17页练习第1、2、3题
Ⅳ.课时小结
利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

Ⅴ.课后作业
1、课本第23页练习第6、7、8题
2、为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30︒,
测得塔基B的俯角为45︒,则塔AB的高度为多少m?
答案:20+
33
20(m)
●板书设计
●授后记
课题:§2.2解三角形应用举例
第三课时
授课类型:新授课●教学目标
知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力。

除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透。

课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。

情感态度与价值观:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神。

●教学重点
能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系
●教学难点
灵活运用正弦定理和余弦定理解关于角度的问题
●教学过程
Ⅰ.课题导入
[创设情境]
提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。

然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。

Ⅱ.讲授新课
[范例讲解]
例1、如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5nmile 后到达海岛B,然后从B 出发,沿北偏东32︒的方向航行54.0nmile 后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01nmile)
学生看图思考并讲述解题思路 教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC 边所对的角∠ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB 。

解:在∆ABC 中,∠ABC=180︒-75︒+32︒=137︒,根据余弦定理, AC=ABC BC AB BC AB ∠⨯⨯-+cos 222
=︒⨯⨯⨯-+137cos 0.545.6720.545.6722
≈113.15
根据正弦定理,
CAB BC ∠sin =ABC
AC ∠sin sin ∠CAB=AC
ABC BC ∠sin =15
.113137sin 0.54︒ ≈0.3255,
所以∠CAB=19.0︒,
75︒-∠CAB=56.0︒
答:此船应该沿北偏东56.1︒的方向航行,需要航行113.15nmile
例2、在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。

师:请大家根据题意画出方位图。

生:上台板演方位图(上图)
教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评。

解法一:(用正弦定理求解)由已知可得在∆ACD 中,
AC=BC=30, AD=DC=103,
∠ADC=180︒-4θ, ∴θ2sin 310=)
4180sin(30θ-︒。

因为sin4θ=2sin2θcos2θ
∴ c os2θ=
2
3,得2θ=30︒ ∴ θ=15︒, ∴在Rt ∆ADE 中,AE=ADsin60︒=15
答:所求角θ为15︒,建筑物高度为15m
解法二:(设方程来求解)设DE=R ,AE=h
在Rt ∆ACE 中,(103+R)2+h 2=302
在Rt ∆ADE 中,R 2+h 2=(103)2
两式相减,得R=53,h=15
∴在Rt ∆ACE 中,tan2θ=
x h +310=3
3 ∴2θ=30︒,θ=15︒ 答:所求角θ为15︒,建筑物高度为15m
解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得
∠BAC=θ,∠CAD=2θ, AC=BC=30m,AD=CD=103m
在Rt ∆ACE 中,sin2θ=
30
x ---------① 在Rt ∆ADE 中,sin4θ=3104,---------② ②÷①得cos2θ=
2
3,2θ=30︒,θ=15︒,AE=ADsin60︒=15 答:所求角θ为15︒,建筑物高度为15m 例3、某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?
师:你能根据题意画出方位图?教师启发学生做图建立数学模型
分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。

解:如图,设该巡逻艇沿AB 方向经过R 小时后在B 处追上走私船,则CB=10R,AB=14R,AC=9,
∠ACB=︒75+︒45=︒120
∴(14R)2=92+(10R)2-2⨯9⨯10Rcos ︒120
∴化简得32R 2-30R-27=0,即R=
23,或R=-16
9(舍去) 所以BC=10R=15,AB=14R=21, 又因为sin ∠BAC=AB BC ︒120sin =21
15⨯23=1435 ∴∠BAC=3831'︒,或∠BAC=14174'︒(钝角不合题意,舍去),
∴3831'︒+︒45=8331'︒
答:巡逻艇应该沿北偏东8331'︒方向去追,经过1.4小时才追赶上该走私船.
评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅲ.课堂练习
课本第18页练习
Ⅳ.课时小结
解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。

(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。

Ⅴ.课后作业
1、课本第23页练习第9、10、11题
2、我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?(角度用反三角函数表示)
●板书设计
●授后记
课题:§2.2解三角形应用举例
授课类型:新授课。

相关文档
最新文档