高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试生活中的圆周运动
1.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为
0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为
10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦
力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转
盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取2
10m/s .求:
(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;
(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.
【答案】(1)12/rad s ω= (2)222/rad s ω= (3)22
52/m rad s ω=
【解析】
对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:
2212B B m g m L μω=
代入数据计算得出:12/rad s ω=
(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为
T ,有:
212A A m g T m L μω-=
2222B B T m g m L μω+=
代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =
②当2228/rad s ω≥,且AB 细线未拉断时,有:
21A A F m g T m L μω+-= 222B B T m g m L μω+=
8T N ≤
所以:2
364
F ω=
-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:
21A A m g m w L μ≥
所以:2222218/20/rad s rad s ω<≤时,0F =
当22220/rad s ω>时,有2
1A A F m g m L μω+=
8F N ≤
所以:2
154
F ω=
-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:222
52/m rad s ω=
做出2F ω-的图象如图所示;
点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.
2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:
(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】
(1)杆静止时环受力平衡,有2T =mg 得:T =5N
(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,r
cos L r
θ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=
(3)绳断裂后,环做平抛运动,水平方向s =vt
竖直方向:2
12
H d gt -=
环做平抛的初速度:v =ωr
小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】
本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
3.如图,AB 为倾角37θ=︒的光滑斜面轨道,BP 为竖直光滑圆弧轨道,圆心角为
143︒、半径0.4m R =,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹资一端固定在A 点另一自由端在斜面上C 点处,现有一质量0.2kg m =的小物块(可视为质点)在
外力作用下将弹簧缓慢压缩到D 点后(不栓接)静止释放,恰能沿轨道到达P 点,已知
0.2m CD =、sin370.6︒=、cos370.8︒=,g 取210m/s .求:
(1)物块经过P 点时的速度大小p v ;
(2)若 1.0m BC =,弹簧在D 点时的弹性势能P E ; (3)为保证物块沿原轨道返回,BC 的长度至少多大. 【答案】(1)2m/s (2)32.8J (3)2.0m 【解析】 【详解】
(1)物块恰好能到达最高点P ,由重力提供圆周运动的向心力,由牛顿第二定律得:
mg=m 2
p v R
解得:
100.42m/s P v gR =⨯=
(2)物块从D 到P 的过程,由机械能守恒定律得:
E p =mg (s DC +s CB )sin37°+mgR (1+cos37°)+
1
2
mv P 2. 代入数据解得:
E p =32.8J
(3)为保证物块沿原轨道返回,物块滑到与圆弧轨道圆心等高处时速度刚好为零,根据能量守恒定律得:
E p =mg (s DC +s ′CB )sin37°+mgR (1+cos37°)
解得:
s ′CB =2.0m
点睛:本题综合考查了牛顿第二定律、机械能守恒定律的综合,关键是搞清物体运动的物理过程;知道圆周运动向心力的来源,即径向的合力提供向心力.
4.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。
保持细管竖直用手轻轻摇动细管,稳定后A 在水平面内做匀速圆周运动而B 保持静止状态。
某时刻B 静止在地面上且对地面的压力恰好为零。
已知重力加速度为g ,不计一切阻力。
求:
()1该时刻连接A 的轻绳与竖直方向的夹角θ; ()2该时刻A 的线速度大小v ;
()3从该时刻起轻摇细管使B 升高到离地高度为/2l 处保持静止,求B 上升过程中手对
A 、
B 系统做的功。
【答案】()1?
60o
;()32?2
gl
;()938mgl 。
【解析】 【分析】
(1)对B 根据平衡求绳子的拉力;对A 球分析,由力的平衡条件可求绳与竖直方向夹角θ; (2)对A 水平方向做圆周运动,利用牛顿第二定律列式求解;
(3)由力的平衡条件和牛顿第二定律并结合功能关系列式联立可求整个过程中人对A 、B 系统做的功。
【详解】
(1)B 对地面刚好无压力,故此时绳子的拉力为2T mg = 对A 受力分析如图所示:
在竖直方向合力为零,故cos T mg θ= 代入数据解得:60θ=o
(2)A 球水平方向做圆周运动,由牛顿第二定律得:2
sin sin v T m l θθ
=代入数据解得:
32
gl
v =
(3)当B 上升
2l 时,拉A 的绳长为32
l
,此时对水平方向上有:
2
1sin 3sin 2
v T m
l θ
θ= 联立解得:13
2
v gl =由几何关系可得A 相对于原来的高度下降的距离:cos 24l l h V θ=
=B 物体重力势能的增加量:122
l
E mg mgl =⋅=V A 物体重力势能的减少量:244
l mgl
E mg =⋅
=V A 物体动能的增加量2231113
228
E mv mv mgl =
-=V 对系统运用功能关系可得手对系统做的功:1229
8
W E E E mgl =-+=V V V 【点睛】
本题综合考查共点力平衡、牛顿第二定律和功能关系,对于圆锥摆问题,关键分析小球的受力情况,确定其向心力,运用牛顿第二定律和圆周运动的知识结合解答。
5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:
()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;
()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距
离;
()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.
【答案】(1)6N (2)0.2m (3)26/m s 【解析】
【分析】
(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;
(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;
(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】
(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有
2A
mv mg R
=,
所以,2/A v m s =
=;
那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:
2211222
B A mv mv mgR =+
,所以,/B v s ==; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力
2
6B
N mv F mg N R
=+=,方向竖直向上;
故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:
22
1122
C B mgL mv mv μ-=
-,
所以,2/C v m s ==;
设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:2
12
h gt =
,
0.8C x d v t v m +===, 所以,0.2d m =;
(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离
0.6 1.6m s m ≤≤;
故平抛运动的初速度
'C s v t
=
= 所以,1.5/'4/C m s v m s ≤≤;
又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:
()2201122'22
C mg R r mgL mv mv μ--=
-;
所以,()220'2222'8/C C v v g R r gL v m s μ=--+=+, 故
041
/26/2
m s v m s ≤≤,所以小弹珠被弹射装置弹出时的最大初速度为26/m s ; 【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.
6.如图所示,AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,将弹簧水平放置,一端固定在A 点.现使质量为m 的小滑块从D 点以速度v 0=
进入轨道DCB ,然后沿着BA 运动压缩弹簧,弹簧压缩最短时小滑块处于P 点,重
力加速度大小为g ,求:
(1)在D 点时轨道对小滑块的作用力大小F N ; (2)弹簧压缩到最短时的弹性势能E p ;
(3)若水平轨道AB 粗糙,小滑块从P 点静止释放,且PB =5l ,要使得小滑块能沿着轨道BCD 运动,且运动过程中不脱离轨道,求小滑块与AB 间的动摩擦因数μ的范围. 【答案】(1)
(2)
(3)μ≤0.2或0.5≤μ≤0.7 【解析】(1)
解得
(2)根据机械能守恒
解得
(3)小滑块恰能能运动到B 点
解得μ=0.7
小滑块恰能沿着轨道运动到C 点
解得μ=0.5 所以0.5≤μ≤0.7
小滑块恰能沿着轨道运动D 点
解得μ=0.2 所以μ≤0.2
综上 μ≤0.2或0.5≤μ≤0.7
7.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)
【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】
设小球在第二个圆轨道的最高点的速度为v 2,由题意
22
2
v mg m R = ①
()22
122011222
mg L L mgR mv mv μ-+-=
- ② 由①②得 12.5L m = ③
要保证小球不脱离轨道,可分两种情况进行讨论:
I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足
2
3
3
v mg m R = ④
()22
1330112222
mg L L mgR mv mv μ-+-=
- ⑤ 由④⑤得30.4R m = ⑥
II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理
()2
13012202
mg L L mgR mv μ-+-=- ⑦
解得 3 1.0R m = ⑧
为了保证圆轨道不重叠,R 3最大值应满足
()
()
2
2
2
2332R R L R R +=+- ⑨
解得:R 3=27.9m ⑩
综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件
300.4R m <≤或 31.027.9m R m ≤≤ ⑾
【点睛】
本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.
8.如图所示,半径R=1m 的光滑半圆轨道AC 与高h=8R 的粗糙斜面轨道BD 放在同一竖直平面内,BD 部分水平长度为x=6R .两轨道之间由一条光滑水平轨道相连,水平轨道与斜轨道间有一段圆弧过渡.在水平轨道上,轻质弹簧被a 、b 两小球挤压(不连接),处于静止状态.同时释放两个小球,a 球恰好能通过半圆轨道最高点A ,b 球恰好能到达斜面轨道最高点B .已知a 球质量为m 1=2kg ,b 球质量为m 2=1kg ,小球与斜面间动摩擦因素为μ=
1
3
,重力力加速度为g=10m/s 2.(sin37°=0.6,cos37°=0.8)求:
(1)a 球经过C 点时对轨道的作用力 (2)释放小球前弹簧的弹性势能Ep .
【答案】(1)120N ,方向竖直向下.(2)150J . 【解析】试题分析:(1)a 球恰好通过最高点A 时有:
得
10m/s A v Rg ==
a球从C到A过程由动能定理有:
解得:
在C点,对a球受力分析有:
解得轨道对a球的作用力大小为:
(2)b球从D点恰好到达最高点B过程中,位移
由动能定理:
求得
所以小球释放前弹性势能为
考点:动能定理;牛顿第二定律的应用
9.(2011年南通一模)如图所示,BCDG是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为
mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.
(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,滑块到达与圆心O等高的C点时速度为多大?
(2)在(1)的情况下,求滑块到达C点时受到轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
【答案】(1) (2) (3)
【解析】
①由动能定理有:
② 当时,最小
10.如图所示,一个可视为质点,质量2m kg =的木块从P 点以初速度05/v m s =向右运动,木块与水平面间的动摩擦因数为0.2,木块运动到M 点后水平抛出,恰好沿竖直的粗糙圆弧AB 的A 点的切线方向进入圆弧(不计空气阻力)。
已知圆弧的半径0.5R m =,半径OA 与竖直半径OB 间的夹角53θ︒=,木块到达A 点时的速度大小5/A v m s =。
已知
sin 530.8cos530.6︒︒==
,210/.g m s =求:
(1)P 到M 的距离L ;
(2)M 、A 间的距离s ;
(3)若木块到达圆弧底端B 点时速度大小5/B v m s =,求此时木块对轨道的压力。
【答案】(1)4m ;(2)
213m 5
;(3)120N 、方向竖直向下; 【解析】
【详解】 (1)平抛的初速度,即为木块在M 点的速度为:
v x =v A cosθ=5×0.6=3m/s
P 到M 由牛顿第二定律:
μmg=ma ,
a=μg =2m/s 2
由运动学公式知:
2203355m 4m 22
2x v v L a -⨯-⨯==-⨯-= (2)物体到达A 点时竖直方向上的速度为
v y =v •sinθ=5×0.8=4m/s
则下落时间为
40.4s 10
y v t g =
== 则水平位移为 x =v x t =3×0.4=1.2m
竖直方向上的距离为
244 0.8m 220
m y v y g ⨯=
== M 、A 间的距离
5
s (3)由牛顿第二定律: 2B v N mg m
R -=
得 2252102N=120N 0.5
B v N mg m R =+=⨯+⨯ 根据牛顿第三定律可知,此时木块对轨道的压力为120N 、方向竖直向下;。