Anisotropic strength of composites

合集下载

Abaqus中复合材料的累积损伤与失效

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。

假设未损伤材料为线弹性材料。

因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。

Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。

另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。

本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。

损伤与失效模型的通用框架Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。

材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。

刚度逐渐减弱的过程采用损伤力学建模。

为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。

如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。

材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。

超过c点后,材料的承载能力显著下降直到断裂(c-d段)。

最后阶段的变形仅发生在样品变窄的区域。

C点表明材料损伤的开始,也被称为损伤开始的标准。

超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。

根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线因此,在Abaqus中失效机制的详细说明里包括四个明显的部分:●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘)●损伤开始的标准(如图19.1.1-1中c点)●损伤发展演变的规律(如图19.1.1-1中曲线c-d)●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1中的d点)。

材料专业英语复合材料 Composites

材料专业英语复合材料  Composites

Fibers - Glass
Most widely used fiber——piping, tanks, boats, sporting goods Advantages low cost Corrosion resistant Low cost relative to other composites Disadvantages Relatively low strength High elongation Moderate strength and weight Types: Moisture ↓ strength E-Glass - electrical, cheaper S-Glass - high strength
Ceramics Composites
Brittle
Elastomers
Creep at low temp
Glasses
Brittle
Reinforcement Matrix A B advantages * advantages * disadvantages disadvantages * * C1 C3 C2

Polyester:Most common, lower cost, solvent resistance Epoxy resins: Superior performance, relatively costly

Matrices – Polymeric:Thermoplastics
Formed by heating to elevated temperature at which softening occurs
Kevlar fibers in an epoxy matrix Rubber with carbon (tires); Boron, Carbon reinforced plastics

(整理)弹性力学专业英语英汉互译词汇

(整理)弹性力学专业英语英汉互译词汇

elasticity 弹性力学弹性理论theory of elasticity均匀应力状态homogeneous state of stress应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid均匀应变状态homogeneous state ofstrain应变协调方程equation of straincompatibility拉梅常量Lame constants各向同性弹性isotropic elasticity旋转圆盘rotating circular disk楔wedge开尔文问题Kelvin problem布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫--穆斯赫利什维Kolosoff-利法Muskhelishvili method基尔霍夫假设Kirchhoff hypothesis板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforcedPlate 中厚板Plate of moderate thickness 弯[曲]应力函数Stress function of bending 壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell [圆]柱壳Cylindrical shell 锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion 翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method 松弛法Relaxation method莱维法Levy method松弛Relaxation 量纲分析Dimensional analysis 自相似[性] self-similarity影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle 褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave 体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming耐撞性Crashworthiness结构抗撞毁性Structural crashworthiness 拉拔Drawing破坏机构Collapse mechanism 回弹Springback挤压Extrusion冲压Stamping穿透Perforation层裂Spalling塑性理论Theory of plasticity安定[性]理论Shake-down theory运动安定定理kinematic shake-down theorem静力安定定理Static shake-down theorem 率相关理论rate dependent theorem 载荷因子load factor加载准则Loading criterion加载函数Loading function加载面Loading surface塑性加载Plastic loading塑性加载波Plastic loading wave简单加载Simple loading比例加载Proportional loading 卸载Unloading卸载波Unloading wave冲击载荷Impulsive load阶跃载荷step load脉冲载荷pulse load极限载荷limit load中性变载nentral loading拉抻失稳instability in tension 加速度波acceleration wave本构方程constitutive equation 完全解complete solution名义应力nominal stress过应力over-stress真应力true stress等效应力equivalent stress流动应力flow stress应力间断stress discontinuity应力空间stress space主应力空间principal stress space静水应力状态hydrostatic state of stress 对数应变logarithmic strain工程应变engineering strain等效应变equivalent strain应变局部化strain localization应变率strain rate应变率敏感性strain rate sensitivity 应变空间strain space有限应变finite strain塑性应变增量plastic strain increment 累积塑性应变accumulated plastic strain 永久变形permanent deformation内变量internal variable应变软化strain-softening理想刚塑性材料rigid-perfectly plasticMaterial 刚塑性材料rigid-plastic material理想塑性材料perfectl plastic material 材料稳定性stability of material 应变偏张量deviatoric tensor of strain 应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain 应力球张量spherical tensor of stress 路径相关性path-dependency线性强化linear strain-hardening应变强化strain-hardening随动强化kinematic hardening各向同性强化isotropic hardening强化模量strain-hardening modulus幂强化power hardening 塑性极限弯矩plastic limit bendingMoment 塑性极限扭矩plastic limit torque弹塑性弯曲elastic-plastic bending 弹塑性交界面elastic-plastic interface 弹塑性扭转elastic-plastic torsion粘塑性Viscoplasticity非弹性Inelasticity理想弹塑性材料elastic-perfectly plasticMaterial 极限分析limit analysis极限设计limit design极限面limit surface上限定理upper bound theorem上屈服点upper yield point下限定理lower bound theorem下屈服点lower yield point界限定理bound theorem初始屈服面initial yield surface后继屈服面subsequent yield surface屈服面[的]外凸性convexity of yield surface 截面形状因子shape factor of cross-section沙堆比拟sand heap analogy 屈服Yield 屈服条件yield condition屈服准则yield criterion屈服函数yield function屈服面yield surface塑性势plastic potential 能量吸收装置energy absorbing device 能量耗散率energy absorbing device 塑性动力学dynamic plasticity 塑性动力屈曲dynamic plastic buckling 塑性动力响应dynamic plastic response 塑性波plastic wave运动容许场kinematically admissibleField 静力容许场statically admissibleField 流动法则flow rule速度间断velocity discontinuity滑移线slip-lines滑移线场slip-lines field移行塑性铰travelling plastic hinge 塑性增量理论incremental theory ofPlasticity米泽斯屈服准则Mises yield criterion 普朗特--罗伊斯关系prandtl- Reuss relation 特雷斯卡屈服准则Tresca yield criterion洛德应力参数Lode stress parameter莱维--米泽斯关系Levy-Mises relation亨基应力方程Hencky stress equation赫艾--韦斯特加德应力空Haigh-Westergaard 间stress space洛德应变参数Lode strain parameter德鲁克公设Drucker postulate盖林格速度方程Geiringer velocityEquation结构力学structural mechanics结构分析structural analysis结构动力学structural dynamics拱Arch三铰拱three-hinged arch抛物线拱parabolic arch圆拱circular arch穹顶Dome空间结构space structure空间桁架space truss雪载[荷] snow load风载[荷] wind load土压力earth pressure地震载荷earthquake loading弹簧支座spring support支座位移support displacement支座沉降support settlement超静定次数degree of indeterminacy机动分析kinematic analysis结点法method of joints截面法method of sections结点力joint forces共轭位移conjugate displacement影响线influence line三弯矩方程three-moment equation单位虚力unit virtual force刚度系数stiffness coefficient柔度系数flexibility coefficient力矩分配moment distribution力矩分配法moment distribution method 力矩再分配moment redistribution分配系数distribution factor矩阵位移法matri displacement method 单元刚度矩阵element stiffness matrix 单元应变矩阵element strain matrix总体坐标global coordinates贝蒂定理Betti theorem高斯--若尔当消去法Gauss-Jordan eliminationMethod 屈曲模态buckling mode复合材料力学mechanics of composites复合材料composite material 纤维复合材料fibrous composite单向复合材料unidirectional composite泡沫复合材料foamed composite颗粒复合材料particulate composite 层板Laminate夹层板sandwich panel正交层板cross-ply laminate斜交层板angle-ply laminate 层片Ply多胞固体cellular solid 膨胀Expansion压实Debulk劣化Degradation脱层Delamination脱粘Debond纤维应力fiber stress层应力ply stress层应变ply strain层间应力interlaminar stress比强度specific strength强度折减系数strength reduction factor 强度应力比strength -stress ratio 横向剪切模量transverse shear modulus 横观各向同性transverse isotropy正交各向异Orthotropy剪滞分析shear lag analysis短纤维chopped fiber长纤维continuous fiber纤维方向fiber direction纤维断裂fiber break纤维拔脱fiber pull-out纤维增强fiber reinforcement致密化Densification最小重量设计optimum weight design 网格分析法netting analysis混合律rule of mixture失效准则failure criterion蔡--吴失效准则Tsai-W u failure criterion 达格代尔模型Dugdale model断裂力学fracture mechanics概率断裂力学probabilistic fractureMechanics格里菲思理论Griffith theory线弹性断裂力学linear elastic fracturemechanics, LEFM弹塑性断裂力学elastic-plastic fracturemecha-nics, EPFM 断裂Fracture 脆性断裂brittle fracture解理断裂cleavage fracture蠕变断裂creep fracture延性断裂ductile fracture晶间断裂inter-granular fracture 准解理断裂quasi-cleavage fracture 穿晶断裂trans-granular fracture 裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹elliptical crack深埋裂纹embedded crack[钱]币状裂纹penny-shape crack预制裂纹Precrack短裂纹short crack表面裂纹surface crack裂纹钝化crack blunting裂纹分叉crack branching裂纹闭合crack closure裂纹前缘crack front裂纹嘴crack mouth裂纹张开角crack opening angle,COA 裂纹张开位移crack opening displacement,COD裂纹阻力crack resistance裂纹面crack surface裂纹尖端crack tip裂尖张角crack tip opening angle,CTOA裂尖张开位移crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularityField裂纹扩展速率crack growth rate稳定裂纹扩展stable crack growth定常裂纹扩展steady crack growth亚临界裂纹扩展subcritical crack growth 裂纹[扩展]减速crack retardation 止裂crack arrest 止裂韧度arrest toughness断裂类型fracture mode滑开型sliding mode张开型opening mode撕开型tearing mode复合型mixed mode撕裂Tearing 撕裂模量tearing modulus断裂准则fracture criterionJ积分J-integralJ阻力曲线J-resistance curve断裂韧度fracture toughness应力强度因子stress intensity factor HRR场Hutchinson-Rice-RosengrenField 守恒积分conservation integral 有效应力张量effective stress tensor 应变能密度strain energy density 能量释放率energy release rate内聚区cohesive zone塑性区plastic zone张拉区stretched zone热影响区heat affected zone, HAZ 延脆转变温度brittle-ductile transitiontempe- rature 剪切带shear band剪切唇shear lip无损检测non-destructive inspection 双边缺口试件double edge notchedspecimen, DEN specimen 单边缺口试件single edge notchedspecimen, SEN specimen 三点弯曲试件three point bendingspecimen, TPB specimen 中心裂纹拉伸试件center cracked tensionspecimen, CCT specimen 中心裂纹板试件center cracked panelspecimen, CCP specimen 紧凑拉伸试件compact tension specimen,CT specimen 大范围屈服large scale yielding 小范围攻屈服small scale yielding 韦布尔分布Weibull distribution 帕里斯公式paris formula空穴化Cavitation应力腐蚀stress corrosion概率风险判定probabilistic riskassessment, PRA 损伤力学damage mechanics 损伤Damage连续介质损伤力学continuum damage mechanics 细观损伤力学microscopic damage mechanics 累积损伤accumulated damage脆性损伤brittle damage延性损伤ductile damage宏观损伤macroscopic damage细观损伤microscopic damage微观损伤microscopic damage损伤准则damage criterion损伤演化方程damage evolution equation 损伤软化damage softening损伤强化damage strengthening损伤张量damage tensor损伤阈值damage threshold损伤变量damage variable损伤矢量damage vector损伤区damage zone疲劳Fatigue 低周疲劳low cycle fatigue应力疲劳stress fatigue随机疲劳random fatigue蠕变疲劳creep fatigue腐蚀疲劳corrosion fatigue疲劳损伤fatigue damage疲劳失效fatigue failure疲劳断裂fatigue fracture 疲劳裂纹fatigue crack疲劳寿命fatigue life疲劳破坏fatigue rupture疲劳强度fatigue strength 疲劳辉纹fatigue striations 疲劳阈值fatigue threshold 交变载荷alternating load 交变应力alternating stress 应力幅值stress amplitude 应变疲劳strain fatigue应力循环stress cycle应力比stress ratio安全寿命safe life过载效应overloading effect 循环硬化cyclic hardening 循环软化cyclic softening 环境效应environmental effect 裂纹片crack gage裂纹扩展crack growth, crackPropagation裂纹萌生crack initiation 循环比cycle ratio实验应力分析experimental stressAnalysis工作[应变]片active[strain] gage基底材料backing material应力计stress gage零[点]飘移zero shift, zero drift 应变测量strain measurement应变计strain gage应变指示器strain indicator应变花strain rosette应变灵敏度strain sensitivity 机械式应变仪mechanical strain gage 直角应变花rectangular rosette引伸仪Extensometer应变遥测telemetering of strain 横向灵敏系数transverse gage factor 横向灵敏度transverse sensitivity 焊接式应变计weldable strain gage 平衡电桥balanced bridge粘贴式应变计bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计bonded wire gage 桥路平衡bridge balancing电容应变计capacitance strain gage 补偿片compensation technique 补偿技术compensation technique 基准电桥reference bridge电阻应变计resistance strain gage 温度自补偿应变计self-temperaturecompensating gage半导体应变计semiconductor strainGage 集流器slip ring应变放大镜strain amplifier疲劳寿命计fatigue life gage电感应变计inductance [strain] gage 光[测]力学Photomechanics光弹性Photoelasticity光塑性Photoplasticity杨氏条纹Young fringe双折射效应birefrigent effect等位移线contour of equalDisplacement 暗条纹dark fringe条纹倍增fringe multiplication 干涉条纹interference fringe 等差线Isochromatic等倾线Isoclinic等和线isopachic应力光学定律stress- optic law主应力迹线Isostatic亮条纹light fringe光程差optical path difference 热光弹性photo-thermo -elasticity 光弹性贴片法photoelastic coatingMethod光弹性夹片法photoelastic sandwichMethod动态光弹性dynamic photo-elasticity 空间滤波spatial filtering空间频率spatial frequency起偏镜Polarizer反射式光弹性仪reflection polariscope残余双折射效应residual birefringentEffect 应变条纹值strain fringe value应变光学灵敏度strain-optic sensitivity 应力冻结效应stress freezing effect 应力条纹值stress fringe value应力光图stress-optic pattern暂时双折射效应temporary birefringentEffect 脉冲全息法pulsed holography透射式光弹性仪transmission polariscope 实时全息干涉法real-time holographicinterfero - metry 网格法grid method全息光弹性法holo-photoelasticity 全息图Hologram全息照相Holograph全息干涉法holographic interferometry 全息云纹法holographic moire technique 全息术Holography全场分析法whole-field analysis散斑干涉法speckle interferometry 散斑Speckle错位散斑干涉法speckle-shearinginterferometry, shearography 散斑图Specklegram白光散斑法white-light speckle method 云纹干涉法moire interferometry [叠栅]云纹moire fringe[叠栅]云纹法moire method 云纹图moire pattern离面云纹法off-plane moire method参考栅reference grating试件栅specimen grating分析栅analyzer grating面内云纹法in-plane moire method 脆性涂层法brittle-coating method条带法strip coating method坐标变换transformation ofCoordinates计算结构力学computational structuralmecha-nics 加权残量法weighted residual method 有限差分法finite difference method 有限[单]元法finite element method 配点法point collocation里茨法Ritz method广义变分原理generalized variationalPrinciple 最小二乘法least square method胡[海昌]一鹫津原理Hu-Washizu principle赫林格-赖斯纳原理Hellinger-ReissnerPrinciple 修正变分原理modified variationalPrinciple 约束变分原理constrained variationalPrinciple 混合法mixed method杂交法hybrid method边界解法boundary solution method 有限条法finite strip method半解析法semi-analytical method协调元conforming element非协调元non-conforming element混合元mixed element杂交元hybrid element边界元boundary element 强迫边界条件forced boundary condition 自然边界条件natural boundary condition 离散化Discretization离散系统discrete system连续问题continuous problem广义位移generalized displacement 广义载荷generalized load广义应变generalized strain广义应力generalized stress界面变量interface variable 节点node, nodal point [单]元Element角节点corner node边节点mid-side node内节点internal node无节点变量nodeless variable 杆元bar element桁架杆元truss element 梁元beam element二维元two-dimensional element 一维元one-dimensional element 三维元three-dimensional element 轴对称元axisymmetric element 板元plate element壳元shell element厚板元thick plate element三角形元triangular element四边形元quadrilateral element 四面体元tetrahedral element曲线元curved element二次元quadratic element线性元linear element三次元cubic element四次元quartic element等参[数]元isoparametric element超参数元super-parametric element 亚参数元sub-parametric element节点数可变元variable-number-node element 拉格朗日元Lagrange element拉格朗日族Lagrange family巧凑边点元serendipity element巧凑边点族serendipity family无限元infinite element单元分析element analysis单元特性element characteristics 刚度矩阵stiffness matrix几何矩阵geometric matrix等效节点力equivalent nodal force 节点位移nodal displacement节点载荷nodal load位移矢量displacement vector载荷矢量load vector质量矩阵mass matrix集总质量矩阵lumped mass matrix相容质量矩阵consistent mass matrix 阻尼矩阵damping matrix瑞利阻尼Rayleigh damping刚度矩阵的组集assembly of stiffnessMatrices载荷矢量的组集consistent mass matrix质量矩阵的组集assembly of mass matrices 单元的组集assembly of elements局部坐标系local coordinate system局部坐标local coordinate面积坐标area coordinates体积坐标volume coordinates曲线坐标curvilinear coordinates静凝聚static condensation合同变换contragradient transformation 形状函数shape function试探函数trial function检验函数test function权函数weight function样条函数spline function代用函数substitute function降阶积分reduced integration零能模式zero-energy modeP收敛p-convergenceH收敛h-convergence掺混插值blended interpolation等参数映射isoparametric mapping双线性插值bilinear interpolation小块检验patch test非协调模式incompatible mode节点号node number单元号element number带宽band width带状矩阵banded matrix变带状矩阵profile matrix带宽最小化minimization of band width 波前法frontal method子空间迭代法subspace iteration method 行列式搜索法determinant search method 逐步法step-by-step method纽马克法Newmark威尔逊法Wilson拟牛顿法quasi-Newton method牛顿-拉弗森法Newton-Raphson method 增量法incremental method初应变initial strain初应力initial stress切线刚度矩阵tangent stiffness matrix 割线刚度矩阵secant stiffness matrix 模态叠加法mode superposition method 平衡迭代equilibrium iteration子结构Substructure子结构法substructure technique 超单元super-element网格生成mesh generation结构分析程序structural analysis program 前处理pre-processing后处理post-processing网格细化mesh refinement应力光顺stress smoothing组合结构composite structure。

弹性力学专业英语英汉互译词汇

弹性力学专业英语英汉互译词汇

elasticitytheory of elasticity homogeneous state ofstressstress invariant strain invariant strain ellipsoid homogeneous state ofstrainequation of strain compatibilityLame constants isotropic elasticityrotating circular diskwedgeKelvin problemBoussinesq problemAiry stress functionKolosoff-Muskhelishvili methodKirchhoff hypothesisPlateRectangular plate Circular plate Annular plate Corrugated plate Stiffened plate,reinforced弹性力学 弹性理论 均匀应力状态 应力不变量 应变不变量 应变椭球 均匀应变状态应变协调方程拉梅常量各向同性弹性旋转圆盘楔开尔文问题布西内斯克问题 艾里应力函数 克罗索夫―穆斯赫利什维 利法基尔霍夫假设板 矩形板 圆板 环板 波纹板 加劲板PlatePlate of moderate thickness Stress function of bendingShell Shallow shell Revolutionary shell Spherical shell Cylindrical shell Conical shell Toroidal shell Closed shell Corrugated shell Stress function of torsionWarping function semi-inverse method Rayleigh-Ritz method Relaxation methodLevy method Relaxation Dimensional analysis self-similarity Influence surface Contact stress Hertz theory Conforming contact Sliding contact Rolling contact中厚板 弯[曲]应力函数壳 扁壳 旋转壳 球壳 [圆]柱壳锥壳 环壳 封闭壳 波纹壳 扭[转]应力函数翘曲函数 半逆解法 瑞利―里茨法松弛法 莱维法 松弛 量纲分析 自相似[性]影响面 接触应力 赫兹理论 协调接触压入Indentation各向异性弹性Anisotropic elasticity 颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle 褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity 大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave 竖直剪切波Vertical shear wave 体波body wave无旋波Irrotational wave 畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave 勒夫波Love wave界面波Interfacial wave 边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming耐撞性Crashworthiness结构抗撞毁性Structural crashworthiness 拉拔Drawing破坏机构Collapse mechanism回弹Springback挤压Extrusion冲压Stamping穿透Perforation层裂Spalling塑性理论Theory of plasticity 安定[性]理论Shake-down theory 运动安定定理kinematic shake-downtheoremStatic shake-down theorem rate dependent theoremload factor Loading criterion Loading function Loading surface Plastic loading Plastic loading waveSimple loading Proportional loadingUnloading Unloading wave Impulsive load step load pulse load limit load nentral loading instability in tension acceleration wave constitutive equation complete solution nominal stress over-stress true stress equivalent stressflow stress stress discontinuity静力安定定理 率相关理论 载荷因子 加载准则 加载函数 加载面 塑性加载 塑性加载波 简单加载 比例加载 卸载 卸载波 冲击载荷 阶跃载荷 脉冲载荷 极限载荷 中性变载 拉抻失稳 加速度波 本构方程 完全解 名义应力 过应力 真应力 等效应力 流动应力 应力间断stress space principal stress space hydrostatic state of stresslogarithmic strain engineering strain equivalent strain strain localizationstrain ratestrain rate sensitivitystrain space finite strain plastic strain incrementaccumulated plastic strainpermanent deformationinternal variable strain-softening rigid-perfectly plasticMaterialrigid-plastic materialperfectl plastic material stability of material deviatoric tensor of strain deviatori tensor of stress spherical tensor of strain spherical tensor of stresspath-dependency linear strain-hardening应力空间 主应力空间 静水应力状态 对数应变 工程应变 等效应变 应变局部化 应变率 应变率敏感性 应变空间 有限应变塑性应变增量累积塑性应变永久变形 内变量 应变软化 理想刚塑性材料刚塑性材料 理想塑性材料 材料稳定性 应变偏张量 应力偏张量 应变球张量 应力球张量 路径相关性strain-hardening kinematic hardening isotropic hardening strain-hardening moduluspower hardening plastic limit bendingMomentplastic limit torque elastic-plastic bending elastic-plastic interface elastic-plastic torsionViscoplasticityInelasticityelastic-perfectly plasticMaterial limit analysislimit design limit surface upper bound theorem upper yield point lower bound theorem lower yield point bound theorem initial yield surface subsequent yield surface convexity of yield surface shape factor of cross-section应变强化 随动强化 各向同性强化 强化模量 幕强化 塑性极限弯矩塑性极限扭矩 弹塑性弯曲 弹塑性交界面 弹塑性扭转粘塑性非弹性理想弹塑性材料极限分析 极限设计 极限面 上限定理 上屈服点 下限定理 下屈服点 界限定理 初始屈服面 后继屈服面 屈服面[的]外沙堆比拟屈服屈服条件屈服准则屈服函数屈服面塑性势能量吸收装置能量耗散率塑性动力学塑性动力屈曲塑性动力响应塑性波运动容许场静力容许场流动法则速度间断滑移线滑移线场移行塑性铰塑性增量理论米泽斯屈服准则普朗特―罗伊斯关系特雷斯卡屈服准则sand heap analogyYieldyield conditionyield criterionyield functionyield surfaceplastic potential energy absorbing device energy absorbing device dynamic plasticity dynamic plastic buckling dynamic plastic response plastic wave kinematically admissibleFieldstatically admissibleFieldflow rule velocity discontinuityslip-linesslip-lines field travelling plastic hinge incremental theory ofPlasticityMises yield criterion prandtl- Reuss relation Tresca yield criterion洛德应力参数莱维―米泽斯关系亨基应力方程赫艾一韦斯特加德应力空间洛德应变参数德鲁克公设盖林格速度方程结构力学结构分析结构动力学拱三铰拱抛物线拱圆拱穹顶空间结构空间桁架雪载[荷]风载[荷]土压力地震载荷弹簧支座支座位移支座沉降Lode stress parameterLevy-Mises relation Hencky stress equation Haigh-Westergaardstress space Lode strain parameter Drucker postulateGeiringer velocityEquation structural mechanics structural analysis structural dynamicsArchthree-hinged archparabolic archcircular archDomespace structurespace trusssnow loadwind loadearth pressureearthquake loadingspring support support displacementsupport settlementdegree of indeterminacy kinematic analysis method of joints method of sectionsjoint forces conjugate displacementinfluence line three-moment equation unit virtual force stiffness coefficient flexibility coefficientmoment distributionmoment distribution methodmoment redistribution distribution factor matri displacement method element stiffness matrix element strain matrix global coordinates Betti theorem Gauss-Jordan eliminationMethod buckling mode mechanics of compositescomposite materialfibrous composite unidirectional composite超静定次数 机动分析 结点法 截面法 结点力 共轭位移 影响线 三弯矩方程 单位虚力 刚度系数柔度系数力矩分配力矩分配法 力矩再分配 分配系数 矩阵位移法 单元刚度矩阵 单元应变矩阵 总体坐标 贝蒂定理 高斯一若尔当消去法屈曲模态复合材料力学 复合材料foamed composite particulate compositeLaminate sandwich panel cross-ply laminate angle-ply laminatePlycellular solid ExpansionDebulk Degradation DelaminationDebond fiber stress ply stress ply strain interlaminar stress specific strength strength reduction factor strength -stress ratio transverse shear modulustransverse isotropyOrthotropyshear lag analysis chopped fiber continuous fiber fiber direction泡沫复合材料 颗粒复合材料层板 夹层板 正交层板 斜交层板 层片 多胞固体 膨胀 压实 劣化 脱层 脱粘 纤维应力 层应力 层应变层间应力比强度强度折减系数 强度应力比 横向剪切模量 横观各向同性 正交各向异 剪滞分析 短纤维 长纤维fiber break fiber pull-out fiber reinforcementDensification optimum weight design netting analysis rule of mixture failure criterion Tsai-W u failure criterionDugdale model fracture mechanics probabilistic fractureMechanicsGriffith theory linear elastic fracturemechanics, LEFMelastic-plastic fracturemecha-nics, EPFMFracture brittle fracturecleavage fracture creep fracture ductile fracture inter-granular fracture quasi-cleavage fracture trans-granular fractureCrack纤维断裂 纤维拔脱 纤维增强 致密化 最小重量设计 网格分析法 混合律 失效准则 蔡一吴失效准则 达格代尔模型断裂力学概率断裂力学格里菲思理论线弹性断裂力学弹塑性断裂力学断裂 脆性断裂 解理断裂 蠕变断裂 延性断裂 晶间断裂 准解理断裂 裂纹Flaw Defect Slit MicrocrackKinkelliptical crack embedded crack penny-shape crackPrecrack short crack surface crack crack blunting crack branching crack closure crack front crack mouthcrack opening angle,COAcrack opening displacement,CODcrack resistancecrack surfacecrack tipcrack tip opening angle,CTOAcrack tip openingdisplacement, CTOD crack tip singularity裂缝 缺陷 割缝 微裂纹 折裂 椭圆裂纹 深埋裂纹 [钱]币状裂纹预制裂纹 短裂纹 表面裂纹 裂纹钝化 裂纹分叉 裂纹闭合 裂纹前缘 裂纹嘴 裂纹张开角 裂纹张开位移裂纹阻力裂纹面裂纹尖端 裂尖张角裂尖张开位移Fieldcrack growth rate stable crack growth steady crack growth subcritical crack growthcrack retardation crack arrest arrest toughness fracture mode sliding mode opening mode tearing mode mixed mode Tearingtearing modulus fracture criterionJ-integral J-resistance curve fracture toughness stress intensity factor Hutchinson-Rice-RosengrenFieldconservation integraleffective stress tensor strain energy density energy release ratecohesive zone裂纹扩展速率 稳定裂纹扩展 定常裂纹扩展 亚临界裂纹扩展 裂纹[扩展]减速 止裂 止裂韧度 断裂类型 滑开型 张开型 撕开型 复合型 撕裂 撕裂模量 断裂准则 J 积分 J 阻力曲线 断裂韧度 应力强度因子HRR 场守恒积分 有效应力张量 应变能密度 能量释放率塑性区plastic zone张拉区stretched zone热影响区heat affected zone, HAZ延脆转变温度brittle-ductile transitiontempe- rature剪切带shear band 剪切唇shear lip无损检测non-destructive inspection双边缺口试件double edge notchedspecimen, DEN specimen 单边缺口试件single edge notchedspecimen, SEN specimen 三点弯曲试件three point bendingspecimen, TPB specimen 中心裂纹拉伸试件center cracked tensionspecimen, CCT specimen 中心裂纹板试件center cracked panelspecimen, CCP specimen 紧凑拉伸试件compact tension specimen,CT specimen 大范围屈服large scale yielding 小范围攻屈服small scale yielding 韦布尔分布Weibull distribution 帕里斯公式paris formula空穴化Cavitation应力腐蚀stress corrosion概率风险判定probabilistic riskassessment, PRAdamage mechanicsDamagecontinuum damage mechanics microscopic damage mechanicsaccumulated damage brittle damage ductile damage macroscopic damage microscopic damage microscopic damagedamage criteriondamage evolution equationdamage softeningdamage strengtheningdamage tensor damage threshold damage variable damage vector damage zone Fatigue low cycle fatigue stress fatigue random fatigue creep fatigue corrosion fatigue fatigue damage 损伤力学 损伤 连续介质损伤力学 细观损伤力学 累积损伤 脆性损伤 延性损伤 宏观损伤 细观损伤 微观损伤损伤准则损伤演化方程损伤软化 损伤强化 损伤张量 损伤阈值 损伤变量 损伤矢量 损伤区 疲劳 低周疲劳 应力疲劳 随机疲劳 蠕变疲劳 腐蚀疲劳fatigue failure fatigue fracture fatigue crack fatigue life fatigue rupture fatigue strength fatigue striations fatigue threshold alternating load alternating stress stress amplitudestrain fatiguestress cyclestress ratio safe life overloading effect cyclic hardening cyclic softening environmental effectcrack gage crack growth, crackPropagation crack initiationcycle ratio experimental stressAnalysisactive[strain] gage疲劳失效 疲劳断裂 疲劳裂纹 疲劳寿命 疲劳破坏 疲劳强度 疲劳辉纹 疲劳阈值 交变载荷 交变应力应力幅值应变疲劳应力循环 应力比 安全寿命 过载效应 循环硬化 循环软化 环境效应 裂纹片 裂纹扩展裂纹萌生 循环比工作[应变]片backing material stress gage zero shift, zero drift strain measurementstrain gage strain indicator strain rosette strain sensitivity mechanical strain gage rectangular rosetteExtensometertelemetering of strain transverse gage factor transverse sensitivity weldable strain gage balanced bridge bonded strain gage bonded foiled gage bonded wire gage bridge balancing capacitance strain gage compensation technique compensation techniquereference bridge resistance strain gageself-temperature compensating gage基底材料 应力计 零[点]飘移 应变测量 应变计 应变指示器 应变花 应变灵敏度 机械式应变仪 直角应变花弓I 伸仪 应变遥测 横向灵敏系数 横向灵敏度 焊接式应变计 平衡电桥 粘贴式应变计 粘贴箔式应变计 粘贴丝式应变计桥路平衡 电容应变计 补偿片 补偿技术 基准电桥 电阻应变计semiconductor strainGageslip ring strain amplifier fatigue life gage inductance [strain] gagePhotomechanics Photoelasticity Photoplasticity Young fringe birefrigent effect contour of equal Displacement dark fringefringe multiplication interference fringeIsochromatic Isoclinic isopachic stress- optic lawIsostatic light fringe optical path differencephoto-thermo -elasticityphotoelastic coatingMethodphotoelastic sandwich半导体应变计集流器 应变放大镜 疲劳寿命计 电感应变计 光[测]力学光弹性 光塑性 杨氏条纹 双折射效应 等位移线暗条纹 条纹倍增 干涉条纹 等差线 等倾线 等和线 应力光学定律 主应力迹线亮条纹光程差热光弹性 光弹性贴片法Methoddynamic photo-elasticityspatial filtering spatial frequencyPolarizerreflection polariscope residual birefringentEffectstrain fringe valuestrain-optic sensitivitystress freezing effectstress fringe valuestress-optic pattern temporary birefringentEffect pulsed holographytransmission polariscope real-time holographic interfero - metrygrid methodholo-photoelasticityHologram Holographholographic interferometry holographic moire techniqueHolography whole-field analysis动态光弹性 空间滤波 空间频率 起偏镜 反射式光弹性仪 残余双折射效应应变条纹值应变光学灵敏度应力冻结效应应力条纹值 应力光图 暂时双折射效应脉冲全息法 透射式光弹性仪 实时全息干涉法网格法 全息光弹性法全息图 全息照相 全息干涉法 全息云纹法 全息术散斑干涉法speckle interferometry 散斑Speckle错位散斑干涉法speckle-shearinginterferometry,shearography散斑图Specklegram 白光散斑法white-light speckle method 云纹干涉法moire interferometry [叠栅]云纹moire fringe[叠栅]云纹法moire method 云纹图moire pattern离面云纹法off-plane moire method 参考栅reference grating试件栅specimen grating分析栅analyzer grating面内云纹法in-plane moire method脆性涂层法brittle-coating method 条带法strip coating method坐标变换transformation ofCoordinates计算结构力学computational structuralmecha-nics加权残量法weighted residual method 有限差分法finite difference method 有限[单]元法finite element method 配点法point collocation里茨法Ritz method广义变分原理generalized variationalPrinciple 最小二乘法least square method胡[海昌]一鹫津原理Hu-Washizu principle赫林格-赖斯纳原理Hellinger-ReissnerPrinciple修正变分原理modified variationalPrinciple约束变分原理constrained variationalPrinciple混合法mixed method杂交法hybrid method边界解法boundary solution method有限条法finite strip method半解析法semi-analytical method协调兀conforming element非协调兀non-conforming element混合元mixed element杂交元hybrid element边界元boundary element强迫边界条件forced boundary condition自然边界条件natural boundary condition离散化Discretization离散系统discrete system连续问题continuous problem广义位移generalized displacement广义载荷generalized load广义应变generalized straingeneralized stress interface variable node, nodal pointElement corner node mid-side node internal node nodeless variablebar element truss element beam elementtwo-dimensional elementone-dimensional elementthree-dimensional element axisymmetric elementplate element shell elementthick plate element triangular element quadrilateral element tetrahedral element curved element quadratic element linear element cubic element quartic element isoparametric element广义应力 界面变量 节点 [单]元 角节点 边节点 内节点 无节点变量杆元 桁架杆元梁元二维元一维元 三维元 轴对称元厚板元 三角形元 四边形元 四面体元 曲线元 二次元 线性元 三次元 四次元 等参[数]super-parametric element sub-parametric element variable-number-nodeelement Lagrange element Lagrange family serendipity element serendipity family infinite element element analysis element characteristicsstiffness matrixgeometric matrixequivalent nodal forcenodal displacementnodal load displacement vectorload vector mass matrix lumped mass matrix consistent mass matrixdamping matrix Rayleigh damping assembly of stiffnessMatricesconsistent mass matrix assembly of mass matrices assembly of elements超参数元 亚参数元 节点数可变元 拉格朗日元 拉格朗日族 巧凑边点元 巧凑边点族 无限元 单元分析 单元特性刚度矩阵几何矩阵等效节点力节点位移 节点载荷 位移矢量 载荷矢量 质量矩阵 集总质量矩阵 相容质量矩阵 阻尼矩阵 瑞利阻尼 刚度矩阵的组集载荷矢量的组集 质量矩阵的组集local coordinate systemlocal coordinate area coordinates volume coordinates curvilinear coordinates static condensation contragradienttransformation shape function trial function test function weight function spline function substitute function reduced integration zero-energy mode p-convergenceh-convergenceblended interpolation isoparametric mapping bilinear interpolationpatch test incompatible modenode number element number band width banded matrix profile matrix局部坐标系 局部坐标 面积坐标 体积坐标 曲线坐标 静凝聚合同变换 形状函数 试探函数 检验函数 权函数 样条函数 代用函数 降阶积分 零能模式P 收敛H 收敛 掺混插值 等参数映射 双线性插值 小块检验 非协调模式 节点号 M 二 口. 单兀号minimization of band widthfrontal method subspace iteration method determinant search methodstep-by-step methodNewmark Wilsonquasi-Newton method Newton-Raphson method incremental method initial straininitial stresstangent stiffness matrixsecant stiffness matrix mode superposition method equilibrium iterationSubstructure substructure techniquesuper-element mesh generationstructural analysis programpre-processing post-processing mesh refinement stress smoothing composite structure带宽最小化 波前法 子空间迭代法 行列式搜索法逐步法 纽马克法 威尔逊法 拟牛顿法 牛顿-拉弗森法增量法初应变初应力切线刚度矩阵 割线刚度矩阵 模态叠加法 平衡迭代 子结构 子结构法 超单元 网格生成 结构分析程序前处理 后处理 网格细化 应力光顺。

复合材料层间剪切强度夹具

复合材料层间剪切强度夹具

复合材料层间剪切强度夹具The interlaminar shear strength (ILSS) of composite materials is a critical mechanical property that determines the ability of the material to resist interlaminar shear forces. The ILSS is typically measured using a special fixture known as a interlaminar shear strength test fixture, which applies a shear force to the interface between two adjacent layers of the composite material. This test fixture is specifically designed to accurately measure the ILSS of the material and provide valuable insights into its structural integrity and performance.复合材料的层间剪切强度(ILSS)是决定材料抵抗层间剪切力的重要机械性能。

ILSS通常是使用一种称为层间剪切强度测试夹具的特殊夹具来测量的,该夹具施加剪切力到复合材料相邻两层的界面。

这个测试夹具专门设计用于准确测量材料的ILSS,并为其结构完整性和性能提供宝贵的见解。

The interlaminar shear strength test fixture is crucial in determining the performance of composite materials in various applications, such as aerospace, automotive, and marine industries. By accurately measuring the ILSS of the material, engineers and researchers canevaluate the material's suitability for specific applications and optimize its design for better performance and durability. The test fixture allows for standardized testing procedures that ensure consistent and reliable results, which are essential for quality control and material certification.层间剪切强度测试夹具对于确定复合材料在各种应用中的性能至关重要,如航空航天、汽车和船舶行业。

复合材料负泊松比结构力学性能数值研究——拉压力学性能

复合材料负泊松比结构力学性能数值研究——拉压力学性能

第38卷第4期2020年11月江苏师范大学学报(自然科学版)Journal of Jiangsu Normal University (Natural Science Edition )Vol38 ,No4Nov ,2020文章编号:2095-4298(2020)04-0061-04复合材料负泊松比结构力学性能数值研究——拉压力学性能赵昌方],朱宏伟],仲健林",任 杰1,马 威2(1南京理工大学 机械工程学院,江苏 南京210094; 2.江西洪都航空工业有限责任公司,江西南昌H0024)摘要:复合材料负泊松比结构实现了材料特性和结构特性的叠加,其力学特性值得关注.建立碳纤维复合材料的各向异性本构模型,并推导层合板弹性力学计算方法.针对内凹六边形负泊松比单层结构,通过有限元软件开展拉压 力学的数值研究.结果表明:横向和垂向的拉压加载情况都体现出交叉承载的特性,且应力在棱边集中,然后发生破坏;拉压条件下都实现了负泊松比效应.关键词:负泊松比结构;复合材料;碳纤维;拉压力学;有限元分析中图分类号:0343 文献标识码:A doi : 10. 3969/j. issn. 2095-4298. 2020. 04. 016Numerical study on the ngative Poisson's ratio structure withcomposite materials : tension and compression mechanicsZhao Changfang 1, Zhu Hongwei 1 , Zhong Jianlin 1* , Ren Jie 1, Ma Wei 2收稿日期:2020-10-19基金项目:国家自然科学基金资助项目(12002169)江苏省自然科学基金资助项目(BK2O17O8I7)作者简介:赵昌方,男,博士研究生,主要从事兵器科学与技术的研究.*通信作者:仲健林,男,博士,讲师,主要从事复合材料力学的研究,-mail :158505711l2@16l. com.(1. School of Mechanical Engineering , Nanjing University of Science & Technology ,Nanjing 210094, Jiangsu , China ;2 JiangxiHongdu AviationIndustryGroupCompanyLtd ,Nanchang330024,Jiangxi ,China )Abstract : The negative Poisson's ratio structure with composite materials realizes the superposition of material and structuralcharacteristics , anditsmechanicalcharacteristicsdeservea t ention Theanisotropicconstitutivemodelofcarbonfibercompositeswasestablished ,andthecalculationmethodofelasticmechanicsoflaminatedplateswasde- rived Thenumericalstudyoftensionandcompression wascarriedoutbyfiniteelementsoftwarefortheconcavehexagonal negative Poisson's ratio single-layer structure. The results show that the transverse and vertical tension andcompressionloadingshowsthecharacteristicsofcross-load , andthestressisconcentratedattheedgeandthen destroyed , the negative Poisson's ratio effect is realized under the condition of tension and compression.Key words : negative Poisson's ratio structure ; composite material ; carbon fiber ; tension and compression mechan ­ics ;finiteelementanalysis0引言负泊松比材料是一种典型的力学超材料1,以其优秀的能量吸收性能、抗剪切承载能力、抗断裂性 能、抗压痕性、曲面同向性,在航空、航天、航海、武器、医疗等设备中得到广泛应用[一3].负泊松比行为 不受尺度的影响,既有宏观整体现象,也有微观内部 现象,如内凹六边形蜂窝结构、黄铁矿晶体[].目前, 负泊松比现象的研究可归纳为两个层级:微观材料层级和宏观结构层级.微观材料层级基本上取决于 材料本身,通常称之为负泊松比材料;宏观结构层级的负泊松比效应主要取决于结构的造型,通常称之为负泊松比结构(negative Poisson's ratio struc ­ture, NPRS ). 负泊松比结构更加容易生产制造、控制泊松比的值,备受学者关注.近年来,关于负泊松比结构的研究层出不穷,从 二维到三维,从单胞到多胞,从简单到复合,从力学 性能到其他性能.Gibson 等[]提出了一种二维内凹 六边形蜂窝结构;Evans 等6设计出了三维正交的内凹蜂窝负泊松比结构;Wan 等7研究了大变形情 况下多胞蜂窝结构的负泊松比行为;张梗林等聞研 究了宏观负泊松比蜂窝夹芯的隔振性能;Hiller 等[]采用铝和丙烯酸两种材料组合构建了一种多重负泊松比材料;Nkansah 等[10]通过采用两种不同泊 松比的胞元组合,改善了结构的刚度;贺燕飞等[11] 通过经典层合板理论,分析了复合材料中铺层带来62江苏师范大学学报(自然科学版)第38卷的负泊松比弹性性能•然而,对于负泊松比结构的研 究,其胞元材料大多基于金属,且结构较为单调,这导致所得结构的质量大、性能差•基于此,本文采用 具有比吸能、比刚度、比强度等优异特性的碳纤维复 合材料[12一13]作为胞元材料,以内凹六边形结构为单 元构造负泊松比结构,研究其拉压条件下的负泊松比效应(negative Poisson's ratio effect ,NPRE).1复合材料弹性力学材料的力学性能对负泊松比结构的力学性能有 着重要影响.负泊松比结构受面内压缩载荷时,结构的内壁发生变形,当载荷超过材料的承受极限时,壁 面会失效,结构的刚度发生改变.因此,复合材料负泊松比结构的内壁材料的力学性能尤为重要.设有0厚度理想层间粘结和铺层数量为n 的层合板,单层厚度为儿结构见图1根据经典层合理论[14],对 处于平面应力状态的横观各向同性单层复合材料,若应力为內,应变为,,折减刚度系数矩阵为犙犼,则本构关系可简化为犈11 犈22,犙22 —1 — ^12^21 1 — ^12^21‘61'犙110,210、,11'G 22=Q 12犙220,22612烎00G ]2烎,12烎其中:犙ii1如犈11 ,码为单层复合材料的弹性模量 狏 为单1—狏12狏21层复合材料的泊松比,犌12为单层复合材料的剪切模量图1层合板结构及几何参数Fig. 1 Structure and geometric parameters of laminate取转换缩减刚度系数矩阵犙犻、变换矩阵八则全局坐标系下的单层本构关系为6狓,狓、,狓、6y=0,y = T0T —,y 、T 狓y烎Y y 烎Y 狓丿其中'cos 20T = sin 20sin 0cos 0sin 20 cos 2 0 —sin 0cos 0―2sin 0cos 02sin 0cos 0 cos 20一 sin 20设刚度系数矩阵为G ,则层合板的应力-应变 本构关系可表示为其中,对于前k 层单层板组合而成的层合板[11],有” ”犃=工(犙‘)令,B =工 *Q )(k + 1)52 , 犇 =k =i k =i 2工 1 (')k(3k 2 — 3k + 1)»k = i3设柔度系数矩阵気=C —1,则层合板弹性模量犈狓犈狔,剪切模量G 狓狔,泊松比狏的计算公式为E =1 •丄 E =1 •丄狓” S 11'狔”犛2‘1 1 — _ 犛12G xy —・丁,V xy ―一no 犛33 犛112有限元仿真分析2.1仿真模型及材料参数采用ANSYS/DYNA 有限元商业软件进行低 速压缩分析,单元类型为She ll_163,算法为Belytschko-Tsay 材料 的 弹 性 本 构 见 第 1 部 分, 失 效判据采用Chang-Chang 准则[15],模型为* MAT_54复 合材料模型.壁厚1mm,厚度方向3个积分点,按照 [0790°]的规则铺7层.几何尺寸见图2,夹角56. 3°采用四边形网格进行离散,网格数量12万.仿真中 采用的单层碳纤维复合材料参数见表1图2几何结构及尺寸Fig. 2 Geometric structure and dimensions表1碳纤维单层复合材料力学性能参数山]Tab. 1 Mechanical properties of carbon fibersingle-layer composites力学性能参数单位数值纤维方向弹性模量GPa 135垂直纤维方向弹性模量GPa 10面内剪切模量GPa5主泊松比0. 3纤维方向拉伸强度MPa 1500垂直纤维方向拉伸强度MPa 50纤维方向压缩强度MPa 1200垂直纤维方向压缩强度MPa 250剪切强度MPa70第4期赵昌方,等:复合材料负泊松比结构力学性能数值研究一一拉压力学性能632.2单层结构的拉压力学特性单层负泊松比内凹六边形结构的横向拉压仿真结果见图3.由图3a可知,拉伸时结构的应力从运动端向固定端传递,并呈现出交叉分布的特点.结构的破坏出现在固定端附近,接着运动端也出现了较3b).垂向拉压仿真结果见图4.加载初期应力也体现出交叉分布的特征.随着拉压载荷的继续增大,结构的棱边出现应力集中,随后失效,使得各单胞结构之间的板出现分离.因此,可以判定,内凹六边形单层负泊松比结构的横向和垂向拉压力学特性都具有大的变形.压缩时结构表现出与拉伸同样的特性(图等效应力/MPa等效应力/MPa 固定端2.040x10-2-|等效应力/MPa3.813x10-2-.交叉传载的特点等沁力/MPa1.007x10-'"j9.067x10-2-Id.拉伸图3单层结构的横向拉压仿真结果等效应力/MPa等效应力/MPa破坏a.拉伸Fig.3Simulation results of transverse tension and compression of single layer structure图4单层结构的垂向拉压仿真结果Fig.4Simulation results of vertical tension and compression of single layer structure2.3负泊松比效应讨论横向和垂向拉压时,提取结构的力-时间曲线、节点位移曲线及拉伸能量变化曲线,见图5—8.由图5可知,垂向拉压时结构的力更大,说明该结构垂向承载性能更好;横向拉压时,结构的横向位移具有均匀的传递规律,即运动端的单元先运动,接着牵引下一单元运动,以此类推到最后一个固定的单元.由图6可知,当每个单元都发生位移后,最后一个单元位移继续增大,直到破坏;其他的单元位移则保持之前的反向传递规律;横向拉伸时垂向位移对称变化,呈张开趋势,说明单层碳纤维复合材料的内凹六边形胞元具有负泊松比效应.由图7可知,垂向拉压时,横向位移也对称变化且体现出拉胀和压缩的特点.这都证明了碳纤维复合材料的内凹六边形结构具有拉压负泊松比效应.进一步地,通过关键字调出的能量曲线如图8所示.可以看出,在发生破坏前内能和动能基本相等,沙漏能和侵蚀能很低,几乎为零,说明能量是守恒的,从而验证了仿真的有效性.图5力-时间曲线Fig.5Force-timecurves64江苏师范大学学报(自然科学版)第38卷1020 30 40 50 60时间/阴—垂向压缩左端—垂向压缩右端垂向拉伸左端2 10100 200300400 500时间/pis图6位移-时间曲线Fig. 6 Displacement-time curves图7垂向加载位移曲线Fig. 7 Vertical loading-displacement curveL o u *揺7-----------—A 内能6 E 动能-一C 沙漏能5- D 侵蚀能100 200 300 400 500时间/|1S图8拉伸能量变化曲线Fig. 8 Tensile energy variation curve3结论根据经典层合板理论建立了纤维复合材料的弹 性力学本构,并通过有限元仿真进行了单层碳纤维复合材料负泊松比内凹六边形结构的横向和垂向拉 压力学分析,得到以下结论:1)横向拉压时,负泊松比结构的应力体现出交叉传递的分布特征,且破坏先在固定端发生;垂向拉 压时,应力在棱边出现集中,同样也体现出交叉分布的特性,破坏同样先发生在固定端.应力交叉分布,逐步传递载荷是单层内凹六边形负泊松比结构的一个力学特性2)单层内凹六边形负泊松比结构的垂向承载能力大于横向承载能力,横向和垂向拉压都体现出了负泊松比效应,即拉伸膨胀和压缩收缩的反常特性.参考文献:[I ] Zhao C F , Zhou Z T , Liu X X , et al . The in-planestretching and compression mechanics of negativePoisson's ratio structures : concave hexagon, star shape, and their combimatiom [J ]. J Alloys Comp. ht ­tps : //doi. org/10. 1016/j. jallcom . 2020. 157840.[]任鑫,张相玉,谢亿民.负泊松比材料和结构的研究进展[J ].力学学报,2019,51(3):656.[]史炜,杨伟,李忠明,等.负泊松比材料研究进展[].高分子通报,003(6):48.[4]杨智春,邓庆田.负泊松比材料与结构的力学性能研究及应用[J ].力学进展,2011,41(3):335.[5] GibsonLJ , Ashby M F . Cellular solids [ M ]. Cam ­bridge :Cambridge University Press, 1997.[6] Evans K E , Nkansah M A , Hutchinson I J. Auxeticfoams : modelling negative Poisson's ratios [J ]. ActaMeta ll et Mater, 1994,42(4) : 1289.[7]Wan H,0htaki H,Kotosaka S, et al. A study of negativePoisson'sratiosinauxetichoneycombsbasedonalargede-flection model[J]. Eur J Meeh-A/Solids ,004 ,3(1) : 95.[]张梗林,杨德庆.船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J].振动与冲击,2013,32(22):68.[9]Hi l erJ ,Lipson H Tunable digital material properties for 3D voxel printers]J]. Rapid Prototyp J,2010,16(4):241.[10] Nkansah M A, Evans KI J. Modellingthe effects of negative Poisson's ratios in comtimuous- fibrecomposites [J ] J MaterSci ,1993,28(10) 2687[II ] 贺燕飞,邓庆田,尹冠生.负泊松比复合材料弹性性能分析[C]//第25届全国结构工程学术会议论文集(第I 册)2016:202 — 208.[12]ZhaoCF ,ZhouZ T ,ZhaoC X ,etal Researchoncom ­pression properties of unidirectional carbon fiber rein ­forced epoxy resin composite (UCFREP ) [J]. J ComposMater, https : //doi. org/10. 1177/0021998320972176.[13] Zhao C F , Zhou Z T , Ren J , et al. Investigation ofcompression mechanics of strain rate-dependent : forged/laminated carbon fiber-epoxy resin composites[J]. Compos Meeh Comput Appl,2020,11 (4) : 341.[14] Hull D . An Introduction to composite materials [M ].London :CambridgeUniversityPress ,1981[15] Chang F,Chang K. A progressive damage model forlaminatedcompositescontainingstressconcentrations[J ] JCompos Mater ,1988,19(4) 329[16] Ataabadi P B ?Karagiozova D, Alves M. Crushing and ener-gyabsorptionmechanismsofcarbonfiber-epoxytubesun- deraxialimpact [J ] IntJImpactEng ,2019,131174[责任编辑:钟传欣]。

复合材料阻尼性能的测试与分析

复合材料阻尼性能的测试与分析

复合材料阻尼性能的测试与分析武海鹏【摘要】对复合材料的阻尼性能准确测试,实现对结构振动冲击、噪声和疲劳破坏的有效控制,有着极其重要的工程实际意义.本文从试验出发,通过Adams-Bacon法和Ni-Adams法对玻璃纤维和碳纤维复合材料单向板试件阻尼进行分析对比,讨论本文采用实验方法的可靠性.【期刊名称】《纤维复合材料》【年(卷),期】2015(032)001【总页数】5页(P26-30)【关键词】阻尼;悬臂梁;纤维增强复合材料【作者】武海鹏【作者单位】哈尔滨玻璃钢研究院,哈尔滨150036【正文语种】中文先进的纤维增强复合材料由于高比强、高比模等优越性能,在航空航天、建筑、交通、机械等领域得到了愈来越广泛的应用。

阻尼性能是先进复合材料应用中的重要组成部分,尤其在冲击、噪声领域中。

在纤维增强复合材料阻尼性能分析及其预报方面,Schultz和Tsai[1]、Hashin[2]及Adams[3-5]进行复合材料阻尼开创性研究工作;其后德国的H.Oberst和法国的P.Lienard[6]对悬臂梁的结构损耗因子进行了理论分析和计算,其结构阻尼损耗因子可达到0.06~0.25左右;J.M.Berthelot和Y.Sefrani[6]对单向玻纤和芳纶纤维复合材料进行了研究,考察频率和纤维角度对复合材料损耗因子的影响。

Adams&Bacon[4-5]以层合板阻尼性能实验结果为基础,提出了纤维增强复合材料阻尼元模型;Adams和Maheri[7]通过对不同铺设角度的层和板振动进行研究,得出铺设角度对于结构阻尼的耦合效应。

Adams等[8-9]利用自由梁弯曲振动方法,研究了单向增强复合材料在不同温度下的动态特性和阻尼。

冯文贤、陈新[10]等通过讨论振动系统的阻尼矩阵,构造了一个利用动态试验数据确定多项式的优化估计算法;丁康等[11]通过对自由衰减振动信号采集,利用离散频谱峰值,提出一种精确计算结构小阻尼的新方法;徐兴[12]等利用流变振动仪测设等截面杆的振动,来确定材料的阻尼,同样十分方便有效。

A级表面SMC的研究进展及其在汽车上的应用

A级表面SMC的研究进展及其在汽车上的应用
Reinforced Hastics,2000,(11):24—27. n 副 顾培芷,等.美国复合材料工业发展概况及CFA2002
年展览会[J].玻璃钢,2003,(1):26—31. (责任编辑 自然)
收稿日期:2005—07—20 作者简介:王海东(1980一),男,河北人,在读硕士研究生,
主要研究方向是聚合物基复合材料。
SMC Roll Fo肌ing[J].Joumal of Materials Processing
万方数据
一34一
Technology,2003:143一144,673—676.
H,
Im J,et a1.New Sheet Molding Compound Resins
From Soybean Oil.I.Synt}lesis and Ch眦cterization.
Testing,2003,22:867—873.
[2] 张玉龙.先进复合材料制造技术手册[M].北京:机械工 业出版社,2003.
[3]
Katayama T,et a1.Ef玷ct of Curing Condition on
the Tempemture of 7rest Piece in Curing Peotte V,et a1.Methodologies fbr the
Characterisation
of Glass Fibreorientation
and
Distribution in Large Components Moulded Fmm
Sheet Molding Compounds(SMC)[J].Polymer[1]
9. 唐红.付朝军.江俊 SMC制品的耐热性能评价[会议论文]-2006 10. 蒋鼎丰 SMC在多功能车顶模块上的应用[期刊论文]-汽车与配件2008(16) 引证文献(1条)

电路板类英语词汇

电路板类英语词汇

Abietic Acid松脂酸.Abrasion Resistance耐磨性.Abrasives磨料,刷材.ABS树脂.Absorption吸收(入).Ac Impedance交流阻抗.Accelerated Test(Aging)加速老化(试验). Acceleration速化反应.Accelerator 加速剂,速化剂.Acceptability,Acceptance 允收性,允收.Access Hole露出孔,穿露孔.Accuracy准确度.Acid Number (Acid Value)酸值.Acoustic Microscope (AM)感音成像显微镜. Acrylic压克力(聚丙烯酸树脂).Actinic Light (or Intensity, or Radiation)有效光. Activation活化.Activator活化剂.Active Carbon活性炭.Active Parts(Devices)主动零件.Acutance解像锐利度.Addition Agent添加剂.Additive Process加成法.Adhesion附着力.Adhesion Promotor附着力促进剂.Adhesive胶类或接着剂.Admittance导纳(阻抗的倒数).Aerosol喷雾剂,气熔胶,气悬体.Aging老化.Air Inclusion气泡夹杂.Air Knife风刀.Algorithm算法.Aliphatic Solvent脂肪族溶剂.Aluminium Nitride(AlN)氮化铝.Ambient Tamp环境温度.Amorphous无定形,非晶形.Amp-Hour安培小时.Analog Circuit/Analog Signal模拟电路/模拟讯号. Anchoring Spurs着力爪.Angle of Contack接触角.Angle of Attack攻角.Anion阴离子.Anisotropic异向性,单向的.Anneal 韧化(退火).Annular Ring孔环.Anode阳极.Anode Sludge阳极泥.Anodizing阳极化.ANSI美国标准协会.Anti-Foaming Agent消泡剂.Anti-pit Agent抗凹剂.AOI自动光学检验.Apertures开口,钢版开口.AQL品质允收水准.AQL(Acceptable Quality Level)允收品质水准.Aramid Fiber聚醯胺纤维.Arc Resistance耐电弧性.Array排列.Artwork底片.ASIC特定用途绩体电路器.Aspect Ratio纵横比.Assembly组装装配.A-stage A阶段.ATE自动电测设备.Attenuation讯号衰减.Autoclave压力锅.Axial-lead轴心引脚.Azeotrope共沸混合液.*****B*****Back Light (Back Lighting)背光法.Back Taper反锥斜角.Backpanels, Backplanes支撑板.Back-up 垫板.Balanced Transmission Lines平衡式传输线.Ball Grid Array球脚数组(封装).Bandability弯曲性.Banking Agent护岸剂.Bare Chip Assembly裸体芯片组装.Barrel孔壁,滚镀.Base Material基材.Basic Grid基本方格.Batch批.Baume波美度(凡液体比重比水重则Be=145-(145÷Sp.Gr) 凡液体比重比水轻则Be=140÷(Sp.Gr-130)*Sp.Gr 为比重即同体绩物质对"纯水"1g/cm的比值). Beam lead光芒式的平行密集引脚.Bed-of-Nail Testing针床测试.Bellows Conact弹片式接触.Beta Ray Backscatter贝他射线反弹散射. Bevelling切斜边.Bias斜张纲布,斜纤法.Bi-Level Stencil]双阶式钢板.Binder粘结剂.Bits头(Drill Bits).Black Oxide黑氧化层.Blanking冲空断开.Bleack 漂洗.Bleeding溢流.Blind Via Hole肓通孔.Blister局部性分层或起泡.Block Diagram电路系统块图 . Blockout封纲.Blotting干印.Blotting Paper吸水纸.Blow Hole吹孔.Blue Plaque蓝纹(锡面钝化层).Blur Edge (Circle)模糊边带(圈).Bomb Sight弹标.Bond Strength结合强度.Bondability结合性.Bonding Layer结合层接着层.Bonding Sheet(Layer)接合片.Bonding Wire结合线.Bow, Bowing板弯.Braid编线.Brazing硬焊(用含银的铜锌合金焊条).在425℃~870℃下进行熔接的方式). Break Point显像点.Break-away Panel可断开板. Breakdown Voltage崩溃电压.Break-out破出.Bridging搭桥.Bright Dip光泽浸渍处理.Brightener光泽剂.Brown Oxide棕氧化.Brush Plating刷镀.B-stageB阶段.Build Up Process增层法制程.Build-up堆积.Bulge鼓起.Bump 突块.Bumping Process凸块制程.Buoyancy浮力.Buried Via Hole埋导孔.Burn-in高温加速老化试验.Burning烧焦.Burr毛头.Bus Bar汇电杆.Butter Coat 外表树脂层.*****C*****C4 Chip JointC4芯片焊接.Cable电缆.CAD计算机辅助设计.Calendered Fabric轧平式纲布.Cap Lamination帽式压合法.Capacitance电容.Capacitive Coupling电容耦合.Capillary Action毛细作用.Carbide碳化物.Carbon Arc Lamp碳弧灯.Carbon Treatment, Active活化炭处理.Card卡板.Card Cages/Card Racks电路板构装箱. Carlson Pin卡氏定位稍.Carrier载体.Cartridge滤心.Castallation堡型绩体电路器.Catalyzed Board, Catalyzed Substrate催化板材. Catalyzing催化.Cathode阴极.Cation阴向离子, 阳离子.Caul Plate隔板.Cavitation空泡化半真空.Center-to-Center Spacing中心间距.Ceramics陶瓷.Cermet陶金粉.Certificate证明书.CFC氟氢碳化物.Chamfer倒角.Characteristic Impedance特性阻抗.Chase纲框.Check List检查清单.Chelate螯合.Chemical Milling化学研磨.Chemical Resistance抗化性.Chemisorption化学吸附.Chip芯片(粒).Chip Interconnection芯片互连.Chip on Board芯片粘着板.Chip On Glass晶玻接装(COG).Chisel钻针的尖部.Chlorinated Solvent含氯溶剂,氯化溶剂. Circumferential Separation环状断孔.Clad/Cladding披覆.Clean Room无尘室.Cleanliness清洁度.Clearance余地,余环.Clinched Lead Terminal紧箝式引脚.Clinched-wire Through Connection通孔弯线连接法 . Clip Terminal绕线端接.Coat, Coating皮膜表层.Coaxial Cable同轴缆线.Coefficient of Thermal Expansion热膨胀系数.Co-Firing共绕.Cold Flow冷流.Cold Solder Joint冷焊点.Collimated Light平行光.Colloid胶体.Columnar Structure柱状组织.Comb Pattern梳型电路.Complex Ion错离子.Component Hole零件孔.Component Orientation零件方向.Component Side组件面.Composites,(CEM-1,CEM-3)复合板材. Condensation Soldering凝热焊接,液化放热焊接. Conditioning整孔.Conductance导电.Conductive Salt导电盐.Conductivity导电度.Conductor Spacing导体间距.Conformal Coating贴护层.Conformity吻合性, 服贴性.Connector连接器.Contact Angle接触角.Contact Area接触区.Contact Resistance接触电阻.Continuity连通性.Contract Service协力厂,分包厂.Controlled Depth Drilling定深钻孔.Conversion Coating 转化皮膜. Coplanarity共面性.Copolymer共聚物.Copper Foil铜皮.Copper Mirror Test铜镜试验.Copper Paste铜膏.Copper-Invar-Copper (CIC)综合夹心板. Core Material内层板材,核材.Corner Crack 通孔断角.Corner Mark板角标记. Counterboring方型扩孔. Countersinking锥型扩孔.Coupling Agent 偶合剂.Coupon, Test Coupon板边试样. Coverlay/Covercoat表护层.Crack裂痕.Crazing白斑.Crease皱折.Creep潜变.Crossection Area截面积.Crosshatch Testing十字割痕试验. Crosshatching十字交叉区. Crosslinking, Crosslinkage交联,架桥. Crossover越交,搭交.Crosstalk噪声, 串讯.Crystalline Melting Point晶体熔点.C-Stage C阶段.Cure硬化,熟化.Current Density电流密度.Current-Carrying Capability载流能力. Curtain Coating濂涂法.*****D*****Daisy Chained Design菊瓣设计. Datum Reference基准参考.Daughter Board子板.Debris碎屑,残材.Deburring去毛头.Declination Angle斜射角.Definition边缘逼真度.Degradation 劣化.Degrasing脱脂.Deionized Water去离子水. Delamination分离.Dendritic Growth 枝状生长.Denier丹尼尔(是编织纺织所用各种纱类直径单位,定义9000米纱束所具有的重量(以克米计)).Densitomer透光度计.Dent凹陷.Deposition 皮膜处理.Desiccator干燥器.Desmearing去胶渣.Desoldering解焊.Developer显像液,显像机.Developing显像 .Deviation偏差.Device电子组件.Dewetting缩锡.D-glassD玻璃.Diaze Film偶氮棕片.Dichromate重铬酸盐.Dicing芯片分割.Dicyandiamide(Dicy)双氰胺.Die 冲模.Die Attach晶粒安装.Die Bonding晶粒接着.Die Stamping冲压.Dielectric 介质.Dielectric Breakdown Voltage介质崩溃电压.Dielectric Constant介质常数.Dielectric Strength介质强度.Differential Scanning Calorimetry(DSC)微差扫瞄热卡分析法. Diffusion Layer扩散层.Digitizing数字化.Dihedral Angle双反斜角.Dimensional Stability尺度安定性.Diode二极管.Dip Coating浸涂法.Dip Soldering浸焊法.DIP(Dual Inline Package)双排脚封装体.Dipole偶极,双极.Direct / Indirect Stencil直接/间接版膜.Direct Emulsion直接乳胶.Direct Plating直接电镀.Discrete Compenent散装零件.Discrete Wiring Board散线电路板,复线板.Dish Down碟型下陷.Dispersant分散剂.Dissipation Factor散失因素.Disspation Factor散逸因子.Disturbed Joint受扰焊点.Doctor Blade修平刀,刮平刀.Dog Ear狗耳.Doping掺杂.Double Layer双电层.Double Treated Foil双面处理铜箔.Drag In / Drag Out带[进/带出.Drag Soldering拖焊.Drawbridging吊桥效应.Drift漂移.Drill Facet钻尖切削面.Drill Pointer钻针重磨机.Drilled Blank已钻孔的裸板.Dross浮渣.Drum Side铜箔光面.Dry Film干膜.Dual Wave Soldering 双波焊接.Ductility展性.Dummy Land假焊垫.Dummy, Dummying假镀(片).Durometer橡胶硬度计.DYCOstrate电浆蚀孔增层法.Dynamic Flex(FPC)动态软板.*****E*****E-Beam (Electron Beam)电子束.Eddy Current涡电流.Edge Spacing板边空地.Edge-Board Connector板边(金手指)承接器.Edge-Board Contact板边金手指.Edge-Dip Solderability Test板边焊锡性测试. EDTA乙二胺四乙酸.Effluent排放物.E-glass电子级玻璃.Elastomer弹性体.Electric Strength(耐)电性强度.Electrodeposition电镀.Electro-deposition Photoresist电着光阻, 电泳光阻. Electroforming电铸.Electroless-Deposition无电镀.Electrolytic Tough Pitch电解铜..Electrolytic-Cleaning电解清洗.Electro-migration电迁移.Electro-phoresis电泳动, 电渗.Electro-tinning镀锡.Electro-Winning电解冶炼.Elongation 延伸性, 延伸率.Embossing凸出性压花.EMF(Electromotive Force)电动势.EMI(Electromagnetic Interference)电磁干扰. Emulsion乳化.Emulsion Side药膜面.Encapsulating胶囊.Encroachment沾污,侵犯.End Tap封头.Entek有机护铜处理.Entrapment夹杂物.Entry Material盖板.Epoxy Resin环氧树脂.Etch Factor蚀刻因子.Etchant蚀刻剂(液).Etchback回蚀.Etching Indicator蚀刻指针.Etching Resist蚀刻阻剂.Eutetic Composition共融组成.Exotherm放热(曲线).Exposure曝光.Eyelet铆眼.*****F*****Fabric纲布.Face Bonding反面朝下结合.Failure故障.Fan Out Wiring/Fan In Wiring扇出布线/扇入布线. Farad 法拉.Farady法拉第.Fatigue Strength抗疲劳强度.Fault缺陷.Fault Plane断层面.Feed Through Hole导通孔.Feeder 进料器.Fiber Exposure玻纤显露.Fiducial Mark基准记号.Filament纤丝.Fill纬向.Filler填充料.Fillet内圆填角.Film底片.Film Adhesive接着膜,粘合膜.Filter过滤器.Fine Line细线.Fine Pitch密脚距,密线距,密垫距.Fineness粒度, 纯度.Finger手指.Finishing终修(饰).Finite Element Method有限要素分析法. First Article首产品.First Pass-Yield初检良品率.Fixture夹具.Flair刃角变形.Flame Point自燃点.Flame Resistant耐燃性.Flammability Rate燃性等级.Flare扇形崩口.Flash Plating闪镀.Flashover闪络.Flat Cable扁平排线.Flat Pack扁平封装(之零件).Flatness平坦度.Flexible Printed Circuit (FPC)软板.Flexural Failure挠曲损坏.Flexural Module弯曲模数, 抗挠性模数 . Flexural Strength抗挠强度.Flip Chip覆晶,扣晶.Flocculation絮凝.Flood Stroke Print覆墨冲程印刷.Flow Soldering (Wave Soldering)流焊. Fluorescence荧光.Flurocarbon Resin碳氟树脂.Flush Conductor嵌入式线路, 贴平式导体. Flush Point闪火点.Flute退屑槽.Flux助焊剂.Foil Burr铜箔毛边.Foil Lamination铜箔压板法.Foot残足(干膜残余物).Foot Print (Land Pattern)脚垫.Foreign Material 外来物,异物.Form-to-List布线说明清单.Four Point Twisting四点扭曲法.Free Radical自由基.Freeboard干舷.Frequency频率.Frit 玻璃熔料.Fully-Additive Process全加成法.Fungus Resistance抗霉性.Fused Coating熔锡层.Fusing熔合.Fusing Fluid助熔液.*****G*****G-10由连续玻纤所织成的玻纤布与环氧树脂粘结剂所复合成的材料.Gage, Gauge量规.Gallium Arsenide (GaAs)砷化镓.Galvanic Corrosion贾凡尼式腐蚀(电解式腐蚀).Galvanic Series贾凡尼次序(电动次序).Galvanizing镀锌.GAP第一面分离,长刃断开.Gate Array闸列,闸极数组.Gel Time胶化时间.Gelation Particle胶凝点.Gerber Data ,Gerber File格博档案(是美商Gerber公司专为PCB面线路图形与孔位,所发展一系列完整的软件档案).Ghost Image阴影.Gilding镀金(现为:Glod Plating).Glass Fiber玻纤.Glass Fiber Protrusion/Gouging, Groove玻纤突出/挖破.Glass Transition Temperature, Tg玻璃态转化温度.Glaze釉面,釉料.Glob Top圆顶封装体.Glouble Test球状测试法.Glycol (Ethylene Glycol)乙二醇.Golden Board测试用标准板.Grain Size结晶粒度.Grass Leak 大漏.Grid标准格.Ground Plane /Earth Plane接地层.Ground Plane Clearance接地空环.Guide Pin导针.Gull /Wing Lead鸥翼引脚.*****H*****Halation环晕.Half Angle半角.Halide卤化物.Haloing白圈,白边.Halon海龙,是CFC"氟碳化物"的一种商品名.Hard Anodizing硬阳极化.Hard Chrome Plating镀硬铬.Hard Soldering硬焊.Hardener (Curing Agent)硬化剂(或Curing Agent).Hardness硬度.Haring-Blum Cell海固槽.Harness电缆组合.Hay Wire跳线.Heat Cleaning烧洁.Heat Dissipation散热.Heat Distortion Point (Temp)热变形点(温度).Heat Sealing热封.Heat Sink Plane散热层.Heat Transfer Paste导热膏.Heatsink Tool散热工具.Hertz(Hz)赫.High Efficiency Particulate Air Filter (HEPA)高效空气尘粒过泸机. Hipot Test 高压电测.Hi-Rel高度靠度.Hit 击(钻孔时钻针每一次"刺下"的动作).Holding Time停置时间.Hole Breakout孔位破出.Hole Counter数孔机.Hole Density孔数密度.Hole Preparation通孔准备.Hole Pull Strength孔壁强度.Hole Void破洞.Hook 切削刀缘外凸.Hot Air Levelling喷锡.Hot Bar Soldering热把焊接.Hot Gas Soldering热风手焊.HTE(High Temperature Elongation)高温延伸性.Hull Cell哈氏槽.Hybrid Integrated Circuit混成电路.Hydraulic Bulge Test液压鼓起试验.Hydrogen Embrittlement氢脆.Hydrogen Overvoltage氢过(超)电压.Hydrolysis水解.Hydrophilic亲水性.Hygroscopic吸湿性.Hypersorption超吸咐.*****I*****I.C. Socket绩体电路器插座.Icicle锡尖.Illuminance照度.Image Transfer影像转移.Immersion Plating浸镀.Impedance阻抗.Impedance Match阻抗匹配.Impregnate含浸.In-Circuit Testing组装板电测.Inclusion异物,夹杂物.Indexing Hole基准孔.Inductance(L)电感.Infrared(IR)红外线.Input/Output输入/输出.Insert, Insertion插接.Inspection Overlay套检底片.Insulation Resistance绝缘电阻.Integrated Circuit(IC)绩体电路器.Inter Face接口.Interconnection互连.Intermetallic Compound (IMC)接口共化物.Internal Stress内应力.Interposer互边导电物.Interstitial Via-Hole(IVH)局部层间导通孔.Invar殷钢(63.8%Fe,36%Ni,0.2%C).Ion Cleanliness离子清洁度.Ion Exchange Resins离子交换树脂.Ion Migration离子迁移.Ionizable (Ionic) Contaimination离子性污染.Ionization游离,电离.Ionization Voltage (Corona Level)电离化电压(电缆内部狭缝空气中,引起其电离所施加之最小电压).IPC美国印刷电路板协会.Isolation隔离性,隔绝性.*****J*****JEDEC(Joint Electronic Device 联合电子组件工程委员会.Engineering Council)J-LeadJ型接脚.Job Shop专业工厂.Joule焦耳.Jumper Wire跳线.Junction接(合)面,接头.Just-In-Time(JIT)适时供应,及时出现.*****K*****Kapton聚亚醯胺软板.Karat克拉(1克拉(钻石)=0.2g 纯金则24k金为100%的钝金.Kauri-Butanol Value考立丁醇值(简称K.B.值).Kerf.切形,裁剪.Kevlar聚醯胺纤维.Key电键Key Board键盘.Kiss Pressure吻压, 低压.Knoop Hardness努普硬度.Known Good Die(KGD)已知之良好芯片.Kovar科伐合金(Fe53%,Ni29%,Co17%).Kraft Paper牛皮纸.*****L*****Lamda Wave延伸平波.Laminar Flow平流.Laminar Structure片状结构.Laminate Void板材空洞.Laminate(s)基板.Lamination Void压合空洞.Laminator压膜机.Land孔环焊垫,表面焊垫.Landless Hole无环通孔.Laser Direct Imaging (LDI)雷射直接成像.Laser Maching雷射加工法.Laser Photogenerator(LPG), Laser Photoplotter雷射曝光机. Laser Soldering雷射焊接法.Lay Back 刃角磨损.Lay Out布线,布局.Lay Up 叠合.Layer to Layer Spacing层间距离Leaching焊散漂出,熔出.Lead 引脚.Lead Frame脚架.Lead Pitch脚距.Leakage Current漏电电流.Legend文字标记.Leveling整平.Lifted Land孔环(焊垫)浮起.Ligand错离子附属体.Light Emitting Diodes (LED)发光二极管.Light Integrator光能累积器.Light Intensity光强度.Limiting Current Density极限电流密度.Liquid Crystal Display (LCD)液晶显示器.Liquid Dielectrics液态介质.Liquid Photoimagible Solder Mask, (LPSM)液态感光防焊绿漆.Local Area Network区域性网络.Logic 逻辑.Logic Circuit 逻辑电路.Loss Factor损失因素.Loss Tangent (TanδDK)损失正切.Lot Size批量.Luminance发光强度.Lyophilic亲水性胶体.*****M*****Macro-Throwing Power巨观分布力.Major Defect主要(严重)缺点.Major Weave Direction主要织向.Margin刃带(钻头尖部).Marking标记.Mask阻剂.Mass Finishing大量整面(拋光).Mass Lamination大型压板.Mass Transport质量输送.Master Drawing主图.Mat席(用于CEM-3(Composite Epoxy Material)的复合材料.)Matte Side毛面(电镀铜皮(ED Foil)之粗糙面). Mealing泡点.Mean Time To Failure (MTTF)故障前可用之平均时数. Measling白点.Mechanical Stretcher机械式张网机.Mechanical Warp机械式缠绕.Mechanism机理.Membrane Switch薄膜开关.Meniscograph Test弧面状沾锡试验.Meniscus弯月面.Mercury Vaper Lamp汞气灯.Mesh Count纲目数.Metal Halide Lamp 金属卤素灯.Metallization金属化.Metallized Fabric金属化纲布.Micelle微胞.Micro Wire Board微封线板.Micro-electronios微电子.Microetching微蚀.Microsectioning微切片法.Microstrip 微条.Microstrip Line微条线,微带线.Microthrowing Power微分布力.Microwave微波.Migration迁移.Migration Rate迁移率.Mil英丝.Minimum Annular Ring孔环下限.Minimum Electrical Spacing电性间距下限.Minor Weave Direction次要织向.Misregistration 对不准度.Mixed Componmt Mounting Technology混合零件之组装技术. Modem调变及解调器.Modification修改.Module模块.Modulus of Elasticity弹性系数.Moisture and Insulation Resistance Test湿气与绝缘电阻试验. Mold Release 脱模剂,离型剂.Mole摩尔.Monofilament单丝.Mother Board主机板,母板.Moulded Circuit模造立体电路机.Mounting Hole安装孔.Mounting Hole组装孔,机装孔.Mouse Bite鼠齿(蚀刻后线路边缘出现不规则缺口).Multi-Chip-Module(MCM)多芯片芯片模块.Multiwiring Board (or Discrete Wiring Board)复线板.N.C.数值控制.Nail Head钉头.Near IR近红外线.Negative负片,钻尖的第一面外缘变窄.Negative Etch-back反回蚀.Negative Stencil负性感光膜.Negative-Acting Resist负性作用之阻剂.Network纲状元件.Newton牛顿.Newton Ring 牛顿环.Newtonian Liquid牛顿流体.Nick缺口.N-Methyl Pyrrolidine (NMP)N-甲基四氢哔咯.Noble Metal Paste贵金属印膏.Node节点.Nodule节瘤.Nomencleature标示文字符号.Nominal Cured Thickness标示厚度.Non-Circular Land非圆形孔环焊垫.Non-flammable非燃性.Non-wetting不沾锡.Normal Concentration (Strength)标准浓度,当量浓度. Normal Distribution常态分布.Novolac酯醛树脂.Nucleation , Nucleating核化.Numerical Control数值控制.Nylon尼龙.*****O*****Occlusion吸藏.Off-Contact架空.Offset第一面大小不均.OFHC(Oxyen Free High Conductivity)无氧高导电铜. Ohm欧姆.Oilcanning盖板弹动.OLB(Outer Lead Bond)外引脚结合.Oligomer寡聚物.Omega Meter离子污染检测仪.Omega Wave振荡波.On-Contact Printing密贴式印刷.Opaquer不透明剂,遮光剂.Open Circuits断线.Optical Comparater光学对比器(光学放大器.)Optical Density光密度.Optical Inspection光学检验.Optical Instrument光学仪器.Organic Solderability Preservatives (OSP)有机保焊剂. Osmosis渗透.Outgassing出气,吹气.Outgrowth悬出,横出,侧出.Output产出,输出.Overflow溢流.Overhang总悬空.Overlap 钻尖点分离.Overpotantial(Over voltage)过电位,过电压. Oxidation氧化.Oxygen Inhibitor氧化抑制剂.Ozone Depletion臭氧层耗损.*****P*****Packaging封装,构装.Pad焊垫,圆垫.Pad Master圆垫底片.Pads Only Board唯垫板.Palladium钯.Panel制程板.Panel Plating全板镀铜.Panel Process全板电镀法.Paper Phenolic纸质酚醛树脂(板材).Parting Agent脱膜剂.Passivation钝化,钝化外理.Passive Device (Component)被动组件(零件)Paste膏,糊.Pattern板面图形.Pattern Plating线路电镀.Pattern Process线路电镀法.Peak Voltage峰值电压.Peel Strength抗撕强度.Periodic Reverse (PR) Current周期性反电流.Peripheral周边附属设备.Permeability透气性,导磁率.Permittivity诱电率,透电率.pH Value酸碱值.Phase相.Phase Diagram相图.Phenolic酚醛树脂.Photofugitive感光褪色.Photographic film感光成像之底片.Photoinitiator感光启始剂.Photomask光罩.Photoplotter, Plotter光学绘图机.Photoresist光阻.Photoresist Chemical Machinning (Milling)光阻式化学(铣刻)加工. Phototool底片.Pick and Place拾取与放置.Piezoelectric压电性.Pin 插脚,插梢,插针.Pin Grid Array (PGA)矩阵式针脚对装.Pinhole针孔.Pink Ring粉红圈.Pitch跨距,脚距,垫距,线距.Pits凹点.Plain Weave平织.Plasma电浆.Plasticizers可塑剂,增塑剂.Plated Through Hole镀通孔.Platen热盘.Plating镀.Plotting标绘.Plowing犁沟.Plug插脚,塞柱.Ply层,股.Pneumatic Stretcher气动拉伸器.Pogo Pin伸缩探针.Point 钻尖.Point Angle钻尖面.Point Source Light点状光源.Poise泊."粘滞度"单位=1dyne*sec/cm2. Polar Solvent极性溶剂.Polarity电极性.Polarization分极,极化.Polarizing Slot偏槽.Polyester Films聚酯类薄片.Polymer Thick Film (PTF)厚膜糊. Polymerization聚合.Polymide(PI)聚亚醯胺.Popcorn Effect爆米花效应.Porcelain瓷材,瓷面.Porosity Test疏孔度试验.Positive Acting Resist正性光阻剂. Post Cure后续硬化,后烤.Post Separation后期分离,事后公离. Pot Life运用期,锅中寿命.Potting铸封,模封.Power Supply电源供应器.Preform 预制品.Preheat预热.Prepreg胶片,树脂片.Press Plate钢板.Press-Fit Contact挤入式接触. Pressure Foot 压力脚.Pre-tinning预先沾锡.Primary Image线路成像.Print Through压透,过度挤压..Probe探针.Process Camera制程用照像机. Process Window操作范围. Production Master生产底片.Profile轮廓,部面图,升温曲线图棱线. Propagation传播.Propagation Delay传播延迟.Puddle Effect水坑效应.Pull Away拉离.Pulse Plating脉冲电镀法.Pumice Powder 浮石粉.Punch冲切.Purge, Purging净空,净洗.Purple Plague紫疫(金与铝的共化物层).Pyrolysis热裂解,高温分解.*****Q*****Quad Flat Pack (QFP)方扁形封装体.Qualification Agency资格认证机构.Qualification Inspection资格检验.Qualified Products List合格产品(供应者)名单.Qualitative Analysis定性分析.Quality Conformance Test Circuitry (Coupon)品质符合之试验线路(样板). Quantitative Analysis定量分析.Quench 淬火,骤冷.Quick Disconnect快速接头.Quill纬纱绕轴.*****R*****Rack 挂架.Radial Lead放射状引脚.Radio Frequency Interference (RFI)射频干扰.Rake Angle抠角,耙角.Rated Temperature, Voltage额定温度,额定电压.Reactance电抗.Real Estate底材面,基板面.Real Time System 实时系统.Reclaiming再生,再制.Rediometer辐射计,光度计.Reel to Reel卷轮(盘)式操作.Reference Dimension参考尺度.Reference Edge参考边缘.Reflection反射.Reflow Soldering重熔焊接,熔焊.Refraction折射.Refractive Index折射率.Register Mark对准用标记.Registration对准度.Reinforcement补强物.Rejection剔退,拒收.Relamination(Re-Lam)多层板压合.Relaxation松弛.缓和.Relay继电器.Release Agent, Release Sheets脱模剂,离模剂.Reliability可靠度,可信度.Relief Angle浮角.Repair修理.Resin Coated Copper Foil背胶铜箔.Resin Content胶含量,树脂含量.Resin Flow胶流量,树脂流量.Resin Recession树脂下陷.Resin Rich Area 多胶区,树脂丰富区.Resin Smear胶(糊)渣.Resin Starve Area缺胶区,树脂缺乏区.Resist阻膜,阻剂.Resistivity电阻系数,电阻率.Resistor电阻器,电阻.Resistor Drift电阻漂移.Resistor Paste电阻印膏.Resolution解像,解像度,分辨率.Resolving Power解析(像)力,分辨力.Reverse Current Cleaning反电流(电解)清洗. Reverse Etchback反回蚀.Reverse Image负片影像(阻剂).Reverse Osmosis (RO)反(逆渗透).Reversion反转,还原.Revision修正版.改订版.Rework(ing)重工,再加工.Rhology流变学,流变性质.Ribbon Cable圆线缆带.Rigid-Flex Printed Board硬软合板.Ring 套环.Rinsing水洗,冲洗.Ripple纹波(指整流器所输出电流中不稳定成分). Rise Time上升时间.Roadmap 线路与零件之布局图.Robber辅助阴极.Roller Coating辊轮涂布.Roller Coating滚动涂布法.Roller Cutter辊切机.Roller Tinning辊锡法,滚锡法.Rosin松香.Rotary Dip Test摆动沾锡试验.Routing切外型.Runout偏转,累绩距差.Rupture迸裂.*****S*****Sacrificial Protection牺牲性保护层.Salt Spray Test盐雾试验.Sand Blast喷砂.Saponification皂化作用.Saponifier皂化剂.Satin Finish缎面处理.Scaled Flow Test比例流量实验. Schemetic Diagram电路概略图. ScoringV型刻槽.Scratch刮痕.Screen Printing纲版印刷.Screenability纲印能力.Scrubber磨刷机,磨刷器.Scum透明残膜.Sealing封孔.Secondary Side第二面 .Seeding下种.Selective Plating选择性电镀.Self-Extinguishing自熄性.Selvage布边.Semi-Additive Process半加成制程.Semi-Conductor半导体.Sensitizing敏化.Separable Component Part可分离式零件. Separator Plate隔板, 钢板.Sequential Lamination接续性压合法. Sequestering Agent螯合剂.Shadowing阴影,回蚀死角.Shank钻针柄部.Shear Strength 抗剪强度.Shelf Life储龄.Shield遮蔽.Shore Hardness萧氏硬度.Short短路.Shoulder Angle肩斜角.Shunt分路.Side Wall侧壁.Siemens电阻值.Sigma (Standard Deviation)标准差. Signal讯号.Silane硅烷.Silica Gel硅胶砂.Silicon硅.Silicone硅铜.Silk Screen纲版印刷,丝纲印刷.Silver Migration银迁移.Silver Paste 银膏.Single-In-Line Package(SIP)单边插脚封装体.Sintering烧结.Sizing上胶,上浆.Sizing上浆处理.Skin Effect集肤效应(高频下,电流在传递时多集中在导体表面,使得道线内部通过电流甚少, 造成内部导体浪费,并也使得表面导体部分电阻升高.Skip Printing, Skip Plating漏印,漏镀.Skip Solder 缺锡, 漏焊.Slashing浆经.Sleeve Jint套接.Sliver边丝,边余.Slot, Slotting槽口.Sludge于泥.Slump塌散.Slurry稠浆,悬浮浆.Small Hole小孔.Smear胶渣.Smudging锡点沾污.Snap-off弹回高度.Socket插座.Soft Contact轻触.Soft Glass 软质玻璃(铅玻璃).Solder焊锡.Solder Ball锡球.Solder Bridging锡桥.Solder Bump 焊锡凸块.Solder Column Package锡柱脚封装法.Solder Connection焊接.Solder Cost焊锡着层.Solder Dam锡堤.Solder Fillet填锡.Solder Levelling喷锡,热风整平.Solder Masking(S/M)防焊膜绿漆.Solder Paste锡膏.Solder Plug锡塞(柱).Solder Preforms预焊料.Solder Projection焊锡突点.Solder Sag 焊锡垂流物.Solder Side焊锡面.Solder Spatter溅锡.Solder Splash贱锡.Solder Spread Test散锡试验.Solder Webbing锡纲.Solder Webbing锡纲.Solder Wicking渗锡,焊锡之灯芯效应.Solderability可焊性.Soldering软焊,焊接.Soldering Fluid, Soldering Oil助焊液,护焊油.Solid Content固体含量,固形分.Solidus Line固相线.Spacing间距.Span跨距.Spark Over闪络.Specific Heat 比热.Specification (Spec)规范,规格.Specimen样品,试样.Spectrophotometry分光光度计检测法.Spindle主轴,钻轴.Spinning Coating自转涂布.Splay斜钻孔.Spray Coating喷着涂装.Spur底片图形边缘突出.Sputtering溅射.Squeege刮刀.Stagger Grid蹒跚格点.Stalagometer滴管式表面张力计.Stand-off Terminals直立型端子.Starvation缺胶.Static Eliminator静电消除器.Steel Rule Die(钢)刀模.Stencil版膜.Step and Repeat逐次重复曝光.Step Plating梯阶式镀层.Step Tablet阶段式曝光表.Stiffener补强条(板).Stop Off防镀膜, 阻剂.Strain变形,应变.Strand绞(指由许多股单丝集束并旋扭而成的丝束).Stray Current迷走电流, 散杂电流(在电镀槽系统中,其直流电由整流器所提供,应在阳极板与被镀件之间的汇电杆与槽体液体中流通,但有时少部分电流也可能会从槽体本身或加热器上迷走,漏失).Stress Corrosion应力腐蚀.Stress Relief消除应力.Strike预镀.Stringing拖尾.Stripline条线.Stripper剥除液(器).Substractive Process减成法.Substrate底材.Supper Solder超级焊锡.Supported Hole(金属)支助通孔.Surface Energy表面能.Surface Insulation Resistance表面绝缘电阻. Surface Mount Device 表面粘装组件.Surface Mounting Technology (SMT)表面粘装技术. Surface Resistivity表面电阻率.Surface Speed钻针表面速度.Surface Tension表面张力.Surfactant表面润湿剂.Surge突流,突压.Swaged Lead压扁式引脚.Swelling Agents, Sweller膨松剂.Swimming 线路滑离.Synthetic Resin合成树脂.*****T*****Tab接点,金手指.Taber Abraser泰伯磨试器.Tackiness粘着性, 粘手性.Tape Automatic Bonding (TAB)卷带自动结合.Tape Casting 带状铸材.Tape Test撕胶带试验.Tape Up Master原始手贴片.Taped Components卷带式连载组件.Taper Pin Gauge锥状孔规.Tarnish污化.Tarnish 污化, 污着.Teflon铁氟龙(聚4氟乙烯).Telegraphing浮印,隐印.Temperature Profile温度曲线.Template模板.Tensile Strength抗拉强度.Tensiomenter张力计.Tenting盖孔法.Terminal端子.Terminal Clearance端子空环.Tetra-Etch氟树脂蚀粗剂.Tetrafunctional Resin四功能树脂.Thermal Coefficient of Expansion (TCE)热膨胀系数. Thermal Conductivity导热率.Thermal Cycling热循环,热震荡.Thermal Mismstch感热失谐.Thermal Relief散热式镂空.Thermal Via导热孔.Thermal Zone感热区.Thermocompression Bonding热压结合. Thermocouple热电偶.Thermode发热体.Thermode Soldering热模焊接法.Thermogravimetric Analysis, (TGA)热重分析法. Thermomechanical Analysis (TMA)热机分析法. Thermoplastic热塑性.Thermosetting热固性.Thermosonic Bonding热超音波结合.Thermount聚醯胺短纤席材.Thermo-Via导热孔.Thick Film Circuit厚膜电路.Thief辅助阳极.Thin Copper Foil薄铜箔.Thin Core薄基板.Thin Film Technology薄膜技术.Thin Small Outline Package(TSOP)薄小型绩体电路器. Thinner调薄剂.Thixotropy抗垂流性,摇变性.Three Point Bending三点压弯试验.Three-Layer Carrier三层式载体.Threshold Limit Value (TLV)极限值.Through Hole Mounting通孔插装.Through Put物流量,物料通过量.Throwing Power分布力.Tie Bar分流条.Tin Drift锡量漂飘失.Tin Immersion浸镀锡.Tin Pest锡疫(常见白色金属锡为"β锡",当温度低于13.2℃时则β锡将逐渐转变成粉末状灰色"α锡"称为"锡疫".Tin Whishers锡须.Tinning热沾焊锡.Tolerance公差.Tombstoning墓碑效应.Tooling Feature工具标示物.Topography表面地形.Torsion Strength抗扭强度.Touch Up触修,简修.Trace 线路,导线.Traceability追溯性,可溯性.Transducer转能器.Transfer Bump移用式突块.Transfer Laminatied Circuit转压式线路.Transfer Soldering移焊法.Transistor晶体管.Translucency半透性.Transmission Line传输线.Transmittance透光率.Treament, Treating含浸处理.Treeing枝状镀物,镀须.Trim修整, 精修.Trim Line裁切线.Trimming修整,修边.True Position真位.Tungsten钨Tungsten Carbide碳化钨.Turnkey System包办式系统.Turret Solder Terminal塔立式焊接端子.Twill Weave斜织法.Twist板扭.Two Layer Carrier两层式载体.*****U*****UL Symbol(UL.为Under-Writers 保俭业试验所标志. Laboratories,INC)Ultimate Tensile Strength (UTS)极限抗拉强度.Ultra High Frequency (UHF)超高频率.Ultra Violet Curing (UV Curing)紫外线硬化. Ultrasonic Bonding超音波结合.Ultrasonic Cleaning超音波清洗.Ultrasonic Soldering超音波焊接.Unbalanced Transmission Line非平衡式传输线. Undercut, Undercutting侧蚀.Underplate底镀层.Universal Tester汛用型电测机.Unsupported Hole非镀通孔.Urea尿素.Urethane胺基甲酸乙脂.*****V*****Vacuoles焊洞.Vacuum Evaporation(or Deposition)真空蒸镀法. Vacuum Lamination真空压合.Van Der Waals Force凡得华力.Vapor Blasting蒸汽喷砂.Vapor Degreasing蒸汽除油法.Vapor Phase Soldering气相焊接.Varnish凡力水,清漆(树脂之液态单体).V-cutV型切槽.Very Large-Scale Integration(VLSI)极大绩体电路器. Via Hole 导通孔.Vickers Hardness维氏硬度.Viscosity粘滞度,粘度.Vision Systems视觉系统.Visual Examination目视检验.Void 破洞,空洞.Volatile Content挥发份含量.Voltage电压.Voltage Breakdown崩溃电压.Voltage Drop 电压降落.Voltage Efficiency电压效率.Voltage Plane电压层.Voltage Plane Clearance电压层的空环.Volume Resistivity体绩电阻率.Volume Resistivity体绩电阻率.Volumetric Analysis容量分析法.Vulcanization交联,硫化.*****W*****Wafer晶圆.Waive暂准过关,暂不检查.Warp Size 浆经处理.Warp, Warpage板弯.Washer垫圈.Waste Treatment废弃处理.Water Absorption吸水性.Water Break水膜破散,水破.Water Mark水印.Watt瓦特.Watts Bath瓦兹镀镍液.Wave Guide导波管.Wave Soldering波焊.Waviness 波纹,波度.Wear Resistance耐磨性,耐磨度.Weatherability耐候性.Weave Eposure织纹显露.Weave Texture织纹隐现.Web蹼部.Wedge Bond 楔形结合点.Wedge Void楔形缺口(破口).Weft Yarn纬纱.Welding熔接.Wet Blasting湿喷砂.Wet Lamination湿压膜法.Wet Process湿式制程.Wetting Agent润湿剂.Wetting Balance沾锡天平.Wetting Balance沾锡,沾湿.Whirl Brush旋涡式磨刷法.Whirl Coating旋涡涂布法.Whisker晶须.White Residue白色残渣.White Spot白点.Wicking灯蕊效应.Window操作范围,传动齿孔.Wiping Action 滑动接触(导电).Wire Bonding打线结合.Wire Gauge线规.Wire Lead金属线脚.Wire Pattern布线图形.Wire Wrap绕线互连.Working Master工作母片.Working Time (Life)堪用时间.Workmanship 手艺,工艺水平,制作水准.Woven Cable扁平编线.Wrinkle皱折, 皱纹.Wrought Foil锻碾金属箔.*****X*****X AxisX轴.X-Ray X光.X-Ray FluorescenceX萤光.*****Y*****Yarn纱线.Y-AxisY轴.Yield良品率,良率,产率.Yield Point屈服点.ZZ-AxisZ轴.Zero Centering中心不变(叠合法).Zig-Zag In-Line Package (ZIP)炼齿状双排脚封装件Abietic Acid松脂酸. Abrasion Resistance耐磨性.Abrasives磨料,刷材.ABS树脂.Absorption吸收(入).Ac Impedance交流阻抗.。

固体力学英语词汇翻译(1)

固体力学英语词汇翻译(1)

固体力学英语词汇翻译(1)固体力学英语词汇翻译(1)弹性力学 elasticity弹性理论 theory of elasticity均匀应力状态 homogeneous state of stress应力不变量 stress invariant应变不变量 strain invariant应变椭球 strain ellipsoid均匀应变状态 homogeneous state of strain应变协调方程 equation of strain compatibility拉梅常量 lame cotants各向同性弹性 isotropic elasticity旋转圆盘 rotating circular disk楔 wedge开尔文问题 kelvin problem布西内斯克问题 boussinesq problem艾里应力函数 airy stress function克罗索夫-穆斯赫利什维利法 kolosoff-muskhelishvili method 基尔霍夫假设 kirchhoff hypothesis板 plate矩形板 rectangular plate圆板 circular plate环板 annular plate波纹板 corrugated plate加劲板 stiffened plate,reinforced plate中厚板 plate of moderate thickness弯[曲]应力函数 stress function of bending壳 shell扁壳 shallow shell旋转壳 revolutionary shell球壳 spherical shell[圆]柱壳 cylindrical shell锥壳 conical shell环壳 toroidal shell封闭壳 closed shell波纹壳 corrugated shell扭[转]应力函数 stress function of toion 翘曲函数 warping function半逆解法 semi-invee method瑞利--里茨法 rayleigh-ritz method松弛法 relaxation method莱维法 levy method松弛 relaxation量纲分析 dimeional analysis自相似[性] self-similarity影响面 influence surface接触应力 contact stress赫兹理论 hertz theory协调接触 conforming contact滑动接触 sliding contact滚动接触 rolling contact压入 indentation各向异性弹性 anisotropic elasticity颗粒材料 granular material散体力学 mechanics of granular media 热弹性 thermoelasticity超弹性 hyperelasticity粘弹性 viscoelasticity对应原理 correspondence principle褶皱 wrinkle塑性全量理论 total theory of plasticity 滑动 sliding微滑 microslip粗糙度 roughness非线性弹性 nonlinear elasticity大挠度 large deflection突弹跳变 snap-through有限变形 finite deformation格林应变 green strain阿尔曼西应变 almai strain弹性动力学 dynamic elasticity运动方程 equation of motion准静态的 quasi-static气动弹性 aeroelasticity水弹性 hydroelasticity颤振 flutter弹性波 elastic wave简单波 simple wave柱面波 cylindrical wave水平剪切波 horizontal shear wave竖直剪切波 vertical shear wave体波 body wave无旋波 irrotational wave畸变波 distortion wave膨胀波 dilatation wave瑞利波 rayleigh wave等容波 equivoluminal wave勒夫波 love wave界面波 interfacial wave边缘效应 edge effect塑性力学 plasticity可成形性 formability金属成形 metal forming耐撞性 crashworthiness结构抗撞毁性 structural crashworthiness 拉拔 drawing破坏机构 collapse mechanism回弹 springback挤压 extrusion冲压 stamping穿透 perforation层裂 spalling塑性理论 theory of plasticity安定[性]理论 shake-down theory运动安定定理 kinematic shake-down theorem 静力安定定理 static shake-down theorem率相关理论 rate dependent theorem载荷因子 load factor加载准则 loading criterion加载函数 loading function加载面 loading surface塑性加载 plastic loading塑性加载波 plastic loading wave简单加载 simple loading比例加载 proportional loading卸载 unloading卸载波 unloading wave冲击载荷 impulsive load阶跃载荷 step load脉冲载荷 pulse load极限载荷 limit load中性变载 nentral loading拉抻失稳 itability in teion加速度波 acceleration wave本构方程 cotitutive equation完全解 complete solution名义应力 nominal stress过应力 over-stress真应力 true stress等效应力 equivalent stress流动应力 flow stress应力间断 stress discontinuity应力空间 stress space主应力空间 principal stress space静水应力状态 hydrostatic state of stress对数应变 logarithmic strain工程应变 engineering strain等效应变 equivalent strain应变局部化 strain localization应变率 strain rate应变率敏感性 strain rate seitivity应变空间 strain space有限应变 finite strain塑性应变增量 plastic strain increment累积塑性应变 accumulated plastic strain永久变形 permanent deformation内变量 internal variable应变软化 strain-softening理想刚塑性材料 rigid-perfectly plastic material 刚塑性材料 rigid-plastic material理想塑性材料 perfectl plastic material材料稳定性 stability of material应变偏张量 deviatoric teor of strain应力偏张量 deviatori teor of stress应变球张量 spherical teor of strain应力球张量 spherical teor of stress路径相关性 path-dependency线性强化 linear strain-hardening应变强化 strain-hardening随动强化 kinematic hardening各向同性强化 isotropic hardening强化模量 strain-hardening modulus幂强化 power hardening塑性极限弯矩 plastic limit bending moment塑性极限扭矩 plastic limit torque弹塑性弯曲 elastic-plastic bending弹塑性交界面 elastic-plastic interface弹塑性扭转 elastic-plastic toion粘塑性 viscoplasticity非弹性 inelasticity理想弹塑性材料 elastic-perfectly plastic material 极限分析 limit analysis极限设计 limit design极限面 limit surface上限定理 upper bound theorem上屈服点 upper yield point下限定理 lower bound theorem下屈服点 lower yield point界限定理 bound theorem初始屈服面 initial yield surface后继屈服面 subsequent yield surface屈服面[的]外凸性 convexity of yield surface截面形状因子 shape factor of cross-section沙堆比拟 sand heap analogy屈服 yield屈服条件 yield condition屈服准则 yield criterion屈服函数 yield function屈服面 yield surface塑性势 plastic potential能量吸收装置 energy absorbing device能量耗散率 energy absorbing device塑性动力学 dynamic plasticity塑性动力屈曲 dynamic plastic buckling塑性动力响应 dynamic plastic respoe塑性波 plastic wave运动容许场 kinematically admissible field静力容许场 statically admissible field流动法则 flow rule速度间断 velocity discontinuity滑移线 slip-lines滑移线场 slip-lines field移行塑性铰 travelling plastic hinge塑性增量理论 incremental theory of plasticity米泽斯屈服准则 mises yield criterion普朗特--罗伊斯关系 prandtl- reuss relation特雷斯卡屈服准则 tresca yield criterion洛德应力参数 lode stress parameter莱维--米泽斯关系 levy-mises relation亨基应力方程 hencky stress equation赫艾--韦斯特加德应力空间 haigh-westergaard stress space 洛德应变参数 lode strain parameter德鲁克公设 drucker postulate盖林格速度方程 geiringer velocity equation结构力学 structural mechanics结构分析 structural analysis结构动力学 structural dynamics拱 arch三铰拱 three-hinged arch抛物线拱 parabolic arch圆拱 circular arch穹顶 dome空间结构 space structure空间桁架 space truss雪载[荷] snow load风载[荷] wind load土压力 earth pressure地震载荷 earthquake loading弹簧支座 spring support支座位移 support displacement支座沉降 support settlement超静定次数 degree of indeterminacy机动分析 kinematic analysis结点法 method of joints截面法 method of sectio结点力 joint forces共轭位移 conjugate displacement影响线 influence line三弯矩方程 three-moment equation单位虚力 unit virtual force刚度系数 stiffness coefficient柔度系数 flexibility coefficient力矩分配 moment distribution力矩分配法 moment distribution method力矩再分配 moment redistribution分配系数 distribution factor矩阵位移法 matri displacement method单元刚度矩阵 element stiffness matrix单元应变矩阵 element strain matrix总体坐标 global coordinates贝蒂定理 betti theorem高斯--若尔当消去法 gauss-jordan elimination method 屈曲模态 buckling mode复合材料力学 mechanics of composites复合材料 composite material纤维复合材料 fibrous composite单向复合材料 unidirectional composite泡沫复合材料 foamed composite颗粒复合材料 particulate composite层板 laminate夹层板 sandwich panel正交层板 cross-ply laminate斜交层板 angle-ply laminate层片 ply多胞固体 cellular solid膨胀 expaion压实 debulk劣化 degradation脱层 delamination脱粘 debond纤维应力 fiber stress层应力 ply stress层应变 ply strain层间应力 interlaminar stress比强度 specific strength强度折减系数 strength reduction factor强度应力比 strength -stress ratio横向剪切模量 travee shear modulus横观各向同性 travee isotropy正交各向异 orthotropy剪滞分析 shear lag analysis短纤维 chopped fiber长纤维 continuous fiber纤维方向 fiber direction纤维断裂 fiber break纤维拔脱 fiber pull-out纤维增强 fiber reinforcement致密化 deification最小重量设计 optimum weight design网格分析法 netting analysis混合律 rule of mixture失效准则 failure criterion蔡--吴失效准则 tsai-w u failure criterion达格代尔模型 dugdale model断裂力学 fracture mechanics概率断裂力学 probabilistic fracture mechanics格里菲思理论 griffith theory线弹性断裂力学 linear elastic fracture mechanics, lefm 弹塑性断裂力学 elastic-plastic fracture mecha-nics, epfm 断裂 fracture脆性断裂 brittle fracture解理断裂 cleavage fracture蠕变断裂 creep fracture延性断裂 ductile fracture晶间断裂 inter-granular fracture准解理断裂 quasi-cleavage fracture宝岛优品—倾心为你打造精品文档穿晶断裂 tra-granular fracture裂纹 crack裂缝 flaw缺陷 defect割缝 slit微裂纹 microcrack折裂 kink椭圆裂纹 elliptical crack深埋裂纹 embedded crack[钱]币状裂纹 penny-shape crack预制裂纹 precrack短裂纹 short crack表面裂纹 surface crack裂纹钝化 crack blunting裂纹分叉 crack branching裂纹闭合 crack closure裂纹前缘 crack front裂纹嘴 crack mouth裂纹张开角 crack opening angle,coa裂纹张开位移 crack opening displacement, cod裂纹阻力 crack resistance固体力学英语词汇翻译(1) 相关内容:力学名词英语翻译固体力学英语词汇翻译(2)流体力学英语词汇翻译(2)流体力学英语词汇翻译(1)统计相关英语词汇核工业相关词汇的英语翻译数学常用英语词汇数学新词汇的中英翻译查看更多>> 数学物理英语词汇宝岛优品—倾心为你打造精品文档。

软包装锂电池铝塑膜各向异性及应力模型研究

软包装锂电池铝塑膜各向异性及应力模型研究

第45卷 第7期 包 装 工 程2024年4月PACKAGING ENGINEERING ·267·收稿日期:2024-01-29基金项目:中铝科技发展基金资助项目(2018KJZD01) 软包装锂电池铝塑膜各向异性及应力模型研究张灵新1,陈伟2*,李小许1,王秀宾2,李昂1,杜金全1,白万真1(1.中铝河南洛阳铝箔有限公司,河南 洛阳 471000; 2.中铝材料应用研究院有限公司苏州分公司,江苏 苏州 215000)摘要:目的 研究铝塑膜的性能各向异性,并构建其与各层基材性能关系的数学模型。

方法 通过拉伸试验系统研究铝塑膜各层基材的各向异性特征及应力应变行为,采用层状复合材料的混合定律,构建铝塑膜的强度与基材强度的关系模型。

结果 聚丙烯膜强度各向异性指数最低为1.5,尼龙膜延伸率各向异性指数最低为−0.8,铝箔的强度和延伸率各向异性指数分别为4.0和−8.7,铝塑膜复合膜的强度和延伸率各向异性指数与铝箔接近,是影响铝塑膜各向异性的关键基材。

结论 基于混合定律采用线性回归分析方法构建的铝塑膜应力模型与实际测试结果吻合良好,在工程领域可以用作铝塑膜基材选型的参考。

关键词:锂电池;铝塑膜;各向异性;混合定律;应力模型中图分类号:TB333 文献标志码:A 文章编号:1001-3563(2024)07-0267-07 DOI :10.19554/ki.1001-3563.2024.07.033Anisotropy and Stress Model of Aluminum-plastic Films for Soft EncapsulatedLithium-ion BatteriesZHANG Lingxin 1, CHEN Wei 2*, LI Xiaoxu 1, WANG Xiubin 2, LI Ang 1, DU Jinquan 1, BAI Wanzhen 1(1. Chinalco Henan Luoyang Aluminum Foil Co., Ltd., Henan Luoyang 471000, China;2. Chinalco Materials Application Research Institute Co., Ltd., Suzhou Branch, Jiangsu Suzhou 215000, China) ABSTRACT: The work aims to study the performance anisotropy of aluminum-plastic films and construct a mathematical model for strength of films with that of the substrate. The anisotropic characteristics and stress-strain behavior of each layer of aluminum-plastic film substrates were studied by tensile test. Based on the mixing law of laminated composites, the relationship model between the strength of aluminum-plastic films and the strength of substrates was constructed. The results showed that the lowest anisotropy index of strength of polypropylene films was 1.5, the lowest anisotropy index of elongation of nylon films was −0.8, and the anisotropy index of strength and elongation of aluminum foils were 4.0 and −8.7, respectively. Moreover, the anisotropy index of strength and elongation of aluminum-plastic laminated composite films was close to that of aluminum foils, which was the key substrate affecting the anisotropy of aluminum-plastic films. The stress model of aluminum-plastic films constructed based on the mixing law and linear regression analysis method is in good agreement with the actual results, indicating that it can be used as a reference for the selection of aluminum-plastic film substrates in the engineering field.KEY WORDS: lithium battery; aluminum-plastic film; anisotropy; mixture law; stress model铝塑复合膜对软包装锂电池的安全性和可靠性至关重要[1]。

MechanicsofCompositeMaterials课件(2)课件

MechanicsofCompositeMaterials课件(2)课件

Chap 5. StrenHtihpoSftceommposite materials -4
5.4 Failure Criterion Determine whether failure occurs due to
multiple ply (on-axis ) stresses :sx, sy, ss
2. Maximum Strain Criterion
Hanyang university Structures & Composites Laboratory
Chap 5. StrenHtihpoSftceommposite materials -4
3. Quadratic Failure Criterion (Tsai-Wu F.C) ■ in terms of stresses
If there's no hardening effect in the isotropic material, compressive and tensile strengths are equal.
Hanyang university Structures & Composites Laboratory
■ in terms of strains
Hanyang university Structures & Composites Laboratory
Chap 5. StrenHtihpoSftceommposite materials -5
5.5 Derivation of Quadratic Failure Criterion (1) ■ Derivation of Fij, Fi
Cm (compressive strength)

复合材料力学-1

复合材料力学-1

复合材料力学与复合材料构造力学
复合材料力学
研究复合材料旳微观和宏观力学特征、涉及 刚度、强度、破坏机理、断裂、疲劳、冲击、 损伤、应力集中、边界效应、环境响应和力 学测试等力学问题。
复合材料构造力学:
研究复合材料构造旳应力、变形、稳定和振 动等问题
有关课程之间关系
材料力学 弹性力学
复合材料学
材料与力学
材料学:从材料旳物理、化学性质、材 料工艺、构造、组分旳角度 固体力学:构造受力分析与材料旳力学 性能
示例:材料中旳缺陷问题严重影响材料旳强 度等性能,纤维比块状构造材料有愈加完整 旳构造,晶体在纤维中沿着纤维轴向定位, 内部缺陷少,有更高旳强度
复合材料旳可设计性
材料与构造不可分 根据我们旳需求设计材料和构造
这么形成了纤维增强塑料、纤维增强金属和纤维增 强陶瓷。
除了纤维增强以外,还广泛使用已经有工艺制造复 合材料,如喷涂、离子注入、层叠及骨架复合等
复合材料旳制备
Hand Layup
Vacuum Bag/Autoclave
Matched Die/Molding
Filament Winding
Pressure & Roll Bonding
原子能、航空、航天、电子、化工等旳发展,对材料 旳轻质、高强、高模、高韧性、耐高温、耐磨、耐腐 蚀、电性能等提出了更高要求,使当代先进复合材料 蓬勃发展起来——高性能纤维和其他多种形式旳复合 材料
示例:天然复合材料
An Example of a Natural Composite A tree is a good example of a natural composite, consisting of cellulose (the fibrous material) and lignin (a natural polymer) forming the woody cell walls and the cementing (reinforcing) material between them.

Anisotropic strength

Anisotropic strength

Anisotropic Strength1 IntroductionThe objective of this example is to highlight the use of various strength models in modeling the anisotropy of the materials. In this example, the features include:• Use of a single grid and radius slip surface • Use of anisotropic strength soil model • Use of anisotropic function• Use of Mohr Coulomb model with anisotropic function • Use of tension crack angle2 Configuration and setupThe profile shown in Figure 1 has three different soil layers and each layer has been assigned a different strength model.Distance (m)-20-100102030405060708090100110120130140E l e v a t i o n (m )01020304050607080Figure 1 Profile for the anisotropic example showing the soil layersThe strength model specifies how the soil strength is defined. For this example, soil #1 uses ananisotropic strength soil model, which is used to designate anisotropic soil strength. Both vertical and horizontal c and φ values are specified. The c and φ values are first adjusted for anisotropy before they are used in the shear strength computation. For more information on this strength model, refer to the chapter in the SLOPE/W engineering book on material strength. The input parameters defined for the anisotropic strength of soil #1 are as shown in Table 1.Table 1 Input parameters for soil #1Parameter ValueUnit weight, γ18 kN/m3Horizontal cohesion, c H 20kN/m2kN/m2Vertical cohesion, c V 25Horizontal friction angle, φH30°Vertical friction angle, φV35°Soil #2 uses the anisotropic function model in which, depending on the base inclination angle, both the strength parameters c and φ are multiplied by a modifier factor. The input c and φ values are multiplied with the modifier factor obtained from the function before use in the shear strength computation.The general function is defined by the user, and Figure 2 shows how the modifier factor defined for this particular example varies with respect to base inclination angle for soils #2 and #3.Figure 2 Anisotropic modifier function for soil #2 and #3The required input parameters defined for soil #2 are as shown in Table 2.Table 2 Input parameters for Soil #2Parameter ValueUnit weight, γ18 kN/m3kN/m2Cohesion 20Friction angle, φ30°Soil #3 uses a Mohr Coulomb strength model and an anisotropic function as shown in Figure 2. The effective soil strength is first computed with the Mohr Coulomb model and then adjusted based on the modifier factor.The required input parameters defined for soil #3 are as shown in Table 3.Table 3 Input parameters for soil #3Parameter Value Unit weight, γ 18 kN/m 3Cohesion 10 kN/m 2Friction angle, φ30°For this example, a single slip surface is analyzed by collapsing both the search grid and radius to singlepoints. In addition, a piezometric line is defined and a tension crack angle of 62° is defined, as shown in Figure 3. A tension crack angle of 62° means that if the angle of the slip surface becomes greater than 62°, the slip surface will be forced vertically to the surface.Distance (m)-20-10102030405060708090100110120130140E l e v a t i o n (m )Figure 3 Slip surface definition3 Critical Factor of SafetyThe critical slip surface and the factor of safety of 1.248 are presented in Figure 4.Figure 4 Factor of safety and the location of the critical slip surfaceTo see how the three different strength models were used in this example, we will use some of the slice information available to verify the strength parameters that were used in the analysis. Soil #1 – anisotropic strength modelSoil #1 uses an anisotropic strength model in which the strength parameters c and φ in both the horizontal and vertical directions are defined. The bottom of slice 40 is within Soil #1, located above the piezometric line and the base inclination angle is 59.967, as reported in the view slice information dialogue box. The input c value is 20 in the horizontal direction and 25 in the vertical direction. The input φ value is 30 in the horizontal direction and 35 in the vertical direction. Based on the inclination angle, the c and f values at the base of each slice are adjusted according to:22222222cos sin 20cos 59.96725sin 59.96723.748cos sin 30cos 59.96735sin 59.96733.748h v h v c c c ααφφαφα=+=+==+=+=From the view slice information for slice 40, the base normal stress (σn ) is given as 64.867 kN/m 2 and the pore-water pressure (u) is negative. Since unsaturated strength parameter is not specified in this example, the negative pore water pressure is not used and the pore water pressure is taken as zero in the strength calculation. The Mohr-Coulomb equation for shear stress can then be solved as follows:()()τσφ=+−=+−=tan 23.74864.8670tan33.74867.087n c uThe base length of slice 40 is 4.0248 m and the resisting shear force (S r ) is computed by multiplying the base length by the shear stress:τ=×=×l 2r S 67.087 kN/m 4.0248 m = 270.01The shear force mobilized is then determined by dividing the resisting shear by the factor of safety (i.e., 1.2473), therefore:==270.01216.401.248m SThis computed value of the shear force mobilized is exactly the same as the reported shear mobilized force that appears at the base of slice 40 on the free body diagram in Figure 5.Figure 5 Free body diagram and force polygon of slice 40Soil #2 – anisotropic functionThe bottom of slice 30 is in soil #2, which used the anisotropic function. For this particular slice, the base inclination angle is 32.66. Using the anisotropic function shown in Figure 2, the modifier factor for this slice is approximately 1.192. The input parameters were c=20 and φ = 30, therefore, the modified c and φ values used in the shear strength calculation become c = 23.842 and φ = 35.763. From the view slice information for slice 30, the base normal stress (σn ) is 289.16 kN/m 2 and the pore-water pressure (u) is 83.2 kN/m 2. The Mohr-Coulomb equation for shear stress can then be solved as follows:()()τσφ=+−=+−=tan 23.840289.1683.2tan35.763172.18n c uThe base length of slice 30 is 1.9482 m and the resisting shear force (S r ) is computed by multiplying the base length by the shear stress:τ=×=×l 2r S 172.18 kN/m 1.9482 m = 335.44The shear force mobilized is then determined by dividing the resisting shear by the factor of safety (i.e., 1.248), therefore:==335.44268.821.248m SThis computed value of the shear force mobilized is exactly the same as the reported shear mobilized force that appears at the base of slice 30 on the free body diagram in Figure 3.Figure 6 Free body diagram and force polygon of slice 30Soil #3 – Mohr Coulomb with anisotropic functionThe bottom of slice 20 is in soil #3, which used the Mohr Coulomb with an anisotropic function. For this particular slice, the base inclination angle is 14.815. Using the anisotropic function shown in Figure 2, the modifier factor for this slice is 1.0439. The input parameters were c=10 and φ = 30. From the view slice information for slice 30, the base normal stress (σn ) is 340.54 kN/m 2 and the pore-water pressure (u) is 109.74 kN/m 2. The Mohr-Coulomb equation for shear stress can then be solved as follows:()()τσφ⎡⎤⎡⎤=+−×=+−×=⎣⎦⎣⎦tan M.Factor 10.0340.54109.74tan30.01.0439149.54n c uThe base length of slice 20 is 1.6292 m and the resisting shear force (S r ) is computed by multiplying thebase length by the shear stress:τ=×=×l 2r S 149.54 kN/m 1.6292 m = 243.63The shear force mobilized is then determined by dividing the resisting shear by the factor of safety (i.e., 1.140), therefore:==243.63195.211.248m SThis computed value of the shear force mobilized is exactly the same as the reported shear mobilized force that appears at the base of slice 20 on the free body diagram in Figure 7..Figure 7 Free body diagram and force polygon of slice 20。

(完整word版)Abaqus中复合材料的累积损伤与失效

(完整word版)Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19。

3。

1节).假设未损伤材料为线弹性材料。

因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。

Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。

另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能.本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。

损伤与失效模型的通用框架Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制.材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失.刚度逐渐减弱的过程采用损伤力学建模.为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。

如图19.1。

1—1中所示,应力应变图显示出明确的划分阶段。

材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b—c段)。

超过c点后,材料的承载能力显著下降直到断裂(c-d段).最后阶段的变形仅发生在样品变窄的区域。

C点表明材料损伤的开始,也被称为损伤开始的标准。

超过这一点之后,应力—应变曲线(c-d)由局部变形区域刚度减弱进展决定.根据损伤力学可知,曲线c—d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力—应变规律曲线。

图19。

1。

1-1 金属样品典型的轴向应力—应变曲线因此,在Abaqus中失效机制的详细说明里包括四个明显的部分:●材料无损伤阶段的定义(如图19.1.1—1中曲线a—b—c-d‘)●损伤开始的标准(如图19.1.1—1中c点)●损伤发展演变的规律(如图19。

1.1-1中曲线c-d)●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19。

Composite Materials and Structures

Composite Materials and Structures

Composite Materials and Structures:Revolutionizing the Manufacturing IndustryComposite materials refer to a combination of different materials that possess distinct characteristics when combined, such as fiberglass, carbon fibers, resins, and polymers. They are used to create new and advanced materials that have superior qualities than the individual components. These materials offer an array of advantages over traditional manufacturing materials such as steel, iron, and wood. The use of composite materials has revolutionized the manufacturing industry like never before. They have significantly increased the efficiency in various industries ranging from aerospace, automotive to construction.Unmatched Strength and LightweightOne unique advantage of composite materials is their strength-to-weight ratio. Composite materials are made to be stronger than some traditional metals, yet their weight is substantially lower by up to 70%. Due to their unmatched strength and lightweight, they offer a higher strength-to-weight ratio compared to traditional metals. They are, therefore, ideal for industries that require both strength and lightweight material.In aerospace, for instance, the use of composite materials has enabled the manufacturing of lightweight parts which, in turn, improves fuel efficiency. In the automotive industry, the use of composite materials creates vehicles that are lightweight and efficient, adding to their overall performance.Resistance to Corrosion and Harsh EnvironmentsComposite materials are resistant to corrosion and can withstand harsh environments better than metals such as steel. They have excellent fatigue, chemical, and UV resistance, which ensures durability over prolonged periods. This quality makes composite materials ideal for use in industries exposed to harsh weather or environments such as marine, offshore, and oil and gas industries.Greater Design FlexibilityUnlike traditional materials that are limited by their mechanical properties and require specific manufacturing processes, composite materials can be molded into different shapes and sizes. They are easy to manipulate during the manufacturing process, and designers have an endless possibility of shapes and sizes.This design flexibility has revolutionized the manufacturing industry in various ways. During manufacture, composite materials can be easily shaped to accommodate the required geometry into the manufacturing process alleviating the need for fabrication. This flexibility has significantly impacted various industries with complex part geometry requirements, including automotive, aerospace, and medical industries.Low Maintenance and DurableComposite materials are known for their durability and low maintenance needs. They have an extended lifespan, hold up well to harsh elements and have a long-term resistance to deformation. They require little maintenance, unlike traditional materials that require careful attention. This quality has significantly reduced downtime and costs associated with maintenance and repairs. Industries such as aerospace, marine, and outdoor structures have benefited from the durability and low maintenance requirements of composite materials.: A Sustainable SolutionThe use of composite materials and structures is eco-friendlier compared to traditional materials used during manufacturing. Composites components used in various industries are made from sustainable materials that are recyclable and environmentally friendly. The use of composite materials has significantly contributed to climate change mitigation, making them a preferred option for environmentally-conscious industries.In conclusion, the use of composite materials and structures in the manufacturing industry has revolutionized the way we manufacture products. The unique characteristics of composites have enabled various industries to improve the efficiency, durability, and sustainability of their products. The future for composite materials looks promising asmanufacturers are embracing the technology, and design capabilities continuously improving.。

Determining the Strength of Composite Materials

Determining the Strength of Composite Materials

Determining the Strength of CompositeMaterialsComposite materials are widely used in many industries today due to their unique properties and advantages over traditional materials. They are made up of two or more different materials which are combined to create a new material with improved properties. For example, carbon fibers can be combined with a polymer matrix to create a composite that is lightweight, strong, and durable. But in order to design and manufacture composite materials that meet the desired specifications, it is important to determine their strength characteristics.Strength is a fundamental property of any material and refers to its ability to withstand external forces without breaking or deforming. In composite materials, strength depends on the properties of each component as well as their interaction with each other. There are several ways that the strength of composite materials can be determined, some of which are discussed below.Tensile TestingTensile testing is a common method used to determine the strength of materials, including composites. This test involves applying a force to a sample of the material in a controlled manner, usually by pulling it apart with a machine. As the force is applied, the deformation of the material is measured and plotted on a graph. The maximum force that the material can withstand before breaking, known as the ultimate tensile strength, is then determined from the graph.Tensile testing can provide valuable information about the strength and stiffness of composite materials in different directions, which is important for designing structures that will be subjected to different types of loads. However, it is important to consider the effects of different variables such as temperature, humidity, and strain rate, which can affect the results of the test.Flexural TestingFlexural testing, also known as bending testing, is another method used to determine the strength of composite materials. This test involves placing a sample of the material on two supports and applying a bending force to the middle of the sample. As the force is applied, the deformation of the material is measured and plotted on a graph. The maximum force that the material can withstand before breaking, known as the flexural strength, is then determined from the graph.Flexural testing is useful for measuring the strength of composite materials in applications where they will be subjected to bending or flexural loads, such as in the construction of bridges or aircraft wings. However, it is important to ensure that the sample is properly prepared and supported during the test to obtain accurate results.Compression TestingCompression testing is a method used to determine the strength of composite materials when they are subjected to compressive loads, such as when they are used as structural components in buildings or vehicles. This test involves applying a compressive force to a sample of the material in a controlled manner, usually by pushing it together with a machine. The deformation of the material is measured and plotted on a graph, and the compressive strength is determined from the graph.Compression testing can provide information about the failure modes of composite materials, such as crushing or buckling, as well as the effect of different variables such as the thickness and orientation of the sample. However, it is important to ensure that the sample is properly prepared and positioned during the test to obtain accurate results.ConclusionDetermining the strength of composite materials is an essential step in designing and manufacturing products that meet specific requirements and specifications. Tensile testing, flexural testing, and compression testing are some of the methods used to measure the strength of composite materials, but it is important to consider the effects of different variables and ensure that the samples are properly prepared and tested. Byunderstanding the strength characteristics of composite materials, engineers and designers can create products that are strong, durable, and efficient.。

Mechanical Properties of Composite Materials

Mechanical Properties of Composite Materials

Mechanical Properties of CompositeMaterialsComposite materials, also known as composites, are materials made up of two or more constituent materials with different physical and chemical properties that, when combined, produce new and advanced materials with superior properties. Composite materials are used extensively in aerospace, automotive, construction, and sports industries, primarily because of their excellent mechanical properties.The mechanical properties of composite materials are essential in determining their overall performance. A composite material's mechanical properties depend on various factors such as the matrix material's nature, fiber type, fiber orientation, and the volume fraction of the fiber. Here, we will discuss the various mechanical properties of composite materials.1. Tensile StrengthTensile strength is the maximum stress that a material can sustain under loading in the direction of the applied force. Composite materials have a higher tensile strength than their individual constituents. The tensile strength of a composite material depends on the orientation of the reinforcing fibers. The highest tensile strength is achieved when fibers are aligned parallel to the direction of the applied load.2. Compressive StrengthCompressive strength is the maximum stress that a material can sustain under compressive loading. The compressive strength of composite materials is generally lower than their tensile strength. In composites, compressive strength depends on the matrix's properties, fiber type, and orientation.3. Flexural StrengthFlexural strength is the maximum stress that a material can sustain under bending. Composite materials have high flexural strength, making them ideal for various applications such as structural components, aircraft wings, and sports equipment. The flexural strength of composite materials is dependent on the matrix strength, fiber type, and orientation.4. Shear StrengthShear strength is the maximum stress a material can sustain before it experiences a permanent deformation in a direction parallel to the applied force. The shear strength of composite materials is dependent on fiber type, orientation, and the interfacial bond between the matrix and fibers.5. Fatigue StrengthFatigue strength refers to the maximum stress a material can sustain over a specific number of cycles before failing. Composite materials have excellent fatigue resistance when compared to their individual constituents. The fatigue strength of composite materials depends on the matrix adhesion, fiber orientation, fiber volume fraction, and the loading conditions.6. Fracture ToughnessFracture toughness is the material's ability to resist fracture under a specific level of tensile or compressive loading. Composite materials have excellent fracture toughness due to the energy-absorbing nature of the reinforcing fibers. The fracture toughness of composite materials depends on the matrix adhesion, fiber orientation, and volume fraction.In conclusion, composite materials have superior mechanical properties when compared to their individual constituents. The mechanical properties of composites depend on various factors like fiber type, fiber orientation, and matrix properties. Tensile strength, compressive strength, flexural strength, shear strength, fatigue strength, and fracture toughness are some of the critical mechanical properties of composites. Withtheir superior properties, composites have become popular in various industries, leading to new technological advancements and innovative products.。

The properties and uses of composites

The properties and uses of composites

The properties and uses of compositesComposites are materials that are made by combining two or more different types of materials. They are widely used in various industries due to their unique properties and advantages over traditional materials.One of the main advantages of composites is their strength and durability. Composites are made up of fibers, such as carbon or glass, which are embedded in a matrix, such as resin or plastic. This combination creates a material that is much stronger than its individual components, making it ideal for use in aerospace, automotive, and construction industries.Another key advantage of composites is their lightweight nature. Compared to traditional materials like steel or aluminum, composites are much lighter, allowing for greater fuel efficiency and increased speed for vehicles and aircraft. This makes composites a popular choice for use in the manufacture of sports equipment and high-performance race cars.Composites also offer superior resistance to corrosion and wear, making them ideal for use in harsh environments, such as those found in the marine and oil and gas industries. Additionally, they can be tailored to specific applications and environments by adjusting the type and amount of fibers used, as well as the resin or plastic matrix.In the medical field, composites have been used to develop medical implants and prosthetics. These materials can be customized to match the physical and mechanical properties of human bones and tissues, allowing for better integration and healing.The use of composites has also brought about new design possibilities and innovation in various industries. Due to their flexibility, composites can be molded into complex shapes and structures, allowing for greater design freedom in the creation of products.Overall, composites demonstrate a wide range of properties and advantages, making them a popular choice for use in various industries. As technology continues to advance,it is likely that the use of composites will continue to grow and evolve, leading to even more innovative uses and applications.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l a m i n a t e d c o m p o s i t e p l a t e s a n d shells. T h e s e i n v e s t i g a t i o n s h a v e b e e n d i s c u s s e d in d e t a i l in a r e c e n t r e p o r t b y T s a i , 1 where, also, t h e t h e o r e t i c a l b a s e s for p r e d i c t i n g t h e e l a s t i c b e h a v i o r o f f i l a m e n t reinforced materials and the elastic moduli of l a m i n a t e d c o m p o s i t e s a r e given. T h e e l a s t i c moduli and their experimental verification are g i v e n in a r e c e n t p a p e r b y A z z i a n d T s a i , 2 f i r m l y e s t a b l i s h i n g t h e v a l i d i t y of t h e t h e o r y . Since structural applications of composite materials are often concerned with strength, the next logical s t e p is t o e s t a b l i s h a t h e o r y o f a n i s o t r o p i c strength by which the strength of such materials can be predicted once their basic strength properties are known. A n u m b e r of o t h e r i n v e s t i g a t i o n s on t h e s t r e n g t h of c o m p o s i t e m a t e r i a l s h a v e b e e n r e p o r t e d , t h e r e s u l t s of which, h o w e v e r , a r e s u b j e c t t o s o m e d i s c u s s i o n . F o r e x a m p l e , in a series o f r e p o r t s b y the Forest Products Laboratory, 3 5 an "interaction formula" was proposed relating the stress components which would cause failure of the composite under applied load; however, the role of i n d i v i d u a l l a y e r s in a l a m i n a t e w a s n o t d e f i n e d but, rather, the composite was treated as a homogeneous continuum. Further, shear strength of t h e m a t e r i a l w a s n o t d e t e r m i n e d b u t , r a t h e r , w a s e x t r a c t e d f r o m t h e i n t e r a c t i o n f o r m u l a in w h i c h t e n s i o n d a t a were i n t r o d u c e d a n d t h e r e s u l t m a d e t o fit t h e f o r m u l a t i o n . A s h k e n a z i 6,7 s i m ilarly developed an "interaction formula" again not r e g a r d i n g t h e s t r e n g t h in p u r e s h e a r t o b e a b a s i c material property and applied his results to materials such as plywood as though it were homogeneous. A d i s c u s s i o n o f p r o p o s e d s t r e n g t h t h e o r i e s for nonisotropic materials has been presented by M a r i n 3 H o w e v e r , his s t r e n g t h t h e o r y for a n i s o t r o p i c m a t e r i a l s is b u t a s p e c i a l case o f H i l l ' s t h e o r y w r i t t e n in t e r m s o f t h e p r i n c i p a l s t r e s s e s . A n i m p o r t a n t d i f f e r e n c e is t h a t w h e r e H i l l e m p l o y e d t h e y i e l d s t r e s s in s h e a r w i t h r e s p e c t t o t h e p r i n c i p a l axes of anisotropy, here considered a basic material p r o p e r t y , M a r i n ' s y i e l d s t r e s s in s h e a r is m e a s u r e d
ABSTRAcT--The present investigation is concerned with the development of a theory of strength of anisotropic composite materials and the establishment of sound experimental procedures for the confirmation of the predicted results. A general theory is stated whereby the strength of laminated as well as unidirectional composite materials subjected to any state of combined stress can be predicted once the basic strength characteristics of a unidirectional layer have been determined. The transversely isotropic layer is treated in detail and, based on the understanding of the mechanical behavior of laminated composites, the procedure outlined for determining the strength of laminated systems. An experimental program was conducted, using glass-filamentreinforced resin test specimens, and d a t a obtained co strength of unidirectional composites. Based on the results of the analysis presented, composites m a y then be designed to incorporate an optimum utilization of the inherent strength characteristics of the constituent materials.
Introd uction
C o m p o s i t e m a t e r i a l s h a v e , in r e c e n t y e a r s , t a k e n on a n e v e r i n c r e a s i n g role as m a t e r i a l s h a v i n g h i g h p o t e n t i a l for s t r u c t u r a l a p p l i c a t i o n s . I n p a r t i c u l a r , c o m p o s i t e m a t e r i a l s f o r m e d b y i m b e d d i n g reinf o r c i n g f i l a m e n t s in m a t r i x m a t e r i a l s h a v e r e c e i v e d m u c h a t t e n t i o n a n d a r e p r e s e n t l y b e i n g u s e d in a n u m b e r o f a p p l i c a t i o n s , t h e m o s t c o m m o n of w h i c h h a s b e e n f i l a m e n t - w o u n d p r e s s u r e vessels. A m o n g a w i d e v a r i e t y of c o n s t i t u e n t m a t e r i a l s c o n s i d e r e d , t h e m o s t c o m m o n l y u s e d h a v e b e e n glass f i l a m e n t s a n d r e s i n m a t r i c e s . As w i t h m a n y n e w d e v e l o p m e n t s , t h e i n i t i a l p r o g r e s s h a s b e e n b a s e d on gross idealizations and trial-and-error design techniques. Although much has been accomplished by such a c t i v i t y , i t is o n l y v e r y r e c e n t l y t h a t t h e a n a l y s i s o f t h e s t r u c t u r a l b e h a v i o r of c o m p o s i t e m a t e r i a l s h a s been placed on its proper foundation. A n u m b e r of p a p e r s h a v e a p p e a r e d o n t h e e l a s t i c b e h a v i o r of t w o - p h a s e c o m p o s i t e m a t e r i a l s a n d on
相关文档
最新文档