实际问题与一元二次方程(5)教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3 实际问题与一元二次方程(5)

教学内容

建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况.

教学目标

掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.

复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法.

重难点关键

1.重点:如何全面地比较几个对象的变化状况.

2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况.

教具、学具准备

小黑板

教学过程

一、复习引入

(学生活动)请同学们独立完成下面的题目.

问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?

老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降

x 价x元,•则每件平均利润应是(0.3-x)元,总件数应是(500+

0.1×100)

解:设每张贺年卡应降价x元

x)=120

则(0.3-x)(500+100

0.1

解得:x=0.1

答:每张贺年卡应降价0.1元.

二、探索新知

刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.

例.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年

卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;

0.30.75100

=≈,从这些数目看,•好象两种贺年卡每张降价的绝对量0.10.2534

一样大,下面我们就通过解题来说明这个问题.

解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.

(2)乙种贺年卡:设每张乙种贺年卡应降价y元,

y×34)=120

则:(0.75-y)(200+

0.25

-y)(200+136y)=120

即(3

4

整理:得68y2+49y-15=0

∴y≈-0.98(不符题意,应舍去)

y≈0.23元

答:乙种贺年卡每张降价的绝对量大.

三、巩固练习

新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,•平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,•商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?

四、应用拓展

例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x元,月销售利润为y元,求y与x

的关系式.

(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?

分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.

(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]

(3)月销售成本不超过10000元,那么销售量就不超过10000

40 =250kg,在这个提前下,•求月销售利润达到8000元,销售单价应为多少.

解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元

(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000

五、归纳小结

建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.

六、布置作业

教材复习巩固2 综合运用7、

相关文档
最新文档