初中数学-矩形翻折问题小专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形翻折问题小专题
【知识方法总结】
1.联系实际,内容丰富,具有开放性,有利于考查学生的动手能力,空间观念和几何变换的思想。
2.图形的折叠就是对称变换,即翻折。
3.其解法看似灵活,抓住翻折前后的图形是全等图形这一关键,“边相等,角相等,折线为角平分线”再利用勾股定理或比例关系或线段的相等关系列方程,即可求解。
4.注意点:
(1)折叠就是轴对称
(2)其中蕴含着全等图形;即边和角的相等关系。
【经典例题】
例1.已知,一张矩形纸片ABCD的边长分别为9cm和3cm,把顶点A和C叠合在一起,得折痕EF (如图).
(1)猜想四边形AECF是什么四边形,并证明你的猜想;
(2)求折痕EF的长.
【解答】解:(1)菱形,理由如下:
∵四边形ABCD为矩形,
∴AB∥CD,
∠AFE=∠CEF.
∵矩形ABCD沿EF折叠,点A和C重合,
∴∠CEF=∠AEF,AE=CE
∴∠AFE=∠AEF,
∴AE=AF.
∴AF=CE,
又∵AF∥CE,
∴AECF为平行四边形,
∵AE=EC,
即四边形AECF的四边相等.
∴四边形AECF为菱形.
例2.已知:长方形纸片ABCD中,AB=10cm,AD<AB.
(1)当AD=6.5cm时,如图①,将长方形纸片ABCD折叠,使点D落在AB边上,记作点D′,折痕为AE,如图②.此时,图②中线段D′B长是cm.
(2)若AD=xcm,先将长方形纸片ABCD按问题(1)的方法折叠,再将三角形AED′沿D′E向右翻折,使点A落在射线D′B上,记作点A′.若翻折后的图形中,线段BD′=2BA′,请根据题意重新画出图形(草图),并求出x的值.
【解答】解:(1)由题意知AD′=AD=6.5cm,
∴D′B=AB﹣AD′=10﹣6.5=3.5(cm),
故答案为:3.5;
(2)如图所示,
由题意知,AD=AD′=A′D′=xcm,
∵AB=10cm,
∴BD′=10﹣x,A′B=2x﹣10,
由BD′=2BA′得10﹣x=2(2x﹣10),
解得:x=6.
例3.如图,在矩形纸片ABCD中,BC=a,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为()
a;
A. 1
2
a;
B. 2
5
a;
C. √3
3
a.
D. √3
2
【答案】C
例4.
(1)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G 点在边BC上,BG=10.
①当折痕的另一端点F在AB边上时,如图①,求△EFG的面积;
②当折痕的另一端点F在AD边上时,如图②,证明四边形BGEF为菱形,并求出折痕GF的长.
(2)在矩形纸片ABCD中,AB=5,AD=13.如图③所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,求点A′在BC边上可移动的最大距离.
【解答】
例5.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为
=.
DG,点G在BC边上,若AB=AD+2,EH=1,则AD
AB
【答案】3+4√3
13
例6.在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.
问题背景:
在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.
猜想与证明:
(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;
操作与画图:
(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);
操作与探究:
(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN 并延长MN交EF于点O.
求证:MO⊥EF 且MO平分EF;
【解答】解:(1)△MEF是等腰三角形.
理由:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠MFE=∠CEF,
由折叠可得,∠MEF=∠CEF,
∴∠MFE=∠MEF,
∴ME=MF,
∴△MEF是等腰三角形.
(2)折痕EF和折叠后的图形如图2所示:
7.如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图2),观察图形对比前后变化,回答下列问题:
(1)GF FD(直接填写=、>、<);
(2)判断△CEF的形状,并说明理由;
(3)运用所学知识,请计算着色部分多边形BCHFE的面积.
【解答】解:(1)由翻折的性质,可得GD=FD;
故答案为:=;
(2)△CEF是等腰三角形.
∵矩形ABCD,
∴AB∥CD,
∴∠AEF=∠CFE,
由翻折的性质,∠AEF=∠FEC,
∴∠CFE=∠FEC,
∴CF=CE,
故△CEF为等腰三角形;
8.如图,已知矩形纸片ABCD,AB=4,BC=10,M是BC的中点,点P沿折线BA﹣AD运动,以MP为折痕将矩形纸片向右翻折,使点B落在矩形的边上,则折痕MP的长.
√5或2√5或4
【答案】5
2
9.如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,
(1)求证:四边形AFCE为菱形;
(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.
【解答】(1)由矩形ABCD与折叠的性质,易证得△CEF是等腰三角形,即CE=CF,即可证得
AF=CF=CE=AE,即可得四边形AFCE为菱形;
(2)由折叠的性质,可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之间的数量关系式为:a2=b2+c2.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AEF=∠EFC,
由折叠的性质,可得:∠AEF=∠CEF,AE=CE,AF=CF,
∴∠EFC=∠CEF,
∴CF=CE,
∴AF=CF=CE=AE,
∴四边形AFCE为菱形;
(2)a、b、c三者之间的数量关系式为:a2=b2+c2.
理由:由折叠的性质,得:CE=AE,
∵四边形ABCD是矩形,
∴∠D=90°,
∵AE=a,ED=b,DC=c,
∴CE=AE=a,
在Rt△DCE中,CE2=CD2+DE2,
∴a、b、c三者之间的数量关系式为:a2=b2+c2.
10.如图,把正方形纸片ABCD沿对边中点所在直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB=4,则FM的长为()
A. 4
B. 2√3
C. 2√2
D. 2
【答案】B
11.在一张长方形ABCD纸张中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题(1)如图1,折痕为DE,点A的对应点F在CD上,则折痕DE的长为
cm;
(2)如图2,H、G分别为BC、AD的中点,点A的对应点F在HG上,折痕为DE,求重叠部分(△DEF)的面积;
(3)如图3,在图2中,把长方形ABCD沿着HG剪开,变成两张长方形纸片,将这两张纸按图形位置任意叠合后,发现重叠部分都是菱形,显然,这些菱形中周长最短是40cm.是否存在叠后周长最大的菱形?若存在,请求出叠合后周长最大的菱形的周长和面积;若不存在,请说明理由.
【解答】
12.如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l 分别交AD、BC边于点M、N,连接BM、NE.
(1)求证:四边形BMEN是菱形;
(2)若DE=2,求NC的长.
【解答】(1)证明:∵B、E两点关于直线l对称,
∴BM=ME,BN=NE,∠BMN=∠EMN,
在矩形ABCD中,AD∥BC,
∴∠EMN=∠MNB,
∴∠BMN=∠MNB,
∴BM=BN,
∴BM=ME=BN=NE,
∴四边形BMEN是菱形;
(2)解:设菱形边长为x,
则AM=8−x,
在Rt△ABM中,42+(8−x)2=x2,
解得:x=5,
∴NC=5.
【答案】(1)略;(2)5.。