你是如何理解新课程理念的,在教学过程中又是如何实施的?

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

你是如何理解新课程理念的,在教学过程中又是如何实施的?
焦作市外国语中学刘志敏
一、对新课程理念下高中数学内容的认识
(1)对10个模块内容的认识
可以从三个层次上去分析、考虑:知识领域,可分:代数、几何、概率统计、微积分、与信息技术相关的内容(算法、框图、推理与证明)等五个领域考虑;知识结构,揭示数学各部分内容、各分支之间的有机联系,提高对高中新课程数学内容整体的认识;思想方法,对数学内容的进一步提升,进一步加深对高中新课程数学内容和教育价值的认识。

(2)对选修系列3、4中16个专题的认识
选修系列3和系列4的专题的学习重在提高数学素养,拓宽视野。

大致分为三类。

一类是在学生已学数学内容基础上进一步加深对已学知识和相关知识的了解和认识,是在学生已学数学内容基础上的延伸和拓广。

例如数学史选讲、几何证明选讲、数列与差分、坐标系与参数方程、不等式选讲、初等数论初步等。

一类是对近现代数学中一些重要数学思想方法的介绍,但不是把大学有关内容的简化下放。

例如对称与群、矩阵与变换、欧拉公式与闭曲面分类、三等分角与数域扩充等。

还有一类是反映数学与现实世界紧密联系与广泛应用的内容,通过这些专题的学习,可以加深学生对数学的力量、数学应用价值的认识。

例如信息安全与密码、优选法与实验设计初步、统筹法与图论初步、风险与决策、开关电路与布尔代数等。

选修系列3和系列4这两个系列的专题在教学要求上是有所区别的。

选修系列3的专题,主要是以通俗易懂的语言,深入浅出地介绍各专题的基本数学内容及其基本思想,以开阔学生视野,从数学的发展或从一个具体的数学分支,来认识数学的魅力和价值。

选修系列4的专题,虽然也是要深入浅出地介绍各个专题的主要内容和基本思想,同时还要求学生能够运用其中的一些数学知识,计算、证明或处理一些问题。

二、提高对数学的价值、数学的教育价值的认识,体现新课程的理念
数学是探索自然现象和社会现象基本规律的工具和语言,对人类进步、科技发展和社会发展具有重要影响。

数学教育在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面起着重要的作用。

数学教育是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。

数学教育在学校教育中占有特殊的地位,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

三、以学生的发展为本,在实践和探索中丰富和改善教与学的方式,帮助学生更好地体验数学发现和创造的历程,发展创新意识和实践能力
1.如何把握新增内容的教学
(1)必修课中新增内容的教学
案例——算法
“算法”在当今数学和科学技术中的作用已经凸现出来,他是数学及其应用的重要组成部分,是计算机科学的重要基础。

在社会发展中发挥着越来越大的作用,已融入社会生活的方方面面。

此外,学习和体会算法的基本思想对于理解算理、提高逻辑思维能力、发展有条理的思考和表达也是十分重要和有效的。

结合具体实例,感受、学习和体会算法的基本思想;学习和体验算法的程序框图、基本算法语言;并将算法的思想方法渗透到高中数学的有关内容中,学习分析、解决问题的一种方法。

(2)选修课1、2中新增内容的教学
案例——推理和证明
推理与证明是数学的基本思维过程,是做数学的基本功,也是人们在一般学习和生活中常用的思维方式,是发展理性思维的重要方面;数学与其他学科的区别除了研究对象不同之外,最突出的就是数学内部规律的真确性必须用演绎推理(逻辑推理)的方式来证明,而在证明或学习数学过程过程中,又经常要用合情推理去猜测和发现结论、探索和提供思路。

因此,无论是学习数学、做数学,还是对于学生理性思维的培养,都需要在基础教育阶段的高中数学中加强这方面的学习和训练。

此外,随着信息技术的发展,机器证明、自动控制等方面的应用也需要学习推理与证明的有关内容。

在教学中,
可以变隐性为显性、分散为集中,结合以前所学的内容,通过挖掘、提炼、明确化等方式,同时通过新内容的学习,使学生感受和体验如何学会数学思考方式,体会推理和证明在数学学习和日常生活中的意义和作用,提高数学素养。

2.如何把握有关内容在要求和处理上的变化
案例1
函数——强调对函数概念本质的理解,函数是描述现实世界中变量之间依赖关系的重要数学模型,避免在求函数定义域、值域及讨论函数性质时出现过于繁琐的技巧训练,避免人为地编制一些求定义域和值域的偏题;注重了与方程的联系及函数观点在二分法中的应用;加强了函数作为重要数学模型的应用;充分注意到学生对于函数概念真正的认识和理解是不容易的,要经历一个多次接触、螺旋上升的较长过程。

减弱了对反函数、对数函数的要求。

案例2
统计——对于统计的教与学,必须强调统计基本思想和方法的认识和理解,而不能把统计作为计算统计量的学习。

让学生比较系统地参与收集数据、整理、分析数据、从数据中提取信息、进行估计、作出推断的全过程,并让学生在经历解决问题的活动过程中,感受和体验统计用样本来估计总体,即从局部来推断整体的归纳思想,学会收集数据的一些基本方法,体会统计思维与确定性思维的差异。

3.借助几何直观,揭示基本概念和基础知识的本质和关系,同时学会数学学习和思考的一种基本方法
几何直观形象、直观,能启迪思路、帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方法和途径。

从某种意义上来说,只有做到了直观上的理解,才是真正的理解。

案例1 函数的性质
案例2 导数的概念
案例3 圆锥曲线
4.鼓励学生积极参与教学活动,帮助学生用内心的体验与创造来学习数学,更好地认识和理解数学
为了鼓励学生积极参与教学活动,帮助学生用内心的体验与创造来学习数学,认识和理解基本概念、掌握基础知识。

在备课时不仅要备知识,把自己知道的最多、最好、最生动的东西给学生,还要考虑如何引导学生参与,应该给学生一些什么,不给什么;先给什么,后给什么;以什么样的形式能给他带来最大的思考空间;怎样创设问题情境?怎么提问?在什么时候、提什么样的问题才会有助于学生认识和理解基本概念、掌握基础知识,等等。

案例1 集合、集合的基本关系、集合的运算;
案例2 直线与方程、圆与方程;
案例3 圆锥曲线的概念;
在课堂教学中鼓励学生参与遇到种种困难时的对策:
备课时首先要加强对教学内容和教学课时整体上的把握和安排,对核心的概念和内容在时间上留有余地,对每一次所讲内容在数学上的要求有一个清楚的认识,对学生的基础和认知水平有一个比较准确的估计。

其次,在观念上也要有转变,因为当我们把学生学习的积极情感调动起来、学生的思维被激活时,学生会积极参与到教学活动中来,也就会提高教与学的效率。

同时,我们需要在实施过程中不断探索和积累经验。

5.注重联系,提高对数学和数学教育价值的整体认识,发展学生的应用意识和实践能力
注重联系是数学学习的要求。

新课程模块的结构和对数学应用的要求更应关注数学不同内容、不同分支之间的联系,数学与日常生活的联系,以及数学与其它科学的联系。

案例1 要把握好函数与其他内容之间的联系,通过内容之间的种种联系,通过与社会生活的联系,理解函数的概念及其应用,体会为什么函数是高中数学的核心概念。

为此,不仅在学习函数时,要结合函数的图象了解函数的零点与方程根的联系,根据具体函数的图象,借助计算器或计算机求相应方程的近似解;还可在平面解析几何的学习中通过类比、联想,体会直线的斜截式与一次函数
的联系;在数列的学习中体会等差数列与一次函数的联系,等比数列与指数函数的联系;在导数的学习中通过与前面函数性质学习的比较,体会导数在研究函数性质时的一般性和有效性;通过具体实例,使学生感受并理解社会生活中所说的直线上升、指数爆炸、对数增长等不同的变化规律,说的就是一次函数、指数函数、对数函数等不同函数模型的增长含义;等等。

案例2 在学习向量时或在学习向量后,要有意识地将向量与三角恒等变形、与几何、与代数之间的相应内容进行有机的联系,并通过比较,感受和体验向量在处理三角、几何、代数等各不同数学分支问题中的独到之处和桥梁作用,认识数学的整体性。

案例3 把握好数学与现实生活、与其它学科之间的联系,使学生对数学的应用有感性的认识。

比如教学中要重视向量与力、速度、加速度的联系,三角函数与力学中单摆运动、波的传播、交流电之间的联系。

导数与现实社会、与其他学科的联系,所描述的现实社会、以及其他学科中的种种变化率,如:绿地面积的增长率、人口的增长率、排污率、运动物体的瞬时速度和加速度、药物浓度在人体内的瞬时变化率,等等。

6.恰当使用信息技术,改善学生的学习方式,加深对基本概念和基础知识的理解
学生通过信息技术工具的操作可以启发思维,开拓思路,通过主动积极的观察、分析和探索活动,进行探索和发现,体现了认识数学的过程、实践和创新的过程,帮助学生更好地认识和理解基本概念和基础知识,等等。

当我们鼓励学生运用现代信息技术学习数学时,应让他们认识到现代信息技术的飞速发展,方便了我们的数学教与学,为我们的教与学注入了新的活力。

但是,现代信息技术不能替代艰苦的学习和人脑精密的思考,他只是作为达到目的的一种手段,一种无可比拟的工具,从而合理而非盲目地使用信息技术。

四、教师在新课程实施中的地位和角色
教师是新课程实施的主体;是课程的研究者、建设者、和教材资源开发的重要力量。

为此,要形成正确的数学观、学生观、教学观和评价观。

以听讲、记忆、模仿为主要特点的讲授和接受学习,能比较经济、快速地把知识内容传递给学生,但是,也更容易导致学生学习的被动、学习过程的消极,学习结果指向单纯的知识和技能。

而以自主、合作、探究为特征的学习方式,更容易引导学生理解知识的意义、发展创造性、形成积极的学习态度和正确的价值观。

相关文档
最新文档