2019年全国各地中考数学压轴题汇编:函数(湖北专版)(解析卷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国各地中考数学压轴题汇编(湖北专版)
函数
参考答案与试题解析
1.(2019•天门)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.
(1)求y关于x的函数解析式;
(2)某农户一次购买玉米种子30千克,需付款多少元?
解:(1)根据题意,得
①当0≤x≤5时,y=20x;
②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;
(2)把x=30代入y=16x+20,
∴y=16×30+20=500;
∴一次购买玉米种子30千克,需付款500元;
2.(2019•武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:
注:周销售利润=周销售量×(售价﹣进价)
(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);
②该商品进价是40元/件;当售价是70元/件时,周销售利润最大,最大利润是1800元.
(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.
解:(1)①依题意设y=kx+b,
则有
解得:
所以y关于x的函数解析式为y=﹣2x+200;
②该商品进价是50﹣1000÷100=40,
设每周获得利润w=ax2+bx+c:
则有,
解得:,
∴w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,
∴当售价是70元/件时,周销售利润最大,最大利润是1800元;
故答案为:40,70,1800;
(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣8000﹣200m,
∵对称轴x=,
∴①当<65时(舍),②当≥65时,x=65时,w求最大值1400,
解得:m=5.
3.(2019•天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.
(1)若抛物线C与直线l有交点,求a的取值范围;
(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;
(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.
解:(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,
∴,
∴,
∴y=x﹣;
联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,
∵抛物线C与直线l有交点,
∴△=9﹣8a≥0,
∴a≤且a≠0;
(2)根据题意可得,y=﹣x2+2x﹣1,
∵a<0,
∴抛物线开口向下,对称轴x=1,
∵m≤x≤m+2时,y有最大值﹣4,
∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,
∴x=﹣1或x=3,
①在x=1左侧,y随x的增大而增大,
∴x=m+2=﹣1时,y有最大值﹣4,
∴m=﹣3;
②在对称轴x=1右侧,y随x最大而减小,
∴x=m=3时,y有最大值﹣4;
综上所述:m=﹣3或m=3;
(3)①a<0时,x=1时,y≤﹣1,
即a≤﹣2;
②a>0时,x=﹣3时,y≥﹣3,
即a≥,
直线AB的解析式为y=x﹣,
抛物线与直线联立:ax2+2x﹣1=x﹣,
∴ax2+x+=0,
△=﹣2a>0,
∴a<,
∴a的取值范围为≤a<或a≤﹣2;
4.(2019•黄石)如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;
(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;
(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)
解:(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x﹣,
点M坐标为(2,﹣3);
(2)当x=8时,y=(x+1)(x﹣5)=9,即点C(8,9),
S四边形AMBC=AB(y C﹣y D)=×6×(9+3)=36;
(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,
抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,
则新抛物线表达式为:y=x2,
则定点D与动点P之间距离PD==,
∵,PD有最小值,当x2=3m﹣时,
PD最小值d==.
5.(2019•十堰)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.
(1)当31≤x≤50时,y与x的关系式为;
(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?
(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.
解:(1)依题意,当x=36时,y=37;x=44时,y=33,
当31≤x≤50时,设y=kx+b,