反应堆热工水力参数监测,诊断

合集下载

小型模块式反应堆螺旋管蒸汽发生器设计和热工水力分析

小型模块式反应堆螺旋管蒸汽发生器设计和热工水力分析
89:/;56/!=243032-6384U-;3/2-3548-39 .&9I'844380-&4U;8V393V3'&H3948H/9'6829 S;/28/U8'U&8003'348-/25-;393V3'&H.32-&W/2-3548-39.&9I'844380-&4U(=2-;/UH8H34 8;3'/08''60&/'39-IT3U-38. 532348-&4G8U93U/5239W&48#! ZP =2-3548-39 Z&9I'84 ^380-&4(#$8UU3.T'/3UG3439/U-4/TI-39/2-;3822I'84UH803T3-G332-;34380-&40&43 829-;3H43UUI43V3UU3'(:;343843!'8634UG/-;$!;3'/08''60&/'39-IT3U/2380;8UU3.D T'6G/-;8-&-8'&W"**;3'/08''60&/'39-IT3U/2-;3U-38.532348-&4(:;3H848.3-34U&W -;3U-38. 532348-&48UU3.T'68435/V32(:;3;38--482UW340&3WW/0/32--3.H348-I43 -3.H348-I439/WW343203829;38-W'IL8'&25-;3-IT3UG343828'6J39(X43UUI4394&HG/-; -;3W'&G48-30;8480-34/U-/00I4V3&W-;3W'I/9/2-;3;3'/08''60&/'39-IT3U/U8'U&U;&G2( <)7=&;%:/2-3548-39 .&9I'844380-&4;3'/08''60&/'39-IT3U-38. 532348-&493U/52 W'&G829;38--482UW34

反应堆热工水力特性分析研究

反应堆热工水力特性分析研究

反应堆热工水力特性分析研究引言反应堆是一种重要的能源设备,其热工水力特性对于核电站的安全稳定运行至关重要。

因此,反应堆的热工水力特性分析研究具有重要的意义。

在本文中,我们将从以下几个方面对反应堆的热工水力特性进行深入分析和研究。

一、反应堆热工水力特性的概念反应堆热工水力特性主要是指在反应堆内部输入热量后,其内部的温度分布情况,以及反应堆内部各个部位的水流动情况,对反应堆内部的热力学性质和流体动力学特性进行分析研究。

其主要研究内容包括反应堆内部温度分布规律、流体动力学特性和热力学特性等。

二、反应堆热工水力特性分析的意义反应堆热工水力特性分析是对核电站安全、经济、高效运行的保障。

它对于核能工业的发展和构建节能环保社会也有着极其重要的贡献。

热工水力特性分析能够对反应堆内部的热力学性质和流体动力学特性进行科学的评价,从而指导反应堆的设计和工程施工,提高了核电站的安全性、可靠性、环保性和经济性。

三、反应堆热工水力特性分析的方法1.数值模拟方法数值模拟方法是一种基于计算机数值计算方法的热工水力特性分析方法。

可以对反应堆内部的温度分布情况和水流动情况进行分析研究,并预测反应堆内部热力学特性和流体动力学特性的变化规律。

2.试验方法试验方法是通过真实的物理试验手段来分析反应堆的热工水力特性。

试验方法虽然具有可靠性较高的特点,但其测试方法的复杂性和测试对象的特殊性也使得试验方法的成本与时间较高。

四、反应堆热工水力特性分析的影响因素1.反应堆设计参数在反应堆的设计中,一些关键的参数将会影响反应堆的水力性能。

例如反应堆的几何形状、温度、压力、质量流量等参数,都会对反应堆内部的热工水力特性产生影响。

2.反应堆冷却剂反应堆的冷却剂也是影响反应堆热工水力特性的一个重要因素。

不同的冷却剂在温度、压力、浓度等方面均有所不同,因此对反应堆内部的热工水力特性也会有不同的影响。

3.反应堆内部结构反应堆内部的结构也会影响反应堆的热工水力特性。

核反应堆设计流程

核反应堆设计流程

核反应堆设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!《核反应堆设计流程》一、前期调研与可行性分析1. 确定设计目标和要求,包括反应堆类型、功率、用途等。

核电设备状态监测与故障诊断系统的研究_刘永阔

核电设备状态监测与故障诊断系统的研究_刘永阔

第42卷第3期原子能科学技术Vo l.42,N o.3 2008年3月Atomic Ener gy Science and T echno logy M ar.2008核电设备状态监测与故障诊断系统的研究刘永阔1,夏虹1,谢春丽1,2,沈季1(11哈尔滨工程大学核科学与技术学院,黑龙江哈尔滨150001;21东北林业大学交通运输工程学院,黑龙江哈尔滨150040)摘要:故障诊断系统可作为先进核电站仪表控制系统的重要辅助工具。

本文介绍1种用于核电设备的状态监测及故障诊断系统,该系统的系统程序用V isual Basic610开发,并集数据采集、状态监测、故障诊断于一体,功能完善,操作使用方便。

为了验证该系统的有效性,在核动力装置模拟器上进行了仿真实验研究。

实验结果表明,系统完全可对核电设备的典型故障进行准确识别。

关键词:核电设备;状态监测;神经网络;故障诊断中图分类号:T L361文献标志码:A文章编号:1000-6931(2008)03-0200-06Research on S tate Monitoring and Fault Diagnosis Systemof Nuclear Power EquipmentLIU Yong-kuo1,XIA H ong1,XIE Chun-li1,2,SH EN Ji1(11Colleg e o f N uclear Science and T echnolog y,H arbin Engineer ing Univers ity,H ar bin150001,China;21Colleg e of T r af f ic and T r ansp or tatio n Engineer ing,N o rtheast Fo restr y Univer sity,H ar bin150040,China)Abstract:The fault diag nosis sy stem can serve as an im por tant auxiliary too l of ad-v anced instrument and contr ol sy stem of nuclear pow er plant.T his paper introduces a kind of state monito ring and fault diagnosis sy stem fo r nuclear pow er equipment.The system w hose system prog ram w as co ded w ith Visual Basic610was integrated w ith functions o f data acquisition,state mo nitoring and fault diagnosis and w as robust and easy to operate.In order to confirm the v alidity of this system,the simulatio n ex per-i m ent w as carried out on a nuclear pow er plant simulato r.The ex perim ental r esults show that the sy stem can com pletely and accurately identify the ty pical faults o f nuclear pow er equipment.Key words:nuclear power equipment;state monitoring;neural netw ork;fault diagnosis在美国三哩岛事故和前苏联切尔诺贝利事故后,人们对核安全更加重视:1)加强对操作收稿日期:2006-11-08;修回日期:2007-01-16作者简介:刘永阔(1977)),男,吉林梅河口人,讲师,博士研究生,核能科学与工程专业人员的培训,提高运行人员的素质;2)致力于开发各种核动力装置运行支持系统,以帮助操作人员更好地操纵反应堆,特别是更准确及时地识别并处理各种故障,保证反应堆安全运行。

反应堆热工水力特性分析与设计研究

反应堆热工水力特性分析与设计研究

反应堆热工水力特性分析与设计研究引言反应堆热工水力特性是设计与研究反应堆核心的重要方面。

反应堆是一种利用核能进行能量转化和控制的设备,因此对其热工水力特性的分析与设计至关重要。

本文将对反应堆热工水力特性的分析与设计进行研究,并探讨其在核能利用过程中的重要性。

1. 反应堆热工水力特性分析1.1 反应堆热工水力循环反应堆热工水力循环是反应堆系统中热能转移的重要环节。

通过循环系统,热能可以在核燃料与冷却剂之间进行传递。

热工水力循环的设计应考虑冷却剂的流动和热能转移效率,以满足反应堆的运行需求。

常见的热工水力循环包括单相流循环和两相流循环。

1.2 反应堆热工水力特性分析方法反应堆热工水力特性的分析通常通过数值模拟和实验方法进行。

数值模拟可以通过计算流体力学(CFD)等方法来模拟反应堆内部的流动和热传导过程,以获得反应堆的热工水力特性参数。

实验方法可以通过搭建实验装置来观测和测量反应堆内部的流动和温度分布情况,以验证数值模拟结果的准确性。

2. 反应堆热工水力特性设计研究2.1 热工水力特性参数设计在反应堆的设计过程中,重要的一步是确定热工水力特性参数。

这些参数包括热流密度、冷却剂流速、冷却剂温度等。

热工水力特性参数的选择将直接影响反应堆的工作性能和安全性。

因此,需要通过理论分析和实验研究来确定这些参数的合理取值。

2.2 热工水力特性优化设计反应堆的热工水力特性优化设计旨在提高反应堆的热能转移效率和热功率密度,以提高反应堆的运行效率和能源利用效率。

优化设计可以通过改变反应堆的几何形状、流动通道的设计和材料选择等方法来实现。

通过优化设计,可以使反应堆具有更好的热工水力特性,提高反应堆的运行稳定性和安全性。

3. 反应堆热工水力特性在核能利用中的重要性反应堆热工水力特性在核能利用中起到至关重要的作用。

合理设计和控制反应堆的热工水力特性可以提高核能的利用效率和安全性。

同时,热工水力特性的分析与设计研究还可以为核能发电领域的技术创新和发展提供科学依据。

核反应堆热工水力综合实验指导书

核反应堆热工水力综合实验指导书
2.2 实验的测量系统 ···············································································································16 2.2.1 参数的测量 ···········································································································16 2.2.2 温度的测量 ···········································································································17 2.2.3 流量的测量 ···········································································································17 2.2.4 压力及压差的测量 ·······························································································18
二 核反应堆热工综合实验台 ··············································································· 2
2.1 实验装置的介绍 ·················································································································2 2.1.1 试验段管道的相关参数··························································································3 2.1.2 实验台的基本配置 ·································································································3 2.1.3 实验台的组成 ·········································································································3 2.1.4 实验台各个系统的实物图····················································································12 2.1.5 热电偶的安装 ·······································································································16 2.1.6 试验段的保温 ·······································································································16 2.1.7 实验段个测量仪表的量程及精度 ········································································16

反应堆热工水力复习要点整理

反应堆热工水力复习要点整理

反应堆热工水力复习要点整理第一章1、压水堆重要参数:(1)压力(MPa):一回路工作压力15.5MPa(2)温度(℃):冷却剂进口温度296.4,冷却剂出口温度327.6,慢化剂平均温度310(3)燃料(UO2):浓缩度1.8%-2.4%第二章1、裂变能分布:在压水动力堆的设计中,通常取燃料元件的释热量占总释热量的97.4%,而在沸水堆中取燃料元件的释热量占堆总释热量的96%。

2、功率影响因素:(1)燃料布置(2)控制棒(3)水隙及空泡:水隙会引起附加慢化作用,使该处中子通量上升,因而使水隙周围元件的功率升高,从而增大了功率分布的不均匀程度。

3、控制棒中的热源:吸收堆芯γ辐射以及吸收控制棒本身因(n,α)或(n,γ)反应所产生热量的全部或一部分。

4、慢化剂中的热源:慢化剂中所产生的热量主要是裂变中子的慢化、吸收裂变产物放出的β粒子的一部分能量、吸收各种γ射线的能量。

5、结构材料的热源:几乎完全是吸收来自堆芯的各种γ辐射。

6、停堆后功率:反应堆停堆后,其功率并不是立刻降为零,而是按照一个负的周期迅速地衰减,周期的长短最终取决于寿命最长的放射缓发中子的裂变核群的半衰期。

当反应堆由于事故或正常停堆后,堆内自持的链式裂变反应虽然随即终止,但还有热量不断地从芯块通过包壳传入冷却剂中。

这些热量一部分来自燃料棒内储存的显热,热量的另外两个来源是剩余中子引起的裂变和裂变产物的衰变及中子俘获产物的衰变。

因此,在反应堆停堆后,还必须采取一定的措施对堆芯继续进行冷却,以便排除这些热量防止损坏燃料元件。

7、衰变功率:裂变产物的放射性衰变和中子俘获产物的放射性衰变所产生的能量。

第三章1、热传导微分方程:)c κ/(ρα))W/(m /W 1p 32⋅=⋅--∂∂⋅=+∇C m q t q t o v v热导率()体积释热率(κτακ2、圆柱体燃料元件芯块温度场:忽略轴向导热,可以推得:0122=++uvq dr dt r dr t d κ 或者由物理意义,可以写出(中心温度变化率为零):H r q drdtrH v u 22ππκ⋅=⋅⋅ 最后可以解得:密度,线功率体积释热率,表面热流:,,412420l v ulu u u u v u q q q q r q r q t t πκκκ===-3、平板形燃料元件芯块温度场:忽略轴向导热,可以推得:uv q dx td κ-=22 最后可以解得:平板半厚度-==-u u uu u v u q q t t δκδκδ22204、平板形包壳温度场: 由傅里叶定律有:dxdt q cκ-= 解得:包壳厚度-=-c cccs ci qt t δδκ5、圆壁形包壳温度场: 由傅里叶定律有:drdt rLQ c πκ2-= 最后解得:cics c l ci cs c l ci cs c cs ci d d q r r q r r LQ t t ln 2ln 2ln2πκπκπκ===- 6、单相对流换热公式:膜温差-∆∆⋅=f f hF Q θθ7、强迫对流换热:圆形通道内强迫对流换热公式D-B 公式:管道直径和特征长度冷却取加热取静止流体导热系数---======d n hd Nu a v c v d d Nu p n3.0,4.0Pr Re Pr Re 023.08.0λλλμνμρν8、沸腾曲线(参考书P37图3-9)壁面过热度sat sw t t t ∆=-(饱和温度)和热流密度的关系曲线称为沸腾曲线。

反应堆热工水力

反应堆热工水力

第一章核反应堆是一个能维持和控制核裂变链式反应,从而实现核能到热能转换的装置。

传热机理—热传导、热对流、热辐射世界上第一座反应堆是1942 年美国芝加哥大学建成的。

核反应堆按照冷却剂类型分为轻水堆、重水堆、气冷堆、钠冷堆按照用途分为实验堆、生产堆、动力堆按中子能量分类:热中子堆、中能中子堆、快中子堆以压水堆为热源的核电站称为压水堆核电站主要有核岛和常规岛核岛的四大部件为蒸汽发生器、稳压器、主泵、堆芯五种重要堆型压水堆沸水堆重水堆高温气冷堆钠冷快中子增值堆水作为冷却剂慢化剂的优缺点:轻水作为冷却剂缺点是沸点低,优点具有优良热传输性能,且价格便宜。

描述反应堆性能的参数反应堆热功率[MWh]:反应堆堆芯内生产的总热量电厂功率输出[MWe]:电厂生产的净电功率电厂净效率[%]:电厂电功率输出/反应堆热功率容量因子[%]:某时间间隔内生产的总能量/[(电厂额定功率)×该时间间隔]功率密度[MW/m3]:单位体积堆芯所产生的热功率线功率密度[kW/m]:单位长度燃料元件内产生的热功率比功率[kW/kg]:反应堆热功率/可裂变物质初始总装量燃料总装量[kg]:堆芯内燃料总质量燃料富集度[%]:易裂变物质总质量/易裂变物质和可转换物质总质量比燃耗[MWd/t]:堆芯工作期间生产的总能量/可裂变物质总质量本章主要内容1.压水堆的主要特征2 沸水堆和重水堆的主要特征3 热工水力学分析的目的与任务(这个可以忽略)第二章(本章可以覆盖部分计算题)热力学第一定律:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中总能量保持不变。

热力学第二定律(永动机不可能制成):不可能将热从低温物体传至高温物体而不引起其它变化;不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响;不可逆热力过程中的熵的微增量总是大于零。

最基本的状态参数:压力(压强Pa,atm,bar,at)比体积(m3/kg)温度内能:系统内部一切微观粒子的一切运动形式所具有的能量总和,U焓:热力学中表示物质系统一个状态参数–H,数值上等于系统内能加上压强与体积的乘积。

反应堆热工水力

反应堆热工水力
反应堆热工水力学是传热学在核反应堆领域的重要应用,主要研究热量在反应堆内的传递过程。热量传递主要包括导热、对流和辐起的热能传递。在反应堆中,燃料芯块、包壳等部件的导热性能至关重要。对流是由于流体各部分的相对运动而传递热量的过程。反应堆内的冷却剂通过强迫对流方式,将燃料元件产生的热量带走。辐射则是通过电磁波传递热量,高温时辐射传热的作用尤为显著。传热系数是影响对流传热效果的关键因素,受流体性质、流速、流动状态及传热壁形状尺寸等多因素影响。此外,反应堆的输热过程也极为重要,它涉及到冷却剂的比焓变化以及反应堆的总热功率输出。通过相关的计算方法和公式,可以准确评估反应堆的热工性能。同时,体积释热率、表面热流密度等参数也为反应堆的设计和运行提供了重要依据。

核能反应堆在安全运行中的监测技术

核能反应堆在安全运行中的监测技术

核能反应堆在安全运行中的监测技术核能反应堆在现代社会中扮演着重要的角色,其作为一种高效清洁的能源供应方式得到了广泛的应用。

然而,核能反应堆的安全运营也成为了人们关注的热点话题。

在核能反应堆的安全运行中,监测技术是必不可少的一环。

本文将探讨核能反应堆在安全运行中的监测技术。

第一部分:核能反应堆的安全运行“核能反应堆”一词可能使人们联想到一种危险、不安全的堆,这一词汇背后的恐惧也限制了其在公众中的应用。

实际上,核能反应堆是一种相对安全的能源供应方式,它产生的辐射和化学污染远小于人们想象中的情况。

核能反应堆的安全运行是指让它在核反应产生的能量下自行燃烧、避免产生人为干扰或故障而引发可能的不安全措施,从而保持稳定且安全的运营状态。

这一过程需要多种技术手段和设备的支持。

第二部分:监测技术在核能反应堆安全运行中的作用反应堆运行过程中,各种参数变化都可能对核反应产生影响,从而导致反应出现偏差或失稳的结果。

因此,对于反应堆运行参数进行跟踪监测在预防和避免反应堆运行异常的情况下是非常重要的。

在核能反应堆运行中,监测技术扮演了重要的角色。

2.1 温度监测技术在核反应堆中,温度是一个非常重要的运行参数。

山西某核电站通过在反应堆某些区域部署高温传感器,收集反应堆中不同地区的温度数据。

这些传感器每分钟即时监测体温变化,并记录数据,以实时跟踪反应堆状态。

通过长期的数据分析,可以找出可能发生的问题,并通过修改其他参数恢复正常的运行。

2.2 辐射监测技术反应堆放射性物质的释放始终是人们担心的问题。

通过在一定距离外部环境放置多组灵敏度不同的辐射探测器,对反应堆周边辐射数值进行实时监测。

当探测器检测到异常辐射情况时,可立即对反应堆进行调整措施,有效避免反应堆在运行过程中出现异常事故。

2.3 燃料元件监测技术反应堆中,燃料元件是核反应的直接介质,燃料变形、燃料损坏或者其他不正常情况都可能引起反应堆运行不稳定,甚至是引起个护的事故。

通过在燃料元件上部署光学监视系统,对燃料元件的形态和燃尽度进行在线监测,在检测到不正常情况时报道,并采取紧急措施。

核科学与核技术应用作业指导书

核科学与核技术应用作业指导书

核科学与核技术应用作业指导书第1章核物理基础 (3)1.1 原子核的结构 (3)1.1.1 核子 (3)1.1.2 核子间的相互作用 (3)1.1.3 原子核的稳定性 (3)1.2 核反应与核衰变 (4)1.2.1 核反应 (4)1.2.2 核衰变 (4)1.3 核力与核模型 (4)1.3.1 核力 (4)1.3.2 核模型 (4)第2章核能的释放与利用 (5)2.1 裂变反应 (5)2.2 聚变反应 (5)2.3 核能的利用与发电 (5)第3章核反应堆原理 (6)3.1 核反应堆分类与结构 (6)3.2 中子扩散与反应堆临界 (6)3.3 反应堆热力学与热工水力学 (6)第4章核电站运行与管理 (7)4.1 核电站的运行原理 (7)4.2 核电站的运行控制 (7)4.3 核电站的安全管理 (7)第5章核燃料循环 (8)5.1 核燃料的提取与制备 (8)5.1.1 提取方法 (8)5.1.2 制备过程 (8)5.2 核燃料的利用与处理 (8)5.2.1 核燃料利用 (8)5.2.2 核燃料处理 (8)5.3 核废料处理与处置 (8)5.3.1 处理方法 (8)5.3.2 处置方式 (9)5.3.3 环境保护 (9)第6章核技术应用 (9)6.1 放射性同位素应用 (9)6.1.1 医学领域 (9)6.1.2 工业领域 (9)6.1.3 环境保护领域 (9)6.2 核辐射探测技术 (9)6.2.1 射线探测器 (9)6.3 核技术在工业与农业领域的应用 (10)6.3.1 工业领域 (10)6.3.2 农业领域 (10)6.3.3 环保与公共安全领域 (10)第7章核安全与防护 (10)7.1 核与辐射危害 (10)7.1.1 核类型及成因 (10)7.1.2 辐射危害及影响 (10)7.2 核安全防护措施 (11)7.2.1 设计安全 (11)7.2.2 运行安全 (11)7.2.3 辐射防护 (11)7.3 核应急处理 (11)7.3.1 应急预案 (11)7.3.2 应急响应 (11)7.3.3 后处理 (11)第8章核不扩散与核裁军 (11)8.1 核不扩散政策与机制 (11)8.1.1 核不扩散政策 (12)8.1.2 核不扩散机制 (12)8.2 核裁军历程与现状 (12)8.2.1 核裁军历程 (12)8.2.2 核裁军现状 (12)8.3 核裁军的技术与政治问题 (12)8.3.1 技术问题 (13)8.3.2 政治问题 (13)第9章核能与可持续发展 (13)9.1 核能的可持续性评估 (13)9.1.1 资源保障 (13)9.1.2 环境影响 (13)9.1.3 技术安全 (13)9.1.4 经济性 (14)9.2 核能与环境保护 (14)9.2.1 温室气体减排 (14)9.2.2 环境友好型能源 (14)9.2.3 废物处理与处置 (14)9.3 核能在未来能源体系中的地位与作用 (14)9.3.1 促进能源结构优化 (14)9.3.2 支撑能源转型 (14)9.3.3 满足多元化能源需求 (14)9.3.4 推动能源科技创新 (15)第10章核科学与核技术的伦理问题 (15)10.1 核技术的伦理争议 (15)10.1.2 核扩散与核恐怖主义 (15)10.1.3 核废料处理与环境保护 (15)10.2 核科学与核技术的伦理原则 (15)10.2.1 人类福祉原则 (15)10.2.2 公平原则 (15)10.2.3 透明度原则 (15)10.2.4 预防原则 (15)10.3 核科学与核技术教育的伦理责任 (15)10.3.1 培养伦理意识 (15)10.3.2 强化伦理教育 (16)10.3.3 推动伦理规范制定与实施 (16)10.3.4 加强伦理研究 (16)10.3.5 促进国际交流与合作 (16)第1章核物理基础1.1 原子核的结构原子核是物质的基本组成部分,它位于原子的中心,由质子和中子组成。

华北电力大学(北京)2017年硕士核能科学与工程专业介绍_华北电力大学考研网

华北电力大学(北京)2017年硕士核能科学与工程专业介绍_华北电力大学考研网

华北电力大学(北京)2017年硕士核能科学与工程专业介绍核能科学与工程研究领域:本专业主要包括以下四个研究领域:(1)核电厂关键设备在恶劣工况下的完整性评价,提高安全经济性的新型核电设备和装置的研制,设备状态监测与故障诊断及核电设备寿命管理,核电厂数字化仪控系统可靠性评价方法及故障诊断技术,核电厂仿真技术及先进控制策略在核电厂中的应用,新型反应堆传感器和核电厂仪表;(2)先进核反应堆核热耦合,自然循环机理研究,反应堆严重事故下热工水力特性研究,堆芯与安全壳内的热分层与温度振荡,先进核反应堆堆芯热工设计;(3)核电厂火灾分析,确定论事故分析研究,严重事故研究,概率论事故分析(PSA)研究;(4)核电厂高温金属材料力学、腐蚀等性能研究与寿命预测,材料辐照改性、电子元器件辐射加固以及离子注入材料辐照损伤等研究,先进核燃料及金属结构材料的性能研究。

培养目标:为适应我国社会主义建设事业的需要,培养德智体美全面发展的高层次专门技术人才,我院攻读硕士学位研究生(以下简称硕士生)要求做到以下几点:(1)坚持党的基本路线,认真学习、掌握马列主义、毛泽东思想和邓小平理论的基本原理,认真领会“三个代表”重要思想的精髓,拥护中国共产党的领导,热爱社会主义祖国,遵纪守法,品德良好,善于与人合作,积极为社会主义现代化建设事业服务。

(2)在核科学与技术领域内掌握坚实的基础理论知识和系统的专门知识,熟悉所从事的研究领域中科学技术的发展动向。

具有创新意识和独立从事科学研究的能力或独立承担专门技术工作的能力。

要求较熟练地掌握一门外国语,能够应用该外国语阅读本专业的文献资料。

学习要求:硕士生的培养方式为导师负责制。

课程学习和科学研究可以相互交叉。

课程学习实行学分制,要求在申请答辩之前修满所要求的学分。

硕士生培养可采取全日制和非全日制两种培养方式。

全日制硕士研究生的学习年限实行2至2.5年的弹性学制。

非全日制硕士研究生的学习年限一般不超过4年。

浅谈核电领域中的热工水力分析程序

浅谈核电领域中的热工水力分析程序

浅谈核电领域中的热工水力分析程序作者:刘强来源:《现代企业文化·理论版》2015年第11期中图分类号:TK264.1 文献标识:A 文章编号:1674-1145(2015)06-000-02摘要核电领域中的热工水力分析程序对于了解核电厂设计参数具有重要意义,并且随着核电技术的发展,热工水力分析程序在核电厂运行系统中所占据的地位也越来越重要。

本文通过对核电领域中的热工水力分析程序进行探究,比较了几种较为典型的热工水力分析程序的功能及其应用范围。

经过对比研究,本文指出了热工水力分析程序保守估算方法与最佳估算方法的特点,以及二者之间存在的差异,阐述了热工水力分析程序与堆芯物理计算程序及流体力学程序耦合的应用及意义,旨在对我国热工水力分析程序的现状以及未来发展趋势提供相应的理论依据。

关键词热工水力核电分析程序前言:核电领域当中,热工水力分析程序主要是以反应堆的流体为研究对象,对反应堆热工水力的流动、传热等特性进行分析。

热工水力分析可以确定核电厂设计参数,并且对当下核电厂运行状态进行分析,从而研究各种事故的物理现象,作出相应的预防措施。

热工水力分析程序是核电厂进行安全分析的重要工具,也是进行反应堆设计的重要参照工具,其在核电厂计算程序占据重要比重。

核电厂当中,反应堆的热工水力分析程序可以计算反应堆冷却剂丧失事故、核电厂断电事故、蒸汽发生器传热管破裂等多种工况,热工水力分析程序的计算结果对于核电厂的设计和运行以及安全生产等方面具有重要意义。

因此,核电领域中的热工水力分析程序,必须得到足够的重视,这对于我国核电领域的发展来说,意义重大。

一、热工水力分析程序在核电领域的应用计算机程序是核电站设计以及审评的重要手段,其在核设计、核辐射分析、热工水力分析方面具有广泛的应用,据统计,计算机程序经过近五十多年的发展,截止2014年,用于核电站的计算程序将近1800个。

反应堆热工水力分析程序是热工水力分析程序在核电领域应用的一个典型代表,它是获取核电厂设计参数的重要依据。

核反应堆设计中的热工水力学研究

核反应堆设计中的热工水力学研究

核反应堆设计中的热工水力学研究在当今能源需求不断增长和环境保护日益重要的背景下,核反应堆作为一种高效、清洁的能源来源,受到了广泛的关注和研究。

而在核反应堆的设计中,热工水力学是一个至关重要的领域,它对于确保反应堆的安全、稳定和高效运行起着关键作用。

热工水力学主要研究核反应堆内的热量传递、流体流动以及与之相关的物理现象和过程。

简单来说,就是要弄清楚反应堆内部的热能如何产生、如何传递,以及冷却剂(通常是水)如何流动来带走这些热量。

在核反应堆中,燃料芯块会通过核裂变反应产生大量的热能。

如果这些热能不能及时有效地被带走,就会导致燃料温度过高,甚至可能引发堆芯熔毁等严重事故。

因此,设计合理的冷却系统,保证热量的快速、均匀传递,是核反应堆设计的首要任务之一。

冷却剂的流动特性是热工水力学研究的一个重要方面。

冷却剂在反应堆内的流动速度、压力分布、流动阻力等都会影响热量传递的效率。

为了优化冷却剂的流动,研究人员需要通过理论分析、实验研究和数值模拟等手段,深入了解流动规律,并据此设计合适的流道结构和管道布局。

传热过程也是热工水力学的核心研究内容之一。

在核反应堆中,热量主要通过热传导、热对流和热辐射三种方式传递。

其中,热传导是指热量在燃料芯块内部的传递;热对流则是指冷却剂通过流动带走燃料表面的热量;热辐射在高温下也会有一定的作用,但相对较小。

研究人员需要准确地计算和预测各种传热方式的贡献,以评估反应堆的热性能。

在核反应堆的设计中,热工水力学的研究还需要考虑许多复杂的因素。

例如,燃料元件的几何形状和排列方式会影响热量的产生和传递;反应堆的功率水平不同,热工水力学特性也会有所差异;运行工况的变化,如功率的升降、冷却剂流量的改变等,也会对反应堆的热工性能产生影响。

为了研究这些问题,科学家们采用了多种方法。

实验研究是其中的重要手段之一。

通过在实验装置中模拟核反应堆的运行条件,可以直接测量各种参数,获取真实的数据。

然而,实验研究往往受到成本高、周期长、条件受限等因素的制约。

清华大学反应堆热工水力学参考作业答案

清华大学反应堆热工水力学参考作业答案
热交换器 试验段
d3V3 = 3.018 × 105 v3μ3
ΔPf3 = f3 ΔPa 3 = 0
1 ⎡ ⎛ 6 ⎞ 3⎤ 0.0015 10 ⎥ = 0.0148 f 3 = 0.0055⎢1 + ⎜ 20000 × + 5⎟ 25 2.769 × 10 ⎠ ⎥ ⎢ ⎝ ⎣ ⎦ 2
L3 ρ3V3 = 5927 Pa d3 2
13:14:49
习题讲解
9
3.3
试推导半径为R,高度为L,包含n根垂直棒状 燃料元件的圆柱形堆芯的总释热率Qt的方程:
1 Qt = 0.275 nLAu qV ,max Fu
其中,Au是燃料芯块的横截面积。
13:14:49
习题讲解
10
13:14:49
习题讲解
11
4.1
有一压水堆圆柱形UO2燃料元件,已知表面热 流密度为1.7 MW/m2,芯块表面温度为 400℃,芯块直径为10.0 mm,UO2密度取理 论密度的95%,计算以下两种情况燃料芯块中 心最高温度:
(1) 热导率为常数,k = 3 W/(m•℃) (2) 热导率为k = 1+3exp(-0.0005t)。
13:14:49
习题讲解
12
热导率为常数
13:14:49
习题讲解
13
k不是常数,要用积分热导法
13:14:49
习题讲解
14
4.2
有一板状燃料元件,芯块用铀铝合金制成(铀 占22%重量),厚度为1mm,铀的富集度为 90%,包壳用0.5mm厚的铝。元件两侧用40℃ 水冷却,对流传热系数h=40000 W/(m2•℃), 假设:
ΔPel3 = ρ3 g Δz3 = −14530 Pa ρ3V32 ΔPc3 = 3K = 1483Pa 2

核反应堆的故障诊断与预测

核反应堆的故障诊断与预测

核反应堆的故障诊断与预测核反应堆是一种能够通过核裂变或核聚变释放巨大能量的技术,它被广泛应用于电力、军事、医疗等多个领域。

然而,由于核反应堆在运行过程中受到的影响因素较多,例如燃料失效、管路破裂、控制棒失效等,这些问题可能导致核反应堆出现故障,对人类的生命和环境造成极大的危害。

因此,核反应堆的故障诊断与预测十分重要。

1. 故障诊断的方式故障诊断通常分为以下几种方式:(1)传统方法传统方法通常使用实验室测量与分析的方式进行故障诊断。

例如,对于燃料失效的故障,使用电子显微镜对燃料进行表征。

但是,传统方法的缺点是时间复杂度高,结果不够精确。

(2)机器学习方法机器学习方法可以通过大量数据的训练,来提升故障诊断的精确度。

例如,利用已知的故障模型和历史数据对新的数据进行分类。

这种方法可以大大提高诊断的速度和准确性。

(3)基于模型的方法基于模型的方法通常是指使用计算机模拟来建模和诊断故障。

例如,对于燃料失效的故障,可以使用燃料失效模拟器来模拟并分析燃料失效的原因。

这种方法对于故障的定位和原因分析非常有帮助。

2. 预测模型的构建预测模型可以通过历史数据的分析,来预测未来的故障情况。

构建预测模型需要进行以下几个步骤:(1)数据收集与处理首先需要收集并处理大量的历史数据。

这些数据包括反应堆温度、压力、能量输出等多个指标。

(2)建立模型然后需要建立适合的模型,例如利用神经网络、逻辑回归等方法建立预测模型。

模型选择需要根据数据特征、性能需求等多个因素来考虑。

(3)模型评估评估模型的表现通常使用均方误差、准确率、精确度等指标进行衡量。

需要对模型进行反复调整和优化,以获得最好的性能。

(4)模型部署与更新最后需要将建立好的模型部署到实际环境中,并持续不断地更新模型以适应新的变化。

3. 案例介绍故障诊断和预测技术已经在实际应用中取得了显著的成果。

例如,美国核能监管委员会(NRC)利用机器学习技术,开发了一种名为CAP (Component Aging and Performance)的故障预测平台。

核反应堆中的故障检测与应急响应

核反应堆中的故障检测与应急响应

核反应堆中的故障检测与应急响应核反应堆是一种重要的能源发电设施,但由于其特殊性质,一旦发生故障可能会引发严重的后果。

因此,对核反应堆中的故障进行及时检测和应急响应是至关重要的。

本文将探讨核反应堆中的故障检测方法以及应急响应措施。

一、核反应堆故障检测方法1. 传感器监测核反应堆中的传感器可以实时监测各种参数,如温度、压力、流量等。

通过对这些参数的监测,可以及时发现异常情况。

例如,当温度超过设定范围或压力异常升高时,传感器会发出警报,提醒操作人员进行检修。

2. 振动监测核反应堆中的振动监测系统可以检测到设备的振动情况。

当设备出现异常振动时,系统会发出警报。

这种方法可以有效地检测到设备的故障,如轴承损坏、不平衡等。

3. 声音监测核反应堆中的声音监测系统可以检测到设备发出的声音。

当设备发出异常声音时,系统会发出警报。

这种方法可以有效地检测到设备的故障,如泄漏、磨损等。

4. 图像监测核反应堆中的图像监测系统可以通过摄像头实时监测设备的运行情况。

当设备出现异常情况时,系统会发出警报。

这种方法可以有效地检测到设备的故障,如裂纹、变形等。

二、核反应堆故障应急响应措施1. 紧急停堆一旦发现核反应堆中存在故障,首先要立即进行紧急停堆操作。

紧急停堆可以通过控制系统中的紧急停堆按钮来实现。

停堆后,核反应堆的核链式反应将停止,从而避免进一步的事故发生。

2. 冷却措施在核反应堆停堆后,需要采取冷却措施来降低反应堆的温度。

冷却措施可以通过启动冷却系统来实现,例如启动冷却水循环系统。

冷却措施的目的是防止核反应堆过热,从而减少事故的风险。

3. 辐射防护在核反应堆发生故障后,可能会释放出辐射物质。

为了保护工作人员和周围环境的安全,需要采取辐射防护措施。

辐射防护措施可以包括建立辐射防护区域、佩戴防护服等。

4. 事故调查与修复在核反应堆发生故障后,需要进行事故调查,找出故障的原因,并采取相应的修复措施。

事故调查可以通过分析故障记录、检查设备等方式进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

REACTOR THERMAL/HYDRAULIC PROCESSES MONITORING AND AID TO DIAGNOSIS, USING ACOUSTICAL SIGNAL AND ON-LINE CALCULATIONS.K.N. ProskouriakovMoscow Power Engineering Institute (Technical University), RussiaAbstractThe instrumentation and control (IC) systems used in most nuclear power plants (NPP) are aimed at providing information for the purpose of safe start-up, power operation and shutdown. These tasks gained even more importance as a result of the Three Mile Island incident in the seventies. Substantial advancements in sensor and computer technologies make possible cost effective on- and off-line monitoring and diagnostics (MD). At present MD technology provides the necessary tools, techniques and procedures to obtain information about the condition of equipment and provide them to the operation, maintenance and engineering staff. Access to this information allows individuals to make timely decisions toward achieving the safety and economic goals of NPPs.IntroductionThe instrumentation and control (IC) systems used in most nuclear power plants (NPP) are aimed at providing information for the purpose of safe start-up, power operation and shutdown. These tasks gained even more importance as a result of the Three Mile Island incident in the seventies. Substantial advancements in sensor and computer technologies make possible cost effective on- and off-line monitoring and diagnostics (MD). At present MD technology provides the necessary tools, techniques and procedures to obtain information about the condition of equipment and provide them to the operation, maintenance and engineering staff. Access to this information allows individuals to make timely decisions toward achieving the safety and economic goals of NPPs.PurposeSeveral incidents have affected the internal structures (IS) of NPP units (core barrel, control rods, thermal shield, etc.) and have resulted in costly repairs. A similar situation has affected main coolant pumps (MCP) and steam generators (SG). In order to provide maintenance on such units it is desirable to detect all abnormal behaviour at a sufficiently early stage. In order to detect anomalies as soon as possible it is important to characterise various statistical features of signals acquired under normal operating conditions. Early detection has two specific features. First, if operations staff can detect the anomalies at the earliest stage possible, negative effects on plant operation can be reduced. Second, a short detection time and high background noise level leads to large statistical errors during anomaly discrimination.To obtain satisfactory information in real time and for wide-range surveillance depending on power level, and coolant parameters neural networks must be applied for the purpose of MD. The major advantages provided by an artificial neural networks must be applied for improvement of MD. The major advantages provided by an artificial neural network (ANN) and an expert system are system diagnostics through the use of outputs from the neural network and a large amount of plant operation knowledge directed toward the operator. To make the expert system powerful it is necessary to find the appropriate rule bases by which a degree of equivalence between the measured signals and estimated values of the network can be recognised. The expert systems must identify the type and place of an anomaly with a knowledge base that is written in rules. Of course it is preferable to use an adaptive method to make the plant model more accurate during the course of operation.ResultsPractical and theoretical results of NPP coolant monitoring and aid to diagnosis are based on the created mathematical model of coolant pressure (acoustical) oscillation. Experiences with reactor noise diagnostics systems show that acoustical signals are suitable for the above-mentioned purpose. This adaptive model describes the quantitative dependencies between coolant oscillations eigenfrequencies and NPP running parameters including emergency situations with steam appearance.For the theoretical calculation of characteristic frequencies of the circuit, it is easier to use simplified models of circular systems, the equivalent electrical circuits. The principle of transition from a hydraulic system as equivalent to an electrical one is given in [1].The calculation of the frequencies of the self-oscillations [2] of the heat-transfer medium, f 0 in the reactor, volume compensator, steam generator and circuit pipes are accomplished with the help of the following formula:f mC012=πThe results of calculations by means of the formula for the nominal working regime of the fourth block of Novovoronjeskaja NPP are given in [2].The same results of low frequency oscillation value were calculated and measured in NPP with PWR and VVER by other researchers [3,4,5,6]. Paper [7] shows that coolant pressure standing waves control the neutron flux noises in reactor core and can be utilised for interpretation purposes.A comparison of calculation results while steam generation is present and during its absence shows that the spectrum line characterising oscillation of the heat-transfer medium in the reactor shifts towards the area of lower frequencies. The nature of steam generation,too, affects the value of the self-frequency of oscillation in the reactor. Thus, with the help of change in f 0 of reactor, the steam generation process can be detected in the reactor core. Valuable results are presented in paper [8], which concerns experiments of blockage detection in sodium-cooled fast reactors. Detection of steam generation in the reactor core due to blockage effect was effectuated by measuring the deviation of the coolant main frequency.A good agreement of the results of calculation of f 0 and direct measurement on the fourth block of Novovoronjeskaja NPP shows that the adopted calculation plan for analysis of the oscillation spectrum can be used for quantitative evaluation of characteristic frequencies. It is known that during the normal functioning of reactor VVER-440, surface boiling does take place in the reactor core. As was shown above, the presence of steam in the reactor core leads to a decrease in the frequency of self-oscillation of the heat-transport medium in the reactor. This discrepancy between the calculated frequency (during the absence of boiling 22 Hz ) and the result measured during functioning (18 Hz)can be explained due to the presence of a certain quantity of steam in the reactor core.The experiments show that a deviation pattern of acoustical signal in a fault situation with steam appearance matched to pre-defined patterns may be used for diagnosis either off-line or on-line.The quantitative model created [9] to calculate the pressure oscillation in the coolant has the following form:d P dt CR R m d P dt C P dC P d P d P dt R R mC P P mC d d 2220111∆∆∆∆∆∆∆∆+++++=(()()()(1)Here:∆P tC R d m ∆P0- variable (pulsation) component of pressure drop;- time;- acoustical capacitance;- acoustical differential resistance;- acoustical inductance;- pressure drop between circulating pump inlet-outlet.Acoustical capacitance is determined by the value of a small oscillation velocity in the steam-water mixture. The calculation methods to determine the compressibility of a steam-water mixture in real operating conditions on NPP which are utilised at present are very approximate. Due to this reason a new method of small oscillations velocity evaluation was created [9]. This method attempts to take into account the total list of thermohydraulic, geometric and operating conditions at the steam generating duct.Taking into consideration the dependence between f0 and steam content [10], it is possible to calculate the changes of f0 due to x variation.Based on the parameters (R, R d, m, C) the formula to determine the self-frequency of coolant oscillation can be obtained in the following manner:fallmm212=πρρ(2)Here:ll m ρ,ρm a - the length of pipe containing water;- the part of pipe containing two-phase mixture;- density of liquid and water-steam mixture accordingly; - sound velocity in the water-steam mixture.Using this formula the boundary subdivided the liquid and steam containing media in the pipe was indicated. It should be emphasised that it is not possible to obtain this information only through the help of regular technological control systems. The difference between calculated and measured values of frequency was insignificant. Based on these results recommendation were given about steam content diagnostics to use the measured frequency of the coolant oscillation.It is very important to indicate that the influence of steam and gas presence on coolant oscillations can lead to an increase in reactor facilities’ vibrations [11]. As is commonly known, the most important interaction between coolant and structure components takes place in resonance cases. Another problem is stipulated by the thermohydraulic instability which occurs as a result of definite relations between steam contents in the loop and operating regimes [9].This phenomenon is extremely important when the system of heat output from the reactor core must be operated under extreme emergency situations, especially in the event of melting reactor core structures. As a result of such cases, it can been seen that the emergency cooling system must be constructed taking thermohydraulic instability and hydraulic shock into consideration.Additionally considering the important influence of C-parameters on the appearance of self-oscillations it is necessary to keep in the mind the data about steam generating processes in the system (cavitation, sub-cooling boiling, emergency situations with boiling).Steam generation and leakage processes have both been studied on a double-circuit one-loop industrial steam generating installation (ISGI) [12]. Whole circuit coolant oscillation and mechanical vibrations of parts of piping have been recognised. A noise signal spectrum recordings analysis has been carried out for normal and emergency coolant leakage conditions.In Figure 1 the time realisation of pressure oscillations which were obtained at pump stop are shown.The curve characterises the frequency depending on thermo-mechanical parameters of the coolant. This dependence of the main frequency on steam quantity in the coolant is illustrated in Figure 2, where the pressure oscillation is measured during pump stop in an emergency situation. This emergency situation took place due to coolant leakage and steam generation in the pipe between the pressuriser and primary loop.Looking at Figure 3 and Figure 4 it is possible to demonstrate that in an emergency regime the frequency began at approximately 4 Hz instead of 1 Hz, which is the frequency in normal regime. The amplitude also increased approximately 6.5 times. Hence, the level of hydrodynamical loading of the structures had increased 100 times.Taking into consideration the fact that pressure oscillation of coolant is the reason for induced vibrations in equipment, it is possible to form a conclusion concerning the appearance of additional loading of the structures by the cyclic hydrodynamical forces depending on operating conditions.The coherence function between vibration and pressure oscillation signals from the traducers placed on the pressuriser pipe [12] is presented in Figure 3.The most important interaction between coolant and structure components takes place in cases of resonance.A similar effect can be observed at transient processes on NPP with VVER and PWR reactors, when the electrical supply of main circulating pump (MCP) is interrupted. Figure 4 demonstrates the calculated results of time dependence of the main parameters in a circulating loop; this was obtained in a situation when four MCP NPP VVER-1000 were stopped.Here:H P P I t out - water level in pressuriser;- primary circuit pressure;- coolant temperature in reactor outlet.In accordance with these results the two-phase mixture is present in a definite time period in the tube interconnected pressuriser and hot part of the loop.Figure 1. a) Time realisation of pressure oscillation at pump stopb) Time realisation of pressure oscillation at pump startFigure 2. Time realisation of pressure oscillation after pump stopping in emergency regime accompanied by steam cavity appearanceFigure 3. Coherence function of vibration andpressure pulses measured on pressuriser pipeFigure 4. Time dependences of main parameters in circulating loop VVER-1000Our evaluation of main frequencies’ value in this system shows that the variation is in the range 0.04-4.0 Hz. Taking into consideration the rotation velocity change of MCP in transient process, the conditions for the production of resonance interaction between coolant and equipment are very likely.Using pressure pulse detectors (PPD) installed in the outlet-inlet of MCP and in the pressuriser, we measured and analysed various operating regimes on NPP with VVER-440 through an experimental diagnostic system. The method of processing acoustical spectra gives the characteristics obtained with different time observation particularly in on-line measuring. It was observed that frequency peaks which depend on the moment of measurement moves in the range of 8-12 Hz, the so called “transparent window”. In the case when operating situations change it provides the possibility of detecting faults before a traditional alarm system is triggered even in dynamic situation. When the result of fault is steam appearance it is possible indicate it, as it was done in emergency situation on ISGI.Thus an early warning system be created by means of detecting the cause of steam appears. It is based upon dynamic model to indicate the steam appearance in parallel with the process. The model outputs are then compared with respectively plant measurement.A two level display hierarchy can be chosen, where the warnings are given with colour symbols in a top level picture (including time history) with a global overview guiding the operator to the lower level detailed displays containing much more information including steam localisation and possible explanation of necessary actions.The evaluation experiment was therefore considered as an integral part of the developed acoustic method of steam content diagnostics, as such, will indicate the direction for future work.The basic objective of the experiment was to test the method in realistic situation and thereby to assess whether it performed in accordance with calculated expectations.The experimental data [11]about the dependence main frequency oscillation values from reactor core power level had been obtained due to measurement fulfilled on NPP with channel boiling reactor RBMK-1500. The autospectra of pressure pulses correspond to the different electrical power levels of the reactor were determined. To each regime of operating, i.e. to certain value of steam production in the technological channels of reactor core it was revealed that the definite main frequency of coolant oscillation corresponds. The calculating method of evaluating the steam content in the coolant [9] was used.Theoretical and practical results show an appreciable decrease in the sound velocity due to steam appearance in the coolant hence the coolant pressure fluctuation eigenfrequencies also. Three variants of theoretical model have been analysed to evaluate the sound velocity in two phase mixture in reactor core and steam volume over it. More precise result corresponds to model which takes into account the local hydraulic resistances influence. The main resume of this estimation due to monitoring purposes is capability to detect boiling process on early stage. Evaluation had provided for VVER-1000 shows that even little steam content in the reactor core gives essential reactor coolant eigenfrequency chagement: from~ 19.0 Hz at normal operating to ~3.0 Hz when boiling anomalies is occurred. It is important to underline that nonsinglevalued dependencies between steam content and eigenfrequency values are obtained.Procedure of diagnostics support realisation includes following:1. Inquire of eigenfrequencies calculation in case of running parameter variation;2. Reveal the trend of eigenfrequencies changement;3. Check boiling as follows:• Preserve in the operating memory 5 bytes which correspond to certain steam value (from 0 to 1) at the reactor core outlet;• Identify peaks on the autospectra in the frequency zones, where the eigenfrequency changes are expected (3 Hz - 20 Hz in case of VVER-1000 );• Calculate the eigenfrequencies which correspond to running coolant parameters and different steam content values at the reactor core outlet (the calculatingprogram was provided at MPEI by U. Simon);• Compare the frequencies and their displacement due to criteria above mentioned;Running coolant parameters, eigenfrequencies values as well as protocol about diagnosis prognosis results are presented on the monitor screen.Steam content diagnostics in nuclear power plants (NPP) can be considered as one of the main tasks for operator support system.Steam generating process in the reactor core at NPP with BWR and RBMK reactors is realised in definite range of steam content. When the steam content is increased correspondingly normal value i.e. when unexpended or unplanned situations occur the task for operators is to identify the status of the process.Steam generation in the PWR (VVER) is abnormal process which can take place due to emergency situation and the main tasks for operator is early identification of root cause and consequences.The passive identification experiment allowed to establish a set of significant trend of frequency and mathematical model allowed to obtain the best form of functional relationship between the steam content parameter and the frequency of coolant oscillations. The acoustic steam control and diagnostic’s method (ASCDM) can be useful in diagnosis and prognosis of off-line and on-line operator support systems.Description of the process in a disturbance situation include different surveillance systems for detection, diagnosis and prognosis.The diagnosis block tries to indicate the root cause of the disturbance, while the prognosis block tries to predict possible effects. Both of these systems use information from the detectors, as well as other process data. The prognosis block could as well use information from the diagnosis, suggested root causes from the diagnosis systems and suggested possible effects from prognosis systems are then presented to the operator.To provide operator work more effective instead of actual diagram of equipment and processes the schematic diagram are usually used.ConclusionsThe new method of transfer from real complex thermohydraulic NPP loops to their equivalent in dynamical meaning much more simple electronic schema is created in [9]. This method based on theoretical research. Author proves the reliability of distribution very known electrohydridynamical analogy method to describe non linear processes in the thermohydraulic loops of NPP containing steam generating ducts.Utilisation of this method let some essential advantages to operating personnel:• Presentation of visual information in more assimilated form;• Relatively simple and suitable to running process analyses mathematical model;• Simplification root cause determination and physical interpretation of accident.Root cause is the primary cause of the disturbance in the coolant loop in the NPP. It may be or may be not directly detectable trough the available process instrumentation. Often the root cause will only be detectable trough it’s consequences. The appearance of the steam / gas fraction in the PWR coolant may be not directly detectable without trend of main coolant frequency oscillation measuring, the same is in the channel boiling reactor, when the steam content in the coolant began to change due to any faults.The changes of main frequency oscillations corresponding to definite unit of reactor loop are the symptoms constitute the set of consequences at the root cause which at a given time are directly detectable trough the process instrumentation.The instrumentation stage includes the detection of pressure oscillations and their statistical interpretation. Diagnosis and prognosis modules try to find the root cause and the possible effects, respectively, using the mathematical model of two-phase coolant oscillations.Possible effects constitute the rest of the root cause and future possible consequences.Suggested root cause from the diagnosis block and suggested possible situations from the prognosis block are then presented to the operator for future automatic or manual actions must be provided to prevent dangerous effects.Alarm systems for early fault detection is based upon running small process models in parallel with the process. The model outputs are then compared with respective coolant oscillation measurement. The differences between calculated and observed status are called deviations. The deviation pattern is in a fault situation matched against pre-defined patterns; each corresponding to one or several diagnosis hypotheses.The deviations, which are monitored continuously and are the parameters for diagnosis process will always data at the appropriate model and thereby limit the search space.Traditional process alarm systems disadvantage with fixed alarm limits is that after the occurrence of failure it may take a long time before the alarms are triggered.REFERENCES[1] Ê.Í.Ïðîñêóðÿêîâ “Ýëåêòðîàêóñòè÷åñêèå àíàëîãè îñíîâà ìîäåëèðîâàíèÿòåïëîãèäðàâëè÷åñêèõ ïðîöåññîâ â öèðêóëÿöèîííûõ ñèñòåìàõ ñ ôàçîâûìèïðåâðàùåíèÿìè â ðàáî÷åé ñðåäå”; ÌÝÈ; Âûï.293 (1976); ñòð.98-105[2] Ê.Í.Ïðîñêóðÿêîâ, Ñ.Ï.Ñòîÿíîâ, Ã.Íèäöáàëëà è äð. “Òåîðåòè÷åñêîå îïðåäåëåíèå ÷àñòîòñîáñòâåííûõ êîëåáàíèé òåïëîíîñèòåëÿ â ïåðâîì êîíòóðå ÀÝÑ”; ÌÝÈ; Âûï.407 (1979);ñòð.87-93[3] G. Por, E. Izsak, Valko “Some Results of Noise Measurements in PWR NPP,”Progress in Nuclear Energy 15 (1985),” p. 387.[4] I.A. Mullens, J.A. Thie “Understanding Pressure Dynamic Phenomena in PWRs forSurveillance and Diagnostic Applications,” Proceeding of Fifth Power Plant Dynamics, Controls and Testing Symposium University of Tennessee, Knoxville, March 1983. [5] G. Grunwald, K. Junghans, P. Liewers “Investigation of Pressure Oscillation in PWRPrimary Circuit,” Progress in Nuclear Energy 15 (1985); p. 651-659.[6] I. Nagy, T. Katona “Theoretical Investigation of the Low-Frequency PressureFluctuation in PWRs,” Progress in Nuclear Energy 15 (1985); p. 671.[7] U. Kunze, K. Meyer “In-core Reactor Noise Measurements at PWRs of VVER Typeand their Interpretation,” Progress of Nuclear Energy 15 (1985); p. 351-361.[8] M.D. Antonopulus “Acoustic Resonances as a Means of Blockage Detectionin Sodium Cooled Fast Reactors,” Nuclear Engineering and Design 54 (1979) N1, p. 125-147.[9] K.N. Proskurjakov “Òåïëîãèäðàâëè÷åñêîå âîçáóæäåíèå êîëåáàíèé òåïëîíîñèòåëÿ âîâíóòðèêîðïóñíûõ óñòðîéñòâàõ ÿäåðíûõ ýíåðãåòè÷åñêèõ óñòàíîâîê”; Moscow; MPEI;1984, p. 68.[10] Ê.Í.Ïðîñêóðÿêîâ “Ìåòîä ðàñ÷åòà ðåçîíàíñíûõ ÷àñòîò òåïëîíîñèòåëÿ â íîìèíàëüíûõ èàâàðèéíûõ ðåæèìàõ íà ÀÝÑ ñ ÂÂÝД; Kernenergie 26 (1983) N3; p. 102-104.[11] Ì.Ñ.Ôîìè÷åâ “Ýêñïåðèìåíòàëüíàÿ ãèäðîäèíàìèêà ßÝÓ”; Ìîñêâà; Ýíåðãîàòîìèçäàò 1989;p. 248.[12] K.N. Proskurjakov, A.V. Zimin, H. Halwani “Theoretische und experimentelleBegruendung des Frequenzbereiches der Waermetraegerschwingungen, welcher die hydrodynamische Belastung bestimmt,” Kernenergie 33 (1990) 6, p. 270-276.。

相关文档
最新文档