高二数学数列的概念练习试题百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,
12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被
4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24
B .26
C .28
D .30
2.已知数列{}n a 满足11a =
),2n N n *=
∈≥,且()2cos
3
n n n a b n N π
*=∈,则数列{}n b 的前18项和为( ) A .120
B .174
C .204-
D .
373
2
3.在数列{}n a 中,10a =
,1n a +,则2020a =( ) A .0
B .1
C
.D
4.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
5.已知数列{}
ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )
A .13i =,33j =
B .19i =,32j =
C .32i =,14j =
D .33i =,14j =
6.在数列{}n a 中,11a =,对于任意自然数n ,都有12n
n n a a n +=+⋅,则15a =( )
A .151422⋅+
B .141322⋅+
C .151423⋅+
D .151323⋅+
7.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+
B .21n +
C .2(1)1n -+
D .2n
8.
的一个通项公式是( )
A
.n a =
B
.n a =C
.n a =D
.n a =9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )
A .存在正整数0N ,当0n N >时,都有n a n ≤.
B .存在正整数0N ,当0n N >时,都有n a n ≥.
C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.
D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥. 10.已知数列{}n a 中,11a =,122
n
n n a a a +=+,则5a 等于( ) A .
25
B .
13
C .
23
D .
12
11.数列{}n a 中,()1121n
n n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32
B .36
C .38
D .40
12.已知数列2
65n a n n =-+则该数列中最小项的序号是( )
A .3
B .4
C .5
D .6
13.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤
C .数列{}n a 的最小项为3a 和4a
D .数列{}n a 的最大项为3a 和4a 14.已知在数列{}n a 中,112,1
n n n
a a a n +==+,则2020a 的值为( ) A .
1
2020
B .
1
2019
C .
11010
D .
11009
15.已知数列{}n b 满足1
2122n n b n λ-⎛⎫=-- ⎪⎝⎭
,若数列{}n b 是单调递减数列,则实数λ的
取值范围是( ) A .
10
1,
3
B .110,23⎛⎫- ⎪⎝⎭
C .(-1,1)
D .1,12⎛⎫
-
⎪⎝⎭
16.数列{}n a 满足1
111,(2)2
n n n a a a n a --==≥+,则5a 的值为( )
A .
18
B .
17 C .
131
D .
16
17.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20
1
k
k a
=∑的值不可能是( ) A .2
B .4
C .10
D .14
18.数列{}n a 满足:12a =,111n
n n
a a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-
B .1
6-
C .
16
D .6
19.已知数列{}n a 满足12n n a a n +=+,且133a =,则
n
a n
的最小值为( ) A .21
B .10
C .
212
D .
172
20.数列1,3,6,10,…的一个通项公式是( )
A .()2
1n a n n =-- B .2
1n a n =-
C .()
12
n n n a +=
D .()
12
n n n a -=
二、多选题
21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =
C .135********a a a a a +++
+= D .222
2123202020202021a a a a a a ++++=
22.已知数列{}n a 满足()
*11
1n n
a n N a +=-∈,且12a =,则( ) A .31a =- B .201912
a =
C .332
S =
D . 2 0192019
2
S =
23.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每
一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A .(1)1()2
n n
F n -+=
B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==
C .(
)1122n n
F n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .(
)n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦
24.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-
B .180S =
C .当0d >时,6140a a +>
D .当0d <时,614a a >
25.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值
D .613S S =
26.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
27.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
28.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减
D .数列{}n S 有最大值
29.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤
D .当且仅当0n
S <时,26n ≥
30.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫
⎨
⎬⎩⎭
是等差数列 D .1n a +是n a 与2n a +的等差中项
31.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <
C .80a =
D .n S 的最大值是8
S 或者9S
32.数列{}n a 满足11,121
n
n n a a a a +=
=+,则下列说法正确的是( ) A .数列1n a ⎧⎫
⎨⎬⎩⎭
是等差数列
B .数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和2
n S n =
C .数列{}n a 的通项公式为21n a n =-
D .数列{}n a 为递减数列
33.已知等差数列{}n a 的前n 项和为n S (
)*
n N ∈,公差0d ≠,6
90S
=,7a 是3a 与9
a 的等比中项,则下列选项正确的是( ) A .2d =-
B .1
20a =-
C .当且仅当10n =时,n S 取最大值
D .当0n
S <时,n 的最小值为22
34.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .(
)
*
2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
35.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22
B .d =-2
C .当n =10或n =11时,S n 取得最大值
D .当S n >0时,n 的最大值为21
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.B 解析:B
【分析】
先写出新数列的各项,找到数列的周期,即得解. 【详解】
由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,
则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.
2.B
解析:B 【分析】
将题干中的等式化简变形得2
11n n a n a n --⎛⎫
= ⎪⎝⎭
,利用累乘法可求得数列{}n a 的通项公式,由
此计算出(
)32313k k k b b b k N *
--++∈,进而可得出数列{}n
b 的前18项和.
【详解】
)1,2n a n N n *
--=
∈≥,将此等式变形得2
11n n a n a n --⎛⎫= ⎪⎝⎭
,
由累乘法得2
2
2
3
212
12
11211123n n n a
a a n a a a a a n n
--⎛⎫⎛⎫⎛⎫
=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭, ()
2cos
3n n n a b n N π*=∈,22cos 3
n n b n π
∴=, ()()222
323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝
⎭592
k =-,
因此,数列{}n b 的前18项和为()5
91234566921151742
⨯+++++-⨯=⨯-=. 故选:B. 【点睛】
本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.
3.A
解析:A 【分析】
写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】
10a =
,1n a +1n =
时,2a 2n =
时,3a 3n =
时,4
a ; ∴ 数列{}n a 的周期是3
20206733110a a a ⨯+∴===
故选:A. 【点睛】
本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.
4.A
解析:A 【分析】
根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】
{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,
充分性:
1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,
0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,
10n a +<,则1n n S S +<,不合乎题意;
若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.
所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;
必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.
所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.
因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】
本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.
5.C
解析:C
可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】
每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.
20211
110112
-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,
而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】
本题考查数列的基础知识,但是考查却很灵活,属于较难题.
6.D
解析:D 【分析】
在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减
法求15a . 【详解】
12n n n a a n +=+⋅, 12n n n a a n +-=⋅,
12112a a ∴-=⋅, 23222a a -=⋅,
34332a a -=⋅
11(1)2n n n a a n ---=-⋅,
以上1n -个等式,累加得123
11122232(1)2n n a a n --=⋅+⋅+⋅+
+-⋅①
又
2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②
①- ②得23
112222(1)2n n n a a n --=++++--⋅
12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,
(2)23n n a n ∴=-⋅+ ,
151515(152)231323a ∴=-⋅+=⋅+,
【点睛】
本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.
7.A
解析:A 【分析】
由题意,根据累加法,即可求出结果. 【详解】
因为12n n a a n +=+,所以12n n a a n +-=,
因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212
n n n a a n n n ⎡⎤-+-⎣⎦
-=
+++==+--,
又11a =,所以2
1n a n n =-+.
故选:A. 【点睛】
本题主要考查累加法求数列的通项,属于基础题型.
8.C
解析:C 【分析】
根据数列项的规律即可得到结论. 【详解】
因为数列3,7,11,15⋯的一个通项公式为41n -,
,⋯的一个通项公式是n a = 故选:C . 【点睛】
本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.
9.A
解析:A 【分析】
运用数列的单调性和不等式的知识可解决此问题. 【详解】
数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,
121n n n n a a a a +++∴≥--,
设1n n n d a a +=-,则1n n d d +≥,
∴数列{}n d 是递减数列.
对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,
所以1220182018d d d ++
+=,又1232018d d d d ≥≥≥
≥,
所以1122018201820182018d d d d d ≥++
+≥,
故120181d d ≥≥,2018n ∴≥时,1n d ≤,
02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++
≤++++=
即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;
结合A ,故B 不正确;
对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;
对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】
本题考查了数列的单调性以及不等式,属于基础题.
10.B
解析:B 【分析】
根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】
在数列{}n a 中,11a =,122n n n a a a +=
+,则1212212
2123
a a a ⨯=
==++,2322
2213222
23
a a a ⨯
===++, 3431
222212522a a a ⨯
===++,45
422215223
25
a a a ⨯===++. 故选:B. 【点睛】
本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.
11.B
解析:B 【分析】
根据所给数列表达式,递推后可得()
1
21121n n n a a n ++++-=+.并将原式两边同时乘以
()
1n
-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入
即可求解. 【详解】
由已知()1121n
n n a a n ++-=-,① 得()
1
21121n n n a a n ++++-=+,②
由()1n ⨯-+①②得()()()212121n
n n a a n n ++=-⋅-++,
取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】
本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.
12.A
解析:A 【分析】
首先将n a 化简为()2
34n a n =--,即可得到答案。
【详解】
因为()
()2
2
69434n a n n n =-+-=--
当3n =时,n a 取得最小值。
故选:A
13.C
解析:C 【分析】
令n n b na =,由已知得121n n b b n +-=+运用累加法得2
+12n b n =,从而可得
12
+n a n n
=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<
<,
由此可得选项. 【详解】
令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122
n
n n b n --==,所以2+1212
+n n
b n a
n n n n
===,
所以()()()()+13+41212+1+
++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭, 所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,
故选:C. 【点睛】
本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.
14.C
解析:C 【分析】
由累乘法可求得2
n a n
=,即可求出. 【详解】
11n n n a a n +=+,即11n n a n a n +=+, 12
321123
2112321
212
32n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=
⋅⋅⋅⋅
⋅⋅=⋅⋅⋅⋅⋅⨯--2n
=, 202021
20201010
a ∴=
=. 故选:C.
15.A
解析:A 【分析】
由题1n n b b +>在n *∈N 恒成立,即16212n
n λ⎛⎫-<+ ⎪⎝⎭
,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】
数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,
即()1
22112
+1222n
n n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪
⎝⎭⎝⎭
恒成立,
即16212n
n λ⎛⎫-<+ ⎪⎝⎭
, 当n 为奇数时,则()6212n
n λ>-+⋅恒成立,
()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-, 66λ∴>-,解得1λ>-;
当n 为偶数时,则()6212n
n λ<+⋅恒成立,
()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,
620λ∴<,解得103
λ<
, 综上,1013
λ-<<. 故选:A. 【点睛】
关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出
16212n
n λ⎛⎫
-<+ ⎪⎝⎭
恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 16.C
解析:C 【分析】
根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1
111,(2)2
n n n a a a n a --==
≥+,
所以211
123a =
=+,31
131723a ==+,4117
11527a ==+,51
115131215
a ==+ 故选:C 17.B
解析:B 【分析】
先由题中条件,得到2
12
21i i i a a a +-=+,由累加法得到20
2211
221k k a a ==-∑
,根据00a =,
()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.
【详解】
由11i i a a +=+得()2
221121i i i i a a a a +=+=++,
则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,
……,
2202022121a a a -=+,
以上各式相加可得:()21120
2
21
0221
2 (20202)
k
k a a a a a a
=-
=+++++=∑,
所以20
22121
1220
k k a a a ==--∑
,
又00a =,所以2
12
0211a a a =++=,则20
2211
221
k k a a ==-∑
,
因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或
2,
所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或
4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,
以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或
21±,
因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,
所以22112
2a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,
170,210;
则
20
1
k
k a
=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,
即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:
求解本题的关键在于将题中条件平方后,利用累加法,得到20
22121
1220
k k a a a ==--∑
,将问题
转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.
18.A
解析:A 【分析】
根据递推公式推导出(
)4n n a a n N *
+=∈,且有1234
1a a a a
=,再利用数列的周期性可计算
出2018T 的值. 【详解】
12a =,()*111++=
∈-n
n n a a n N a ,212312a +∴==--,3131132
a -==-+,
41
1121312a -
==+,5
1132113
a +
==-,()4n n a a n N *+∴=∈,且()123411
23123
a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,
201845042=⨯+,因此,()504
2018450421211236T T a a ⨯+==⨯=⨯⨯-=-.
故选:A. 【点睛】
本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.
19.C
解析:C 【分析】
由累加法求出2
33n a n n =+-,所以
331n a n n n
,设33
()1f n n n
=
+-,由此能导出5n =或6时()f n 有最小值,借此能得到
n
a n
的最小值. 【详解】
解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+
22[12(1)]3333n n n =++⋯+-+=+-
所以
331n a n n
n
设33
()1f n n n
=
+-,由对勾函数的性质可知, (
)f n 在(
上单调递减,在
)
+∞上单调递减,
又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662
a a ===, 所以
n a n
的最小值为62162a =.
故选:C. 【点睛】
本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.
20.C
解析:C 【分析】
首先根据已知条件得到410a =,再依次判断选项即可得到答案.
由题知:410a =,
对选项A ,()2
444113a =--=,故A 错误;
对选项B ,2
44115a =-=,故B 错误;
对选项C ,()
4441102a ⨯+==,C 正确; 对选项D ,()
444162
a ⨯-==,故D 错误. 故选:C 【点睛】
本题主要考查数列的通项公式,属于简单题.
二、多选题 21.BCD 【分析】
根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,
解析:BCD 【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2
121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222
123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.
22.ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】
由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本
解析:ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】
由题意211122a =-=,31
1112a =-=-,A 正确,313
2122
S =+-=,C 正确;
41
121
a =-
=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;
201932019
67322
S =⨯=,D 正确.
故选:ACD . 【点睛】
本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.
23.BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由,
所以数列
解析:BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,
,
()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥, 所以(
)(
)(
)()11F n n F n n ⎤+-
=--⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪
+⎨⎬⎪⎪⎩⎭
为公比的等比数列, 所以(
)(
)1n
F n n +-=⎝⎭
1115()n F F n n -
+=++, 令
1
n
n n F
b -=
⎝⎭
,则11n n b +=
+,
所以1
n n b b +=
-, 所以n
b ⎧⎪
⎨⎪⎪⎩⎭
以
510-3
2
-为公比的等比数列,
所以1
n n b -
+, 所以
()11
15n n n n
F n --⎤
⎤⎛⎫
+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭
⎝
⎭⎝⎭⎣
⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要
求由较高的逻辑思维能力,属于中档题.
24.ABC 【分析】
因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项
解析:ABC 【分析】
因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质
961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,
140a <即可判断选项D ,进而得出正确选项.
【详解】
因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:
1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,
对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()
()
11891018181802
2
a a a a S ++=
=
=,故选项B 正确;
对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;
对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,
所以614a a <,故选项D 不正确, 故选:ABC 【点睛】
关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.
25.ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列的前项和为,, ∴,解得, 故,故A 正确;
∵,,故有,故B 正确; 该数
解析:ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()11187
5282
a a d a d ⨯++=+
,解得19a d =-, 故10190a a d =+=,故A 正确;
∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119
2
22
n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,
故C 错误; 由于61656392S a d d ⨯=+=-,1311312
13392
S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】
思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.
26.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列
解析:BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数
列,故对;
故选:BCD
【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
27.ACD
【分析】
由题可得,,,求出可判断A ;利用二次函数的性质可判断B ;求出可判断C ;令,解出即可判断D.
【详解】
设等差数列的公差为,则,解得,
,,且,
对于A ,,故A 正确;
对于B ,的对称
解析:ACD
【分析】
由题可得16a d =-,0d <,21322
n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d d S n n =
->,解出即可判断D. 【详解】
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-, 10a >,0d ∴<,且()21113+
222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =-的对称轴为132
n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故49S S =,故C 正确; 对于D ,令213022n d d S n n =
->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD.
【点睛】
方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
28.ABD
【分析】
由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD.
【详解】
根据等差数列定义可得,所以数列单调递减,A 正确;
由数列单调递减,可知数列有最大值a1,故B 正
解析:ABD
【分析】
由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.
【详解】
根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确;
由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;
由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确.
故选:ABD.
29.AB
【分析】
根据等差数列的性质及可分析出结果.
【详解】
因为等差数列中,
所以,
又,
所以,
所以,,故AB 正确,C 错误;
因为,故D 错误,
故选:AB
【点睛】
关键点睛:本题突破口在于由
解析:AB
【分析】
根据等差数列的性质及717S S =可分析出结果.
【详解】
因为等差数列中717S S =,
所以89161712135()0a a a a a a ++
++=+=, 又10a >,
所以12130,0a a ><,
所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +=
=<,故D 错误, 故选:AB
【点睛】
关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.
30.ABD
【分析】
由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.
【详解】
A.因为数列是等差数列,所以,即,所以A 正确;
B. 因为数列是等差数列,所以,那么,所以数
解析:ABD
【分析】
由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.
【详解】
A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;
B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么
()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确; C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭
不是等差数列,故C 不正确;
D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确.
故选:ABD
【点睛】
本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.
31.BD
【分析】
由,即,进而可得答案.
【详解】
解:,
因为
所以,,最大,
故选:.
【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 解析:BD
【分析】
由6111160S S S S =⇒-=,即950a =,进而可得答案.
【详解】
解:1167891011950S S a a a a a a -=++++==,
因为10a >
所以90a =,0d <,89S S =最大,
故选:BD .
【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.
32.ABD
【分析】
首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为,,
所以,即
所以是以首项为,公差为的等差数列,故A 正确.
对选项B ,由A 知:
解析:ABD
【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为121
n n n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n n
a a +-= 所以1n a ⎧⎫⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121n n n a 数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121
n a n =-,故C 错误. 对选项D ,因为121
n a n =
-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD
【点睛】
本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题. 33.AD
【分析】
运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D .
【详解】
等差数列的前n 项和为,公差,由,可
解析:AD
【分析】
运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n
S <解不等式可判断D . 【详解】
等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①
由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2
111628a d a d a d +=++,化为1100a d +=,②
由①②解得120a =,2d =-,则202(1)222n a n n =--=-,
21(20222)212
n S n n n n =+-=-, 由2
2144124n S n ⎛⎫=--+ ⎪⎝
⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22. 故选:AD
【点睛】
本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.
34.AC
【分析】
直接利用等差数列的定义性质判断数列是否为等差数列.
【详解】
A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中(为常数,),不符合从第二项起
解析:AC
【分析】
直接利用等差数列的定义性质判断数列是否为等差数列.
【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;
D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不
为等差数列.故错误.
故选:AC
【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.
35.BC
【分析】
分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D .
【详解】
由公差,可得,即,①
由a7是a
解析:BC
【分析】
分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .
【详解】
由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①
由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2
111628a d a d a d +=++,化简得110a d =-,②
由①②解得120,2a d ==-,故A 错,B 对; 由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭
*n N ∈,可得10n =或11时,n S 取最大值110,C 对;
由S n >0,解得021n <<,可得n 的最大值为20,D 错;
故选:BC
【点睛】
本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.。