高等数学公式大全最新修订(突击必备)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重积分及其应用: 柱面坐标和球面坐标:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰++-=++=++==>===
=
==
⎪⎪⎭
⎫
⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+==='
D
z D y D x z y x D
y D
x D
D
y D
x
D
D D
a y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M
M y d y x d y x x M
M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 23222232222322222D
2
2)(),()(),()(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σρσρσρσ
ρσρσ
ρσ
ρσ
ρσ
ρθ
θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
Ω
Ω
ΩΩΩΩΩ
Ω
ΩΩ+=+=+=========⋅⋅⋅=⎪⎩
⎪⎨⎧=====⎪⎩⎪
⎨⎧===dv
y x I dv z x I dv z y I dv x M dv z M z dv y M y dv x M x dr
r
r F d d d drd r r F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f z
z r y r x z y x r ρρρρρρρϕθϕϕ
θθϕϕθϕθ
ϕϕθϕϕϕθϕθϕθθθθθθθπ
πθϕ)()()(1
,1,1sin ),,(sin ),,(),,(sin sin cos sin sin cos sin )
,sin ,cos (),,(,),,(),,(,sin cos 22222220
)
,(0
2
22
, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:
曲线积分:
⎩⎨
⎧==<'+'=≤≤⎩⎨
⎧==⎰⎰)
()()()()]
(),([),(),(,)
()
(),(22t y t
x dt t t t t f ds y x f t t y t x L L y x f L
ϕβαψϕψϕβαψϕβ
α 特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):
第一类曲线积分(对弧。
,通常设的全微分,其中:
才是二元函数时,=在:
二元函数的全微分求积注意方向相反!
减去对此奇点的积分,,应。
注意奇点,如=,且内具有一阶连续偏导数在,、是一个单连通区域;
、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。
上积分起止点处切向量分别为
和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),(·)0,0(),(),(21·21
2,)()()cos cos ()}()](),([)()](),([{),(),()
()(00
)
,()
,(00==+=
+∂∂∂∂∂∂∂∂-==
=∂∂-∂∂=-=+=∂∂-∂∂+=∂∂-∂∂+=
+'+'=+⎩⎨
⎧==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰y x
dy y x Q dx y x P y x u y x u Qdy Pdx y
P x Q y P
x Q G y x Q y x P G ydx xdy dxdy A D y P x Q x Q y P Qdy
Pdx dxdy y P
x Q Qdy Pdx dxdy y P x Q L ds Q P Qdy Pdx dt
t t t Q t t t P dy y x Q dx y x P t y t x L y x y x D
L D L
D L L
L
L
βαβαψψϕϕψϕψϕβ
α
曲面积分: 高斯公式:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑
∑
∑
∑
∑
∑
∑
++=++±=±=±=++++=
ds
R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz z y z y x P dydz z y x P dxdy y x z y x R dxdy z y x R dxdy z y x R dzdx z y x Q dydz z y x P dxdy
y x z y x z y x z y x f ds z y x f zx
yz
xy
xy
D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)]
,(,,[),,(2
2γβα系:两类曲面积分之间的关号。
,取曲面的右侧时取正
号;,取曲面的前侧时取正
号;,取曲面的上侧时取正
,其中:
对坐标的曲面积分:对面积的曲面积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
∑
∑
∑
∑
∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂ds
A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R
y Q x P n n ϖϖ
ϖϖϖdiv )cos cos cos (...
,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:
—高斯公式的物理意义γβαννγβα
斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数:
⎰⎰⎰⎰⎰⎰⎰⎰⎰Γ
Γ
∑∑
∑Γ⋅=++Γ∂∂
∂∂∂∂=
∂∂=
∂∂∂∂=∂∂∂∂=∂∂∂∂∂∂∂∂
=∂∂∂∂∂∂
++=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂ds
t A Rdz Qdy Pdx A R
Q P z y x A y P
x Q x R z P z Q y R R
Q
P
z y x R Q
P
z y x dxdy dzdx dydz
Rdz Qdy Pdx dxdy y P
x Q dzdx x R z P dydz z Q y R ϖ
ϖϖϖ的环流量:沿有向闭曲线向量场旋度:, , 关的条件:空间曲线积分与路径无上式左端又可写成:k
j i rot cos cos cos )()()(γβ
α
是发散的
调和级数:等差数列:等比数列:n n
n n q q q q q n n 1
312112
)1(32111112+++++=
++++--=
++++-ΛΛΛ
级数审敛法:
散。
存在,则收敛;否则发、定义法:
时,不确定
时,级数发散
时,级数收敛
,则设:、比值审敛法:
时,不确定时,级数发散
时,级数收敛
,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n
n n s u u u s U U u ∞
→+∞→∞
→+++=⎪⎩
⎪
⎨⎧=><=⎪⎩
⎪
⎨⎧=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和
如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞
→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u ΛΛ
绝对收敛与条件收敛: 幂级数:
∑∑∑∑>≤-+++++++++时收敛
1时发散p
级数: 收敛;
级数:收敛;
发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11
1
)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n Λ
ΛΛΛ 0
01
0)3(lim )3(111
111122103
2
=+∞=+∞
===
≠==><+++++≥-<++++++++∞→R R R a a a a
R R x R x R x R x a x a x a a x x x x x x
x n n n
n n n n n
时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定
时发散时收敛
,使在数轴上都收敛,则必存收敛,也不是在全
,如果它不是仅在原点 对于级数时,发散
时,收敛于
ρρρ
ρρΛΛΛΛ
函数展开成幂级数:
ΛΛΛΛ+++''+
'+===-+=
+-++-''+-=∞→++n
n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !
)0(!2)0()0()0()(00
lim )(,)()!
1()
()(!
)
()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ
一些函数展开成幂级数:
)
()!12()1(!5!3sin )11(!
)1()1(!2)1(1)1(1
21532+∞<<-∞+--+-+-=<<-++--++-+
+=+--x n x x x x x x x n n m m m x m m mx x n n n
m ΛΛΛΛΛ 欧拉公式: 傅立叶级数:
⎪⎪⎩
⎪
⎪⎨⎧-=+=+=--2
sin 2cos sin cos ix ix
ix
ix
ix e e x e
e
x x i x e 或
是偶函数 ,余弦级数:是奇函数 ,正弦级数:(相减)
(相加) 其中,周期∑⎰∑⎰⎰⎰∑+=
==
======+-+-=++++=+++=
+++⎪⎪⎩
⎪⎪⎨⎧====
=++=
--∞
=nx a a x f n nxdx x f a b nx b x f n xdx x f b a n nxdx x f b n nxdx x f a nx b nx a a x f n n n n n n n n n n n cos 2
)(2,1,0cos )(2
0sin )(3,2,1n sin )(2
012413121164
1312112461412185
1311)3,2,1(sin )(1)2,1,0(cos )(1
2)sin cos (2)(0
2
2222
222
2
222
2
221
Λ
Λ
ΛΛΛΛΛΛπ
π
π
πππ
π
ππππππππ
周期为
l 2的周期函数的傅立叶级数: 微分方程的相关概念:
⎪⎪⎩
⎪⎪⎨⎧=====++=
⎰⎰∑--∞
=l
l n l l n n n n n dx l x n x f l b n dx l x n x f l a l l x n b l x n a a x f )3,2,1(sin )(1)2,1,0(cos )(12)sin cos (2)(1
0ΛΛ 其中,周期ππππ
即得齐次方程通解。
,
代替积分后将分离变量,
,,,则解法:设的函数,,即写成程可以写成
齐次方程:一阶微分方称为隐式通解。
得:解法:的形式,为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x
y
u u du
x dx u dx du u dx du x u dx dy x y u x
y
y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0
),(),(),(ϕϕϕ
一阶线性微分方程:
)
1,0()()(2))((0)(,0)()
()(1)()()(≠=+⎰
+⎰=≠⎰
===+⎰--n y x Q y x P dx
dy e C dx e x Q y x Q Ce y x Q x Q y x P dx
dy
n dx
x P dx
x P dx
x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:
全微分方程: 二阶微分方程:
通解。
应该是该全微分方程的,其中:,即:分方程,中左端是某函数的全微如果C y x u y x Q y
u
y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=∂∂=∂∂=+==+),()
,(),(0),(),(),(0),(),( 时为非齐次
时为齐次,0)(0)()()()(2
2≠≡=++x f x f x f y x Q dx
dy x P dx
y d
二阶常系数齐次线性微分方程及其解法: 二阶常系数非齐次线性微分方程
2
12
2,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,其中,
、写出特征方程:求解步骤:
为常数;,其中∆'''=++∆=+'+''
型
为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x
ωωλλλ+===+'+''
式的通解:
出的不同情况,按下表写、根据(*),321r r。