2005全国数学奥林匹克决赛试题
2005全国高中数学联赛试题及答案[1]
2005年高中数学联赛试卷(一)一、选择题1. 使关于x 的不等式k x x ≥-+-63有解的实数k 的最大值是( ) A.36-B.3C.36+D.62. 空间四点A 、B 、C 、D ,满足3||=、4||=BC 、11||=、9||=,则⋅的取值( )A. 只有一个B. 有两个C. 有四个D. 有无穷多个 3. △ABC 内接于单位圆,三个内角A 、B 、C 的平分线交此圆于A 1、B 1、C 1三点,则CB A CCC B BB A AA sin sin sin 2cos 2cos 2cos111++⋅+⋅+⋅的值是( ) A. 2 B. 4 C. 6 D. 8 4. 如图,ABCD -A'B'C'D'为正方体,任作平面α与对角线AC'垂直,使α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则( )A. S 是定值,l 不是定值B. S 不是定值,l 是定值C. S 、l 均是定值D. S 、l 均不是定值5. 方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( ) A. 焦点在x 轴上的椭圆 B. 焦点在x 轴上的双曲线 C. 焦点在y 轴上的椭圆D. 焦点在y 轴上的双曲线6. 记集合}6,5,4,3,2,1,0{=T ,⎭⎬⎫⎩⎨⎧=∈+++=4,3,2,1,77774433221i T a a a a a M i ,将M 中的元素按从大到小顺序排列,则第2005个数是( ) A.43273767575+++ B. 43272767575+++ C. 43274707171+++ D. 43273707171+++二、填空题7. 将多项式2019321)(xx x x x x f +-+-+-= 表示为关于y 的多项式=)(y g202019192210y a y a y a y a a +++++ ,且4-=x y ,则2010a a a +++ =__________。
2005年小学数学奥林匹克竞赛五年级组试题(卷)
34陕北某村有一块草场,假设每天草都均匀生长,长的一样快。这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天。问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为响应西部大开发,保护生态环境,防止草场沙化,这片草场最多可以放牧多少只羊?
2005年小数奥赛六年级组试题及参考答案
一、填空。(每空3分,共60分。)
2005年小学数学奥林匹克竞赛五年级组试题(卷)
一、填空。(每空3分,共60分。)
1、简算:9999+999+99+9=。
2、找规律:1、 4、 9、 16、、 36、 49。
3、鸡兔同笼,有头40,有脚96。问:鸡有;兔有只。
4、○+○+○+□+□=45,□=○+○+○。○=; □=。
5、一个圆形花圃周长36米,每隔3米放一盆花,一共放了盆花?
周长是分米。
19、一块豆腐,要想切成八块,最少的刀就可以完成。
20、用5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用空瓶换的,
那么他至少要买瓶汽水。
二、选择题。(10分 )
2005年全国高中数学联赛试题(二)及参考答案
2005年全国高中数学联赛试题(二)及参考答案一、(本题满分50分) 如图,在△ABC 中,设AB>AC ,过A 作△ABC 的外接圆的切线l ,又以A 为圆心,AC 为半径作圆分别交线段AB 于D ;交直线l 于E 、F 。
证明:直线DE 、DF 分别通过△ABC 的内心与一个旁心。
(注:与三角形的一边及另两边的延长线均相切的圆称为三角形的旁切圆,旁切圆的圆心称为旁心。
) 证明:(1)先证DE 过△ABC 的内心。
如图,连DE 、DC ,作∠BAC 的平分线分别交DC 于G 、DE 于I ,连IC ,则由AD=AC , 得,AG ⊥DC ,ID=IC. 又D 、C 、E 在⊙A 上, ∴∠IAC=21∠DAC=∠IEC ,∴A 、I 、C 、E 四点共圆, ∴∠CIE=∠CAE=∠ABC ,而∠CIE=2∠ICD , ∴∠ICD=21∠ABC.∴∠AIC=∠IGC+∠ICG=90°+21∠ABC ,∴∠ACI=21∠ACB ,∴I 为△ABC 的内心。
(2)再证DF 过△ABC 的一个旁心.连FD 并延长交∠ABC 的外角平分线于I 1,连II 1、B I 1、B I ,由(1)知,I 为内心, ∴∠IBI 1=90°=∠EDI 1,∴D 、B 、l 1、I 四点共圆, ∵∠BI l 1 =∠BDI 1=90°-∠ADI 1=(21∠BAC+∠ADG )-∠ADI=21∠BAC+∠IDG ,∴A 、I 、I 1共线. I 1是△ABC 的BC 边外的旁心二、(本题满分50分)设正数a 、b 、c 、x 、y 、z 满足.;,c ay bx b cx az a bz cy =+=+=+求函数zz y y x x z y x f +++++=111),,(222的最小值. 解:由条件得,0)()()(=-+--++-+a bz cy a c ay bx c b cx az b ,即02222=--+c b a bcx ,bca cb x 2222-+=∴,同理,得.2,2222222ab c b a z ac b c a y -+=-+=a 、b 、c 、x 、y 、z 为正数,据以上三式知,222222222,,c b a b c a a c b >+>+>+,故以a 、b 、c 为边长,可构成一个锐角三角形ABC ,C z B y A x cos ,cos ,cos ===∴,问题转化为:在锐角△ABC 中,求函数A f (cos 、B cos 、C cos )=CCB B A A cos 1cos cos 1cos cos 1cos 222+++++的最小值.令,cot ,cot ,cot C w B v A u ===则,1,,,=++∈+wu vw uv R w v u且).)((1),)((1),)((1222w v w u w w v v u v w u v u u ++=+++=+++=+1)1()1(1111cos 1cos 2222222222+-+=+++=+++=+∴u u u u u u u u u u u u AA),11(2))((13232232w u v u u u w u v u u u u u u +++-≥++-+-=同理,).11(2cos 1cos ),11(2cos 1cos 322322wv w u w w C C w u v u v v B B +++-≥++++-≥+)[(21)(2122222333333222v uv u w v u w u w u w v w v v u v u w v u f +--++=++++++++-++≥∴+.21)(21)]()(2222=++=+-++-uw vw uv w uw u w vw v (取等号当且仅当w v u ==,此时,.21)],,([),21,min ======z y x f z y x c b a三、(本题满分50分)对每个正整数n ,定义函数⎪⎩⎪⎨⎧=.]}{1[,0)(不为平方数当为平方数当n n n n f(其中[x ]表示不超过x 的最大整数,]).[}{x x x -= 试求:∑=2401)(k k f 的值.解:对任意*,N k a ∈,若22)1(+<<k a k ,则k k a 212≤-≤,设,10,<<+=θθk a则].2[]}{1[,12211}{12222k a ka k a k k a k k a k a ka a -=∴+-<-+=-+=-==θθ让a 跑遍区间22)1(,(+k k )中的所有整数,则∑∑+<<==22)1(21],2[]}{1[k a k ki i ka于是∑∑∑+====2)1(1121]2[)(n a n i ki ik a f ……①下面计算∑=ki ik21],2[画一张2k×2k 的表,第i 行中,凡是i 行中的位数处填写“*”号,则这行的“*”号共]2[i k 个,全表的“*”号共∑=ki i k21]2[个;另一方面,按列收集“*”号数,第j 列中,若j 有T (j )个正因数,则该列使有T (j )个“*”号,故全表的“*”号个数共∑=kj j T 21)(个,因此∑=ki i k21]2[=∑=kj j T 21)(. 示例如下:则)]2()12([)]4()3()[1()]2()1([)()(1121n T n T T T n T T n j T a f ni ni kj +-+++-++==∑∑∑===……②由此,∑∑==+--=1512561)]()12()[16()(k k k T k T k k f ……③记,15,,2,1),2()12( =+-=k k T k T a k 易得k a 的取值情况如下:因此,∑∑===-=151161783)16()(k kk ak k f n……④据定义0)16()256(2==f f ,又当)3016(15},255,,242,241{2≤≤+=∈r rk k 设 ,301515311515151515222rr r r r rr k <++<⋅++=-+=-,231}15{13012<<+<≤r r r ,则}255,,242,241{,1]}{1[∈=k k ……⑤从则.76815783)(783)(25612401=-=-=∑∑==i i k f k f。
2005年全国高中数学联赛试题及解答
1 1 0 4 + 2+ 3+ 4 7 7 7 7
D.
1 1 0 3 + 2+ 3+ 4 7 7 7 7
ak p 表示 k 位 p 进制数,将集合 M 中的每个数乘以 7 4 ,得
M = a1 73 + a2 72 + a3 7 + a4 | ai T , i = 1,2,3,4 = a1a2 a3a4 7 | ai T , i = 1,2,3,4 .
DA2 = DA = AB + BC + CD
2
(
)
2
= AB 2 + BC 2 + CD 2 + 2 AB BC + BC CD + CD AB
(
)
= AB 2 − BC 2 + CD 2 + 2 BC + AB BC + BC CD + CD AB
(
2
)
= AB2 − BC 2 + CD2 + 2 AB + BC BC + CD ,即 2 AC BD = AD 2 + BC 2 − AB 2 − CD 2 = 0, AC BD 只有
(sin 2 − sin 3) − (cos 2 − cos 3) = 2 2 sin −
2
2− 3 2 + 3 3 3 2+ 3 2− 3 0, , + . 0 ,∴ sin 2 2 2 4 4 2 4 2 2+ 3 + ) 0 ,∴ ()式 0. 2 4
5 +1 . 6 解:由题设知, f ( x) 和式中的各项构成首项为 1,公比为 − x 的等比数列,由等比数列的求和公式,得:
2005奥林匹克试题答案
2005奥林匹克试题答案2005年奥林匹克数学竞赛试题解答问题一:题目描述:给定一个正整数n,将其各位数字重新排列可以得到一个新的数。
证明:对于任意的n,都存在一种排列方式,使得排列后的数是n的倍数。
解答:首先,我们设n的各位数字为a1, a2, ..., ak,且a1 * a2 * ... * ak = n。
我们需要证明存在一种排列方式,使得排列后的数是n的倍数。
考虑n的倍数的性质,一个数是n的倍数当且仅当它与n的任意一个非零因子(除了1和本身)的余数都为0。
因此,我们需要证明存在一种排列方式,使得排列后的数与n的每个非零因子的余数都为0。
我们可以通过构造法来证明这一点。
首先,我们将n的每个因子(除了1和n本身)对应的数字串起来,得到一个新的数字序列。
然后,我们将这个新序列与n的原始数字序列进行比较,如果新序列的每一位都小于或等于原始序列的对应位,那么我们就可以通过将新序列的数字按照原始序列的顺序排列,得到一个新的数,这个新的数就是n的倍数。
如果不存在这样的排列方式,那么至少存在一个因子,其对应的数字序列在某些位上大于原始序列的对应位。
这时,我们可以将这个因子对应的数字序列中大于原始序列对应位的数字与原始序列中的数字交换,然后再次进行比较。
通过有限次的交换,我们总能找到一种排列方式,使得新序列的每一位都不大于原始序列的对应位,从而证明了存在一种排列方式,使得排列后的数是n的倍数。
问题二:题目描述:给定一个正整数序列a1, a2, ..., an,其中每个数都是1或-1。
证明:序列中1的个数减去-1的个数是偶数。
解答:我们可以通过数学归纳法来证明这个结论。
首先,当序列中只有一个数时,显然1的个数减去-1的个数是0,是一个偶数。
假设当序列中有k个数时,结论成立,即1的个数减去-1的个数是偶数。
现在考虑序列中有k+1个数的情况。
我们可以从序列中去掉一个数,根据归纳假设,剩下的k个数中1的个数减去-1的个数是偶数。
2005年全国高中数学联赛试卷及解答
特征方程为x2-7x+1=0.
解得:x= = = .
令an=α +β .由a0=1,a1=5解得
α= ,β= ;
得an= [ + ]⑤
注意到 · =1, + = .
有,anan+1-1= [ + ]·[ + ]-1
= [ பைடு நூலகம் + + -5]
= [ + ]2
15.过抛物线y=x2上一点A(1,1)作抛物线的切线,分别交x轴于点D,交y轴于点B,点C在抛物线上,点E在线段AC上,满足 =λ1;点F在线段BC上,满足 =λ2,且λ1+λ2=1,线段CD与EF交于点P,当点C在抛物线上移动时,求点P的轨迹方程.
加试卷
一、如图,在△ABC中,设AB>AC,过点A作△ABC的外接圆的切线l,又以点A为圆心,AC为半径作圆分别交线段AB于点D;交直线l于点E、F.
填 .
解:V= × AC×BCsin45×h≤ AC×BC×ADsin45.
即AC×BC×ADsin45≥1 ×BC×AD≥1.
而3=AD+BC+ ≥3 =3,等号当且仅当AD=BC= =1时成立,
故AC= ,且AD=BC=1,AD⊥面ABC.CD= .
11.若正方形ABCD的一条边在直线y=2x-17上,另外两个顶点在抛物线y=x2上,则该正方形面积的最小值为;
A. + + + B. + + + C. + + + D. + + +
二、填空题:
2005全国数学奥林匹克决赛试题及参考答案
2005全国数学奥林匹克决赛试题及参考答案1、 计算:11024 +1512 +1256 + (12)+1+2+4+8+……+1024= 2、 计算:1+10+41035 +22463 +15199 +17143= 3、有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是( )。
4、设M 、N 都是自然数,记PM 是自然数M 的各位数字之和,PN 是自然数N 的各位数字之和。
又记M*N 是M 除以N 的余数。
已知M+N=4084,那么(PM+PN)*9的值是( )。
5、如图,已知CD=5,DE=7,EF=15,FG=6,直线AB 将图形分成左右两部份,左边部份面积是38,右边部份面积是65,那么三角形ADG 的面积是( )。
6、某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是( )。
7、已知甲酒精纯酒精含量为72%,乙酒精纯酒精含量为58%,两种酒精混合后纯酒精含量为62%。
如果每种酒精取的数量都比原来多15升,混合后纯酒精含量为63.25%,那么第一次混合时,甲酒精取了( )升。
8、在下面算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。
那么“新年好”所代表的三位数是( )。
9、有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。
那么,原来第一家商场的利润是第二家商场利润的( )倍。
10、从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。
如果六个三位数的和是3330,那么这六个三位数中最大的是( )。
11、有A 、B 、C 、D 、E 五支球队参加足球循环赛,每两个队之间都要赛一场。
当比赛快要结束时,统计到的成绩如下:队名 获胜场数 平局场数 失败场数 进球个数 失球个数A 2 1 0 4 1B 1 2 0 4 2C 1 1 1 2 3D 1 0 3 5 5E 0 2 1 1 5已知A 与E 以及B 与C 都赛成平局,并且比分都是1:1,那么B 与D 两队之间的比分是( )。
2005全国高中数学联赛试题及答案[1]
a1 a2 a3 a4 2 3 4 ai T , i 1,2,3,4 ,将 M 中的元素按从大 7 7 7 7
D.
5 5 6 3 2 3 4 7 7 7 7
B.
5 5 6 2 1 1 0 4 2 3 4 C. 2 3 4 7 7 7 7 7 7 7 7
)
大到小的顺序排列,则第 2005 个数是(
5 5 6 3 2 3 4 7 7 7 7 1 1 0 4 C. 2 3 4 7 7 7 7
A.
5 5 6 2 2 3 4 7 7 7 7 1 1 0 3 D. 2 3 4 7 7 7 7
B.
4
解:用 [a1a2 ak ] p 表示 k 位 p 进制数,将集合 M 中的每个数乘以 7 ,得
2
1 AC 2 ,则 CD=_________。 ,∠ACB=45° , AD BC 6 2 2 11. 正方形 ABCD 的一条边在直线 y 2 x 17 上,另外两顶点在 y x 上,则正方
10. 如图,四面体 DABC 的体积为 形面积的最小值为_____________。 12. 若自然数 a 的各位数字之和为 7,则称 a 是“吉祥数” 。将所有“吉祥数”从小 到大排成一列:a1、a2、a3„,若 an=2005,则 a5n=______。
即 sin 2 sin 3 cos 2 cos 3. 曲线表示焦点在 y 轴上的椭圆,选 C。 6.记集合 T {0,1,2,3,4,5,6}, M {
a1 a 2 a3 a 4 | ai T , i 1,2,3,4}, 将 M 中的元素按从 7 7 2 73 7 4
二〇〇五年高中数学联赛试卷
2005全国数学奥林匹克决赛试题(B)和答案
2005全国数学奥林匹克决赛试题(B)1.计算:=________。
2.计算:=________。
3.乘积125×127×129×131×133×…×163×165的末三位数是________。
4.对于正整数a与b,规定a*b=a×(a+1)×(a+2)×…×(a+b-1)。
如果(x*3)*2=3660,那么x=________。
5.如图,已知AADE,ACDE和正方形ABCD的面积之比为2∶3∶8,而且△BDE的面积是5平方厘米,那么四边形ABCE的面积是________平方厘米。
6.已知九位数2005□□□□□是2008的倍数,这样的九位数共有________个。
7.二十几个小朋友围成一圈,按顺时针方向一圈一圈地从1开始连续报数。
如果报2和报200的是同一个人,那么共有________个小朋友。
8.有两筐苹果,要分给三个班,甲班得到全部苹果的,乙班和丙班分得苹果数量之比为7∶5。
已知第二筐苹果是第一筐苹果的,如果从第一筐中拿出20千克苹果放入第二筐,则两筐苹果的重量相等。
那么甲班比乙班多分得苹果________千克。
9.有一个棱长是12厘米的正方体木块,从它的上面、前面、左面中心分别凿穿一个边长为4厘米的正方形孔。
穿孔后木块的体积是________立方厘米。
10.如果能被11整除,那么n的最小值是________。
11.少年跳水大奖赛的裁判由若干人组成,每名裁判给分最高不超过10分。
第一名选手跳水后得分情况是:全体裁判所给分数的平均分是9.68分;如果只去掉一个最高分,则其余裁判所给的分数的平均分是9.62分;如果只去掉一个最低分,则其余的分数的平均分是9.71分。
那么所有裁判所给分数中最少可以是________分,此时共有裁判________名。
12.甲、乙二人分别从A,B两地同时出发,在A,B之间往返跑步,甲每秒跑3米,乙每秒跑7米。
2005年全国高中数学联赛试题及答案
二○○五年全国高中数学联合竞赛试题一.选择题(本题满分36分,每小题6分)本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。
请将正确答案的代表字母填在题后的括号内。
每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1.使关于xk 有解的实数k 的最大值是( ) A. BC .63+D .62.空间四点A 、B 、C 、D 满足||3,||7,||11,||9,AB BC CD DA ====则AC BD ⋅的取值( )A .只有一个B .有二个C .有四个D .有无穷多个 3.ABC ∆内接于单位圆,三个内角A 、B 、C 的平分线延长后分别交此圆于1A 、1B 、1C 。
则CB A CCC B BB A AA sin sin sin 2cos2cos 2cos 111++⋅+⋅+⋅ 的值为( )A .2B .4C .6D .84.如图,D C B A ABCD ''''-为正方体。
任作平面α与对角线C A ' 垂直,使得α与正方体的每个面都有公共点,记这样得到的截面 多边形的面积为S ,周长为l .则( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值5.方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线6.记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4433221=∈+++==i T a a a aa M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++C .43274707171+++ D .43273707171+++二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
2005年全国高中数学联赛试卷及解答
2005年全国高中数学联赛试卷(2005年10月16日上午8∶00-9∶40)一、选择题:1.使关于x 的不等式x -3+6-x ≥k 有解的实数k 的最大值是 ( ) A .6- 3 B . 3 C .6+ 3 D . 62.空间四点A 、B 、C 、D 满足|→AB |=3,|→BC |=7,|→CD |=11,|→DA |=9.则→AC ·→BD 的取值( ) A .只有一个 B .有二个 C .有四个 D .有无穷多个3.△ABC 内接于单位圆,三个内角A 、B 、C 的平分线延长后分别交此圆于A 1、B 1、C 1,则AA 1·cos A 2+BB 1·cos B 2+CC 1·cosC2sin A +sin B +sin C 的值为 ( )A .2B .4C .6D .84.如图,ABCD -A 'B 'C 'D '为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则 ( ) A .S 为定值,l 不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值 D .S 与l 均不为定值5.方程x 2sin 2-sin 3+y 2cos 2-cos 3=1表示的曲线是 ( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线6.记集合T ={0,1,2,3,4,5,6},M ={a 17+a 272+a 373+a 474| a i ∈T ,i =1,2,3,4},将M 中的元素按从大到小排列,则第2005个数是 ( )A .57+572+673+374B .57+572+673+274C .17+172+073+474D .17+172+073+374二、填空题:7.将关于x 的多项式f (x )=1-x +x 2-x 3+…-x 19 +x 20表为关于y 的多项式g (y )=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y =x -4,则a 0+a 1+…+a 20= ;8.已知f (x )是定义在(0,+∞)上的减函数,若f (2a 2+a +1)<f (3a 2-4a +1)成立,则a 的取值范围是 ;9.设α、β、γ满足0<α<β<γ<2π,若对于任意x ∈R ,cos(x +α)+cos(x +β)+cos(x +γ)=0,则γ-α= ;10.如图,四面体DABC 的体积为16,且满足∠ACB =45︒,AD +BC +AC 2=3,则CD = ;11.若正方形ABCD 的一条边在直线y =2x -17上,另外两个顶点在抛物线y =x 2上,则该正方形面积的最小值为 ;12.如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .三、解答题:A'B'C'D'D C BA 45°AD CB13.数列{a n }满足a 0=1,a n +1=7a n +45a n 2-362,n ∈N ,证明:⑴ 对任意n ∈N ,a n 为正整数;⑵ 对任意n ∈N ,a n a n +1-1为完全平方数.14.将编号为1,2,3,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各放一个小球,设圆周上所有相邻两个球号码之差的绝对值之和为S ,求使S 达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后与另一种放法重合,则认为是相同的放法)15.过抛物线y =x 2上一点A (1,1)作抛物线的切线,分别交x 轴于点D ,交y 轴于点B ,点C 在抛物线上,点E 在线段AC 上,满足AE EC =λ1;点F 在线段BC 上,满足BFFC =λ2,且λ1+λ2=1,线段CD 与EF 交于点P ,当点C 在抛物线上移动时,求点P 的轨迹方程.加试卷一、如图,在△ABC 中,设AB >AC ,过点A 作△ABC 的外接圆的切线l ,又以点A 为圆心,AC 为半径作圆分别交线段AB 于点D ;交直线l 于点E 、F .证明:直线DE 、DF 分别通过△ABC 的内心与一个旁心.二、设正数a 、b 、c 、x 、y 、z 满足cy +bz =a ,az +cx =b ,bx +ay =c .求函数f (x ,y ,z )=x 21+x +y 21+y +z 21+z的最小值.三、对每个正整数n ,定义函数f (n )=⎩⎪⎨⎪⎧0,当n 为完全平方数,[1{n }],当n 不为完全平方数.(其中[x ]表示不超过x 的最大整数,{x }=x -[x ]).试求k =1∑240f (k )的值.呜呼!不怕繁死人,就怕繁不成!2005年全国高中数学联赛试卷(2005年10月16日上午8∶00-9∶40)一、选择题:1.使关于x 的不等式x -3+6-x ≥k 有解的实数k 的最大值是 ( ) A .6- 3 B . 3 C .6+ 3 D . 6 选D .解:3≤x ≤6,令x -3=3sin α(0≤α≤π2),则x =3+3sin 2α,6-x =3cos α.故6≥3(sin α+cos α)≥3.故选D .2.空间四点A 、B 、C 、D 满足|→AB |=3,|→BC |=7,|→CD |=11,|→DA |=9.则→AC ·→BD 的取值( ) A .只有一个 B .有二个 C .有四个 D .有无穷多个 选A .解:→AB +→BC +→CD +→DA =→0.DA 2=→DA 2=(→AB +→BC +→CD )2=AB 2+BC 2+CD 2+2(→AB ·→BC +→AB ·→CD +→BC ·→CD )=AB 2+BC 2+CD 2+2(→AB ·→BD +→BC ·→BD -→BC 2),(其中→BC +→CD =→BD ,→CD =→BD -→BC ) =AB 2+BC 2+CD 2-2BC 2+2(→AC ·→BD ).故2→AC ·→BD =DA 2+BC 2-AB 2-CD 2=92+72-32-112=0⇒→AC ·→BD =0.选A .3.△ABC 内接于单位圆,三个内角A 、B 、C 的平分线延长后分别交此圆于A 1、B 1、C 1,则AA 1·cos A 2+BB 1·cos B 2+CC 1·cosC2sin A +sin B +sin C的值为 ( )A .2B .4C .6D .8 选A .解:AA 1·cos A 2=2sin(B +A 2)cos A2=sin(A +B )+sin B =sin C +sin B .AA 1·cos A 2+BB 1·cos B 2+CC 1·cos C2=2(sin A +sin B +sin C ).故原式=2.选A .4.如图,ABCD -A 'B 'C 'D '为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则 ( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值 选B .解:设截面在底面内的射影为EFBGHD ,设AB =1,AE =x (0≤x ≤12),则l =3[2x +2(1-x )]=32为定值;而S =[1-12x 2-12(1-x )2]secθ=(12-x -x 2)secθ(θ为平面α与底面的所成角)不为定值.故选B .ACBA 1B 1C 1IE FGHA'B'C'D'D CB A5.方程x 2sin 2-sin 3+y 2cos 2-cos 3=1表示的曲线是 ( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线 选C .解:由于3+2>π⇒π2>3-π2>π2-2>0⇒cos(3-π2)<cos(π2-2)⇒sin 2-sin 3>0;又,0<2<3c <π⇒cos 2-cos 3>0,⇒曲线为椭圆.sin 2-sin 3-(cos 2-cos 3)=2[sin(2-π4)-sin(3-π4)].而0<2-π4<3-π4<π2⇒sin 2-sin 3<cos 2-cos 3⇒焦点在y 轴上.故选C .6.记集合T ={0,1,2,3,4,5,6},M ={a 17+a 272+a 373+a 474| a i ∈T ,i =1,2,3,4},将M 中的元素按从大到小排列,则第2005个数是 ( )A .57+572+673+374B .57+572+673+274C .17+172+073+474D .17+172+073+374选C .解:M ={174(a 1×73+a 2×72+a 3×7+a 4)| a i ∈T ,i =1,2,3,4},a 1×73+a 2×72+a 3×7+a 4可以看成是7进制数,(a 1a 2a 3a 4)7,其最大的数为(6666)7=74-1=2400.从而从大到小排列的第2005个数是2400-2004=396,即从1起从小到大排的第396个数,396=73+72+4⇒(1104)7,故原数为17+172+073+474.故选C .二、填空题:7.将关于x 的多项式f (x )=1-x +x 2-x 3+…-x 19 +x 20表为关于y 的多项式g (y )=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y =x -4,则a 0+a 1+…+a 20= ;填521+16解:f (x )=a 0+a 1(x -4)2+a2(x -4)2+…+a20(x -4)20.令x =5得f (5)=1-5+52-53+…-519+520=(-5)21-1(-5)-1=521+16=a 0+a 1+…+a 20.8.已知f (x )是定义在(0,+∞)上的减函数,若f (2a 2+a +1)<f (3a 2-4a +1)成立,则a 的取值范围是 ;填(0,13)∪(1,5).解:⎩⎨⎧2a 2+a +1>0,3a 2-4a +1>0.⇒a ∈(-∞,13)∪(1,+∞).2a 2+a +1>3a 2-4a +1⇒a 2-5a <0⇒0<a <5. 故所求取值范围为(0,13)∪(1,5).9.设α、β、γ满足0<α<β<γ<2π,若对于任意x ∈R ,cos(x +α)+cos(x +β)+cos(x +γ)=0,则γ-α= ;填43π. 解:由f (x )≡0,得f (-α)=f (-β)=f (-γ)=0:cos (β-α)+cos(γ-α)=cos(β-α)+cos(γ-β)=cos(γ-α)+cos(γ-β)=-1. 故cos(β-α)=cos(γ-β)=cos(γ-α)=-12,由于0<α<β<γ<2π,故β-α,γ-β,γ-α∈{23π,43π}.从而γ-α=43π.10.如图,四面体DABC 的体积为16,且满足∠ACB =45︒,AD +BC +AC2=3,则CD = ;填3.解:V =13×12AC ×BC sin45︒×h ≤16AC ×BC ×AD sin45︒.即AC ×BC ×AD sin45︒≥1⇒AC2×BC ×AD ≥1.而3=AD +BC +AC2≥33AD ·BC ·AD 2=3,等号当且仅当AD =BC =AC2=1时成立,故AC =2,且AD =BC =1,AD ⊥面ABC .⇒CD =3.11.若正方形ABCD 的一条边在直线y =2x -17上,另外两个顶点在抛物线y =x 2上,则该正方形面积的最小值为 ;填80.解:设正方形ABCD 的顶点A 、B 在抛物线上,C 、D 在直线上. 设直线AB 方程为y =2x +b , ⑴ 求AB 交抛物线y =x 2的弦长:以y =2x +b 代入y =x 2,得x 2-2x -b =0.△=4+4b ⇒l =25(b +1).⑵ 两直线的距离=|b +17|5.⑶ 由ABCD 为正方形得,25(b +1)=|b +17|5⇒100(b +1)=b 2+34b +289⇒b 2-66b +189=0.解得b =3,b =63.正方形边长=45或165⇒正方形面积最小值=80.12.如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .填52000.解:一位的吉祥数有7,共1个;二位的吉祥数有16,25,34,43,52,61,70,共7个;三位的吉祥数为x 1+x 2+x 3=7的满足x 1≥1的非负整数解数,有C 82=28个(也可枚举计数).一般的,k 位的吉祥数为x 1+x 2+…+x k =7的满足x 1≥1的非负整数解数,令x i '=x i +1(i =2,3,…,k ),有x 1+x 2'+…+x k '=7+k -1.共有解C k +5k -1=C k +56组.4位吉祥数中首位为1的有28个,2005是4位吉祥数中的第29个.故n =1+7+28+28+1=65.5n =325.C 66+C 76+C 86+C 96+C 106=1+7+28+84+210=330.即是5位吉祥数的倒数第6个: 5位吉祥数从大到小排列:70000,61000,60100,60010,60001,52000,….45°ADCB三、解答题:13.数列{a n }满足a 0=1,a n +1=7a n +45a n 2-362,n ∈N ,证明:⑴ 对任意n ∈N ,a n 为正整数;⑵ 对任意n ∈N ,a n a n +1-1为完全平方数. 证明:⑴ a 1=5,且a n 单调递增.所给式即 (2a n +1-7a n )2=45a n 2-36⇒a n +12 -7a n +1a n +a n 2+9=0. ①下标加1: a n +22 -7a n +2a n +1+a n +12+9=0. ②相减得: (a n +2-a n )(a n +2-7a n +1+a n )=0.由a n 单调增,故a n +2-7a n +1+a n =0⇒a n +2=7a n +1-a n . ③因a 0、a 1为正整数,且a 1>a 0,故a 2为正整数,由数学归纳法,可知,对任意n ∈N ,a n 为正整数. ⑵ 由①:a n +12 +2a n +1a n +a n 2=9(a n +1a n -1)⇒a n +1a n -1=(a n +a n +13)2 ④ 由于a n 为正整数,故a n +1a n -1为正整数,从而(a n +a n +13)2为正整数.但a n 、a n +1均为正整数,于是a n +a n +13必为有理数,而有理数的平方为整数时,该有理数必为整数,从而a n +a n +13是整数.即a n +1a n -1是整数的平方,即为完全平方数.故证.原解答上有一段似无必要:记f (n )=a n +1a n -(a n +a n +13)2,则f (n )-f (n -1)=(a n +1a n -a n a n -1)-19(2a n +a n +1+a n -1)(a n +1-a n -1)=19(a n -1-a n +1)(a n +1-7a n +a n -1)=0.即f (n )=f (n -1)=…=f (0)=1,故④式成立.故a n a n +1-1为完全平方数.又证:由上证,得③式后:a n +2-7a n +1+a n =0. 特征方程为 x 2-7x +1=0.解得: x =7±352=⎝ ⎛⎭⎪⎫3±522=⎝ ⎛⎭⎪⎫5±124. 令 a n =α⎝⎛⎭⎫5+124n +β⎝⎛⎭⎪⎫5-124n .由a 0=1,a 1=5解得α=5+125,β=5-125; 得 a n =15[⎝⎛⎭⎫5+124n +1+⎝⎛⎭⎪⎫5-124n +1] ⑤ 注意到5+12·5-12=1,5+12+5-12=5. 有, a n a n +1-1=15[⎝ ⎛⎭⎪⎫5-124n +1+⎝⎛⎭⎫5+124n +1]·[⎝⎛⎭⎫5+124n +5+⎝ ⎛⎭⎪⎫5-124n +5]-1 =15[⎝⎛⎭⎫5+128n +6+⎝ ⎛⎭⎪⎫5-128n +6+⎝⎛⎭⎫5+124+⎝⎛⎭⎫5+124-5] =15[⎝⎛⎭⎫5+124n +3+⎝ ⎛⎭⎪⎫5-124n +3]2 由二项式定理或数学归纳法知⎝⎛⎭⎫5+124n +3+⎝ ⎛⎭⎪⎫5-124n +3为k 5型数(k ∈N *),故a n a n +1-1为完全平方数. (用数学归纳法证明:n =0时,⎝⎛⎭⎫5+123+⎝⎛⎭⎪⎫5-123=25.设当n ≤m (m ∈N *)时,⎝⎛⎭⎫5+124n +3+⎝ ⎛⎭⎪⎫5-124n +3=k n 5(k n ∈N *),且k 1<k 2<…<k m .⎝⎛⎭⎫5+124(m +1)+3+⎝ ⎛⎭⎪⎫5-124(m +1)+3=[⎝⎛⎭⎫5+124m +3+⎝ ⎛⎭⎪⎫5-124m +3]·[⎝⎛⎭⎫5+124+⎝ ⎛⎭⎪⎫5-124]-[⎝⎛⎭⎫5+124m -1+⎝ ⎛⎭⎪⎫5-124m -1].=7k m 5-k m -15=(7k m -k m -1)5.由归纳假设知k m +1=7k m -k m -1∈N *,且k m <k m +1成立.得证.14.将编号为1,2,3,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各放一个小球,设圆周上所有相邻两个球号码之差的绝对值之和为S ,求使S 达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后与另一种放法重合,则认为是相同的放法)解:9个有编号的小球放在圆周的九个九等分点上,考虑镜面反射的因素,共有8!2种放法;为使S 取得最小值,从1到9之间应按增序排列:设从1到9之间放了k 个球,其上的数字为x 1,x 2,…,x k ,则|1-x 1|+|x 1-x 2|+…+|x k -9|≥|1-x 1+x 1-x 2+…+x k -9|=8.当且仅当1-x 1、x 1-x 2、…、x k -9全部同号时其和取得最小值,即1,x 1,x 2,…,x k ,9递增排列时其和最小.故S ≥2×8=16.当S 取得最小值时,把除1、9外的7个元素分成两个子集,各有k 及7-k 个元素,分放1到9的两段弧上,分法总数为C 70+C 71+…+C 76种,考虑镜面因素,共有64种方法.所求概率P =64×28!=1315.15.过抛物线y =x 2上一点A (1,1)作抛物线的切线,分别交x 轴于点D ,交y 轴于点B ,点C 在抛物线上,点E 在线段AC 上,满足AE EC =λ1;点F 在线段BC 上,满足BFFC =λ2,且λ1+λ2=1,线段CD 与EF 交于点P ,当点C 在抛物线上移动时,求点P 的轨迹方程.解:过点A 的切线方程为y =2x -1.交y 轴于点B (0,-1).AB 与x 轴交于点D (12,0).设点C 坐标为C (x 0,y 0),CDCP=λ,点P 坐标为(x ,y ).由AE EC =λ1⇒AC CE =1+λ1,同理,CBCF=1+λ2; 而CA CE 、CD CP 、CBCF 成等差数列(过A 、B 作CD 的平行线可证). 得2λ=1+λ1+1+λ2=3,即λ=32.从而点P 为△ABC 的重心.x =1+0+x 03,y =1+(-1)+y 03.y 0=x 02. 解得x 0=3x -1,y 0=3y ,代入y 0=x 02得,y =13(3x -1)2. 由于x 0≠1,故x ≠23.所求轨迹方程为y =13(3x -1)2(x ≠23).又解:过点A 的切线方程为y =2x -1.交y 轴于点B (0,-1).AB 与x 轴交于点D (12,0).设点C 坐标为C (t ,t 2),CD 方程为x -12t -12=y t 2,即y =t 22t -1(2x -1).点E 、F 坐标为E (1+λ1t 1+λ1,1+λ1t 21+λ1);F (λ2t 1+λ2,λ2t 2-11+λ2).从而得EF 的方程为:y -1+λ1t 21+λ1λ2t 2-11+λ2-1+λ1t 21+λ1=x -1+λ1t1+λ1λ2t 1+λ2-1+λ1t1+λ1.化简得:[(λ2-λ1)t -(1+λ2)]y =[(λ2-λ1)t 2-3]x +1+t -λ2t 2. ① 当t ≠12时,直线CD 方程为: y =2t 2x -t 22t -1②联立①、②解得⎩⎨⎧x =t +13,y =t 23.消去t ,得点P 的轨迹方程为y =13(3x -1)2. 当t =12时,EF 方程为:-32y =(14λ2-14λ1-3)x +32-14λ2,CD 方程为:x =12,联立解得点(12,112),此点在上述点P 的轨迹上,因C 与A 不能重合,故t ≠1,x ≠23.故所求轨迹为 y =13(3x -1)2 (x ≠23).加试卷一、如图,在△ABC 中,设AB >AC ,过点A 作△ABC 的外接圆的切线l ,又以点A 为圆心,AC 为半径作圆分别交线段AB 于点D ;交直线l 于点E 、F .证明:直线DE 、DF 分别通过△ABC 的内心与一个旁心.证明:连DC 、DE ,作∠BAC 的平分线交DE 于点I ,交CD 于G . 由AD =AC ,∠DAI =∠CAI ,AI =AI ⇒△ADI ≌△ACI . 故∠ADI =∠ACI ,但∠F AD =∠ACB (弦切角);∠F AD =2∠ADE (等腰三角形顶角的外角) 所以∠F AD =2∠ACI ⇒∠ACB =2∠ACI ,即CI 是∠ACB 的平分线.故点I 是△ABC 的内心. 连FD 并延长交AI 延长线于点I ',连CI '. 由于AD =AE =AF ⇒∠EDF =90︒⇒∠IDI '=90︒.而由△ADI ≌△ACI 知,∠AID =∠AIC ⇒∠DII '=∠CII ',又ID =IC ,II '为公共边.故△IDI '≌△ICI ',⇒∠ICI '=90︒.由于CI 是∠ACB 的平分线,故CI '是其外角的平分线,从而I '为△ABC 的一个旁心.又证:⑴ 连DE 、DC ,作∠BAC 的平分线分别交DE 于I ,DC 于G ,连IC ,则由AD =AC ,得AG ⊥DC ,ID =IC .又D 、C 、E 在⊙A 上,故∠IAC =12∠DAC =∠IEC .故A 、I 、C 、E 四点共圆.所以∠CIE =∠CAE =∠ABC ,而∠CIE =2∠ICD ,故∠ICD =12∠ABC .所以,∠AIC =∠IGC +∠ICG =90︒+12∠ABC ,所以∠ACI =12∠ACB .故I 为△ABC 的内心.⑵ 连FD 并延长交∠ABC 的外角平分线于I 1,连II 1,BI 1、BI ,则由⑴知,I 为△ABC 的内心,故∠IBI 1=90︒=∠EDI 1.故D 、B 、I 1、I 四点共圆.故∠BII 1=∠BDI 1=90︒-∠ADI =(12∠BAC +∠ADG )-∠ADI =12∠BAC +∠IDG ,故A 、I 、I 1共线.所以,I 1是△ABC 的BC 边外的旁心.二、设正数a 、b 、c 、x 、y 、z 满足cy +bz =a ,az +cx =b ,bx +ay =c .求函数f (x ,y ,z )=x 21+x +y 21+y +z 21+z 的最小值.解:解方程组:⎩⎪⎨⎪⎧cy +bz =a ,az +cx =b ,bx +ay =c .得,⎩⎪⎨⎪⎧x =b 2+c 2-a 22bc,y =c 2+a 2-b22ac,z =a 2+b 2-c 22ab.由于x 、y 、z 为正数,故⎩⎪⎨⎪⎧a 2+b 2>c 2,b 2+c 2>a 2,c 2+a 2=b 2.⇒⎩⎪⎨⎪⎧a +b >c ,b +c >a ,c +a =b .即以a 、b 、c 为边可以构成锐角三角形.记边a 、b 、c 的对角分别为∠A 、∠B 、∠C .则cos A =x ,cos B =y ,cos C =z .(A 、B 、C 为锐角)f (x ,y ,z )=f (cos A ,cos B ,cos C )=cos 2A 1+cos A +cos 2B 1+cos B +cos 2C1+cos C.令u =cot A ,v =cot B ,w =cot C ,则u ,v ,w ∈R +,且uv +vw +wu =1.于是,(u +v )(u +w )=u 2+uv +uw +vw =u 2+1.同理,v 2+1=(v +u )(v +w ),w 2+1=(w +u )(w +v ). cos 2A =sin 2A cot 2A =cot 2A 1+cot 2A =u 21+u 2,所以,cos 2A 1+cos A =u 21+u 21+u 1+u 2=u 21+u 2(1+u 2+u )=u 2(1+u 2-u )1+u 2=u 2-u 31+u 2=u 2-u 3(u +v )(u +w )≥u 2-u 32(1u +v +1u +w ).同理cos 2B 1+cos B ≥v 2-v 32(1v +u +1v +w ),cos 2C 1+cos C ≥w 2-w 32(1w +u +1w +v ).于是f ≥u 2+v 2+w 2-12(u 3+v 3u +v +v 3+w 3v +w +w 3+u 3w +u) =u 2+v 2+w 2-12(u 2-uv +v 2+v 2-vw +w 2+w 2-wu +u 2)=12(uv +vw +wu )=12(等号当且仅当u =v =w ,即a =b =c ,x =y =z =12时成立.) 故知[f (x ,y ,z )]min =12.又证:由约束条件可知⎩⎪⎨⎪⎧x =b 2+c 2-a 22bc ,y =a 2+c 2-b 22ac ,z =a 2+b 2-c 22ab.故⎩⎪⎨⎪⎧1+x =(a +b +c )(-a +b +c )2bc,1+y =(a +b +c )(a -b +c )2ac,1+z =(a +b +c )(a +b -c )2ab.得,f (x ,y ,z )=12(a +b +c )⎣⎢⎡⎦⎥⎤(b 2+c 2-a 2)2bc (b +c -a )+(c 2+a 2-b 2)2ac (c +a -b ) +(a 2+b 2-c 2)2ab (a +b -c ). ⑴ 显然有a +b -c >0,a -b +c >0,-a +b +c >0.由Cauchy 不等式有,⎣⎢⎡⎦⎥⎤(b 2+c 2-a 2)2bc (b +c -a )+(c 2+a 2-b 2)2ac (c +a -b ) +(a 2+b 2-c 2)2ab (a +b -c )·[bc (b +c -a )+ca (c +a -b )+ab (a +b -c )]≥(a 2+b 2+c 2)2. 故f (x ,y ,z )≥(a 2+b 2+c 2)22(a +b +c )(b 2c +bc 2+ac 2+a 2c +a 2b +ab 2-3abc )=12·a 4+b 4+c 4+2a 2b 2+2b 2c 2+2a 2c 2 2a 2b 2+2b 2c 2+2c 2a 2+b 3c +b 3c +a 3b +a 3c +c 3a +c 3b -abc (a +b +c ). 下面证明a 4+b 4+c 4+2a 2b 2+2b 2c 2+2a 2c 22a 2b 2+2b 2c 2+2c 2a 2+b 3c +b 3c +a 3b +a 3c +c 3a +c 3b -abc (a +b +c )≥1.即证a 4+b 4+c 4≥a 3b +a 3c +b 3c +b 3a +c 3a +c 3b -(a +b +c )abc . ⑵由于,a 4-a 3b -a 3c +a 2bc =a 2(a 2-ab -ac -bc )=a 2(a -b )(a -c ).故⑵式即a 2(a -b )(a -c )+b 2(b -a )(b -c )+c 2(c -a )(c -b )≥0.不妨设a ≥b ≥c .则a 2(a -b )(a -c )+b 2(b -a )(b -c )≥a 2(a -b )(b -c )-b 2(a -b )(b -c )=(a 2-b 2)(a -b )(b -c )≥0,又,c 2(c -a )(c -b )≥0于是a 2(a -b )(a -c )+b 2(b -a )(b -c )+ c 2(c -a )(c -b )≥0成立.等号当且仅当a =b =c 时成立. 所以,f (x ,y ,z )≥12,且f (12,12,12)=12.又证:令p =12(a +b +c ),⑴式即f (x ,y ,z )=18p ⎣⎢⎡⎦⎥⎤(b 2+c 2-a 2)2bc (p -a )+(c 2+a 2-b 2)2ac (p -b ) +(a 2+b 2-c 2)2ab (p -c )(由Cauchy 不等式)≥18p ·(a 2+b 2+c 2)2bc (p -a )+ca (p -b )+ab (p -c )=18p ·(a 2+b 2+c 2)2p (ab +bc +ca )-3abc .而a 2+b 2+c 2=2(p 2-4Rr -r 2),ab +bc +ca =p 2+4Rr +r 2,abc =4Rrp .(*) 故,f (x ,y ,z )≥12p ·(p 2-4Rr -r 2)2p (p 2+4Rr +r 2)-12pRr =12p 2·(p 2-4Rr -r 2)2p 2-8Rr +r 2.而(p 2-4Rr -r 2)2p 2-8Rr +r 2≥p 2⇔p 4+16R 2r 2+r 4-8p 2Rr -2p 2r 2+8Rr 3≥p 4-8p 2Rr +p 2r 2 ⇔16R 2+8Rr +r 2≥3p 2⇔4R +r ≥3p . (**) 最后一式成立.故得结论. 关于(*)式:由△=rp ,得r 2=△2p 2=p (p -a )(p -b )(p -c )p 2=(p -a )(p -b )(p -c )p=p 3-(a +b +c )p 2+(ab +bc +ca )p -abc p =-p 3+(ab +bc +ca )p -abc p; ①又由△=abc 4R ,得4Rr =abcp .故4Rr +r 2=-p 2+(ab +bc +ca ).就是 ab +bc +ca =p 2+4Rr +r 2;a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ca )=4p 2-2p 2-8Rr -2r 2=2(p 2-4Rr -r 2); abc =4R △=4Rrp .;.关于(**)式:由r =4R sin A 2sin B 2sin C2,故4R +r =4R +4R sin A 2sin B 2sin C2=4R +4R (cos A +cos B +cos C -1)=R (3+ cos A +cos B +cos C )=2R (cos 2A 2+cos 2B 2+cos 2C2).而p =R sin A +R sin B +R sin C =4R cos A 2cos B 2cos C2.故4R +r ≥3p ⇔cos 2A 2+cos 2B 2+cos 2C 2≥23cos A 2cos B 2cos C2.又cos 2A 2+cos 2B 2+cos 2C2≥33cos 2A 2cos 2B 2cos 2C2,而33cos 2A 2cos 2B 2cos 2C 2≥23cos A 2cos B 2cos C2⇔32≤3cos A 2cos B 2cos C 2⇔ cos A 2cos B 2cos C 2≥338⇔ sin A +sin B +sin C ≤3sin π3.(由琴生不等式可证)三、对每个正整数n ,定义函数f (n )=⎩⎪⎨⎪⎧0,当n 为完全平方数,[1{n }],当n 不为完全平方数.(其中[x ]表示不超过x 的最大整数,{x }=x -[x ]).试求k =1∑240f (k )的值.解:对于任意n (n 不是完全平方数),存在k ,满足k 2<n <(k +1)2,则1≤n -k 2≤2k .此时n =k +{n }.⎣⎡⎦⎤1{n }=⎣⎢⎡⎦⎥⎤1n -k =⎣⎢⎡⎦⎥⎤n +k n -k 2=⎣⎢⎡⎦⎥⎤2k +{n }n -k 2. 由于2k <2k +{n }<2k +1.故2k n -k 2<2k +{n }n -k 2<2k +1n -k 2.从而在2k n -k 2与2k +1n -k 2之间没有整数.即⎣⎢⎡⎦⎥⎤2k +{n }n -k 2=⎣⎡⎦⎤2k n -k 2.若记n -k 2=i (i =1,2,…,2k ),又240=152+15. 于是,k =1∑240f (k )=k =1∑14i =1∑2k⎣⎡⎦⎤2k i +i =1∑15⎣⎡⎦⎤2×15i .由于k <i ≤2k 时⎣⎡⎦⎤2k i =1故i =k +1∑2k⎣⎡⎦⎤2k i =k .于是 k =1∑240f (k )=k =1∑15i =1∑k⎣⎡⎦⎤2k i +k =1∑14k =(2+6+11+16+22+29+34+42+49+56+63+72+78+87+96)+105=768. 即所求值为768. 又解:为计算i =1∑2k⎣⎡⎦⎤2k i ,画一2k ×2k 的表格,在第i 行中,凡i 的倍数处填写*号,则这行的*号共有⎣⎡⎦⎤2ki 个,全表共有i =1∑2k⎣⎡⎦⎤2k i 个.另一方面,第j 列中的*号个数等于j 的约数的个数T (j ),从而全表中的*号个数等于j =1∑2kT (j ).故i =1∑2k⎣⎡⎦⎤2ki =j =1∑2kT (j ).以2k =6为例:;. 故a=1∑(n+1)2f(a)=k=1∑nj=1∑2k T(j)=n[T(1)+T(2)]+(n-1)[T(3)+T(4)]+…+[T(2n-1)+T(2n)].③由此,k=1∑162f(k)=k=1∑16(16-k)[T(2k-1)+T(2k)] ④记ak=1∑162f(k)=k=1∑16(16-k)a k=783.⑤又当k∈{241,242,…,255}时,设k=152+r(r=16,17,…30).则k-15=152+r-15=r152+r+15,从而r31<r152+r+15<r30,于是1≤30r<1{k}<31r<2.故,⎣⎡⎦⎤1{k}=1,k∈{241,242,…,255},又f(256)=0,所以k=1∑240f(k)=783-15=768.呜呼!不怕繁死人,就怕繁不成!。
中国数学奥林匹克(CMO)历届试题及解答(1986-2005)
0(i = 1, 2, . . . , n),则显然有a1 x1 + a2 x2 + · · · + an xn 0, ai −a1 > 0(i = 2, 3, . . . , n). ∴
√ sin ∠F AE FE AD 由正弦定理 sin AE 2 − AD2 = 5, ∠DAE = DE × AF .其中DE = √ √ F E = F D − DE = AF 2 − AD2 − DE = m2 − 122 − 5 > 0. ∴ m > 13, 且∠A为锐角等价于 ∠A为直角等价于 ∠A为钝角等价于 解得当13 < m < 当m = 当m >
∈ Z.
1 3 2n+1 (2n + 1)ϕ = (2l + 3 = 2t + 3 2 )π (l ∈ Z). ∴ (2n + 1)(2k + 6 ) = 2l + 2 , 6 2 , n = 6t + 4(t ∈ Z). 5(2n+1) 5 ) = 2l + 3 = 2t + 3 或(2n + 1)(2k + 6 2, 6 2 , 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z).
zk ∈A 2 , yk A,x2 k 4 2 1 √
1 4 ,即
2 x2 k + yk 2 x2 k + yk
√
2xk . yk |
zk ∈A zk ∈A
2005中国数学奥林匹克
2005中国数学奥林匹克第一天 一、设.4,3,2,1),2,2(=-∈i i ππθ证明:存在∈θR ,使得如下两个不等式 ,0)sin (cos cos 2212212≥-⋅-⋅x ms θθθθ ①0)sin (sin cos cos 2434232≥-⋅-⋅x θθθθ②同时成立的充分必要条件是).cos sin 1(2sin4141241i i i i i i θθθ∏∏∑===++≤ ③ 二、一圆与△ABC 的三边BC 、CA 、AB 的交点依次为D 1、D 2、E l 、E 2、F 1、F 2.线段D l E l 与D 2F 2交于点L ,线段E l F l 与E 2D 2交于点M ,线段F l D l 与F 2E 2交于点N .证明:AL 、BM 、CN 三线共点.三、如图所示,圆形的水池被分割为2 n(n≥5)个“格子”.我们把有公共隔墙(公共边或公 共弧)的“格子"称为相邻的,从而,每个“格子”都有三个邻格.水池中一共跳入了4 n+1只青蛙,青蛙难于安静共处.只要某个“格 子"中有不少于三只青蛙,那么,迟早一定会有其中三只分别同时跳往三个不同邻格.证明:只要经过一段时间之后,青蛙便会在水池中大致分布均匀.注:所谓大致分布均匀,就是任取其中一个“格子",或者它里面有青蛙,或者它的三个邻格里都有青蛙.第二天四、已知数列{a n }满足条件:.2,2332,1621111≥=-=+-n a a a n n n ① 设m 为正整数,m≥2.证明:当n ≤m 时,有⋅+--<-+-+11])32([)23(2)1(13n m m m a m m n m n n ②五、在面积为l 的矩形ABCD 中(包括边界)有五个点,其中任意三点不共线.求以这五个点为顶点的所有三角形中,面积不大于41的三角形的个数的最小值. 六、求方程17532=⋅⋅⋅w z y x 的所有非负整数解(x,y,z,w).。
2005年全国高中数学联赛试题及解答
2005 年高中数学联赛试卷 一、选择题 1. 使关于 x 的不等式 A . 6 − 3 B. 3 答案:D. 解:令 y = x − 3 + 6 − x ,3 x 6, 则 y 2 = ( x − 3) + ( 6 − x ) + 2
x − 3 + 6 − x k 有解的实数 k 的最大值是
共 13 页
1
答案:B. 解:将正方体切去两个正三棱锥 A − ABD与 C − DBC 后 , 得 到 一个 以平 行 平 面 ABD与DBC 为上、下底面的几何体 V,V 的每个侧面都是等腰直角三角形,截面 多边形 W 的每一条边分别与 V 的底面上的一条边平行, 将 V 的侧面沿棱 AB 剪开, 展平在一张平面上,得到一个平行四边形 ABB1 A1 ,而多边形 W 的周界展开后便成 为一条与 AA1 平行的线段(如图中 E E1 ) ,显然 E E1 = AA1 ,故 l 为定值. 当 E 位于 AB 中点时,多边形 W 为正六边形,而当 E 移至 A 处时,W 为正三 角形,易知周长为定值 l 的正六边形与正三角形面积分别为 定值.
∴ sin(
2005年全国高中数学联赛试卷及解答
2005年全国高中数学联赛试卷(2005年10月16日上午8∶00-9∶40)一、选择题:1.使关于x 的不等式x -3+6-x ≥k 有解的实数k 的最大值是 ( ) A .6- 3 B . 3 C .6+ 3 D . 62.空间四点A 、B 、C 、D 满足|→AB |=3,|→BC |=7,|→CD |=11,|→DA |=9.则→AC ·→BD 的取值( ) A .只有一个 B .有二个 C .有四个 D .有无穷多个3.△ABC 内接于单位圆,三个内角A 、B 、C 的平分线延长后分别交此圆于A 1、B 1、C 1,则AA 1·cos A 2+BB 1·cos B 2+CC 1·cosC2sin A +sin B +sin C的值为 ( )A .2B .4C .6D .84.如图,ABCD -A 'B 'C 'D '为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则 ( ) A .S 为定值,l 不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值 D .S 与l 均不为定值5.方程x 2sin 2-sin 3+y 2cos 2-cos 3=1表示的曲线是 ( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线6.记集合T ={0,1,2,3,4,5,6},M ={a 17+a 272+a 373+a 474| a i ∈T ,i =1,2,3,4},将M 中的元素按从大到小排列,则第2005个数是 ( )A .57+572+673+374B .57+572+673+274C .17+172+073+474D .17+172+073+374二、填空题:7.将关于x 的多项式f (x )=1-x +x 2-x 3+…-x 19 +x 20表为关于y 的多项式g (y )=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y =x -4,则a 0+a 1+…+a 20= ;8.已知f (x )是定义在(0,+∞)上的减函数,若f (2a 2+a +1)<f (3a 2-4a +1)成立,则a 的取值范围是 ;9.设α、β、γ满足0<α<β<γ<2π,若对于任意x ∈R ,cos(x +α)+cos(x +β)+cos(x +γ)=0,则γ-α= ;10.如图,四面体DABC 的体积为16,且满足∠ACB =45︒,AD +BC +AC2=3,则CD = ;11.若正方形ABCD 的一条边在直线y =2x -17上,另外两个顶点在抛物线y =x 2上,则该正方形面积的最小值为 ;12.如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .三、解答题:A'B'C'D'DCBA45°ADCB13.数列{a n }满足a 0=1,a n +1=7a n +45a n 2-362,n ∈N ,证明:⑴ 对任意n ∈N ,a n 为正整数;⑵ 对任意n ∈N ,a n a n +1-1为完全平方数.14.将编号为1,2,3,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各放一个小球,设圆周上所有相邻两个球号码之差的绝对值之和为S ,求使S 达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后与另一种放法重合,则认为是相同的放法)15.过抛物线y =x 2上一点A (1,1)作抛物线的切线,分别交x 轴于点D ,交y 轴于点B ,点C 在抛物线上,点E 在线段AC 上,满足AE EC =λ1;点F 在线段BC 上,满足BF FC=λ2,且λ1+λ2=1,线段CD 与EF 交于点P ,当点C 在抛物线上移动时,求点P 的轨迹方程.加试卷一、如图,在△ABC 中,设AB >AC ,过点A 作△ABC 的外接圆的切线l ,又以点A 为圆心,AC 为半径作圆分别交线段AB 于点D ;交直线l 于点E 、F .证明:直线DE 、DF 分别通过△ABC 的内心与一个旁心.二、设正数a 、b 、c 、x 、y 、z 满足cy +bz =a ,az +cx =b ,bx +ay =c .求函数f (x ,y ,z )=x 21+x +y 21+y +z 21+z的最小值.三、对每个正整数n ,定义函数f (n )=⎩⎪⎨⎪⎧0,当n 为完全平方数, [1{n }],当n 不为完全平方数.(其中[x ]表示不超过x 的最大整数,{x }=x -[x ]).试求k =1∑240f (k )的值.呜呼!不怕繁死人,就怕繁不成!2005年全国高中数学联赛试卷(2005年10月16日上午8∶00-9∶40)一、选择题:1.使关于x 的不等式x -3+6-x ≥k 有解的实数k 的最大值是 ( ) A .6- 3 B . 3 C .6+ 3 D . 6 选D .解:3≤x ≤6,令x -3=3sin α(0≤α≤π2),则x =3+3sin 2α,6-x =3cos α.故6≥3(sin α+cos α)≥3.故选D .2.空间四点A 、B 、C 、D 满足|→AB |=3,|→BC |=7,|→CD |=11,|→DA |=9.则→AC ·→BD 的取值( ) A .只有一个 B .有二个 C .有四个 D .有无穷多个 选A .解:→AB +→BC +→CD +→DA =→0.DA 2=→DA 2=(→AB +→BC +→CD )2=AB 2+BC 2+CD 2+2(→AB ·→BC +→AB ·→CD +→BC ·→CD )=AB 2+BC 2+CD 2+2(→AB ·→BD +→BC ·→BD -→BC 2),(其中→BC +→CD =→BD ,→CD =→BD -→BC ) =AB 2+BC 2+CD 2-2BC 2+2(→AC ·→BD ).故2→AC ·→BD =DA 2+BC 2-AB 2-CD 2=92+72-32-112=0⇒→AC ·→BD =0.选A .3.△ABC 内接于单位圆,三个内角A 、B 、C 的平分线延长后分别交此圆于A 1、B 1、C 1,则AA 1·cos A 2+BB 1·cos B 2+CC 1·cosC2sin A +sin B +sin C的值为 ( )A .2B .4C .6D .8 选A .解:AA 1·cos A 2=2sin(B +A 2)cos A2=sin(A +B )+sin B =sin C +sin B .AA 1·cos A 2+BB 1·cos B 2+CC 1·cos C2=2(sin A +sin B +sin C ).故原式=2.选A .4.如图,ABCD -A 'B 'C 'D '为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则 ( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值 选B .解:设截面在底面内的射影为EFBGHD ,设AB =1,AE =x (0≤x ≤12),则l =3[2x +2(1-x )]=32为定值;而S =[1-12x 2-12(1-x )2]sec θ=(12-x -x 2)sec θ(θ为平面α与底面的所成角)不为定值.故选B .ACBA1B 1C 1IE FGHA'B'C'D'D CB A5.方程x 2sin 2-sin 3+y 2cos 2-cos 3=1表示的曲线是 ( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线 选C .解:由于3+2>π⇒π2>3-π2>π2-2>0⇒cos(3-π2)<cos(π2-2)⇒sin 2-sin 3>0;又,0<2<3c <π⇒cos 2-cos 3>0,⇒曲线为椭圆. sin 2-sin 3-(cos 2-cos 3)=2[sin(2-π4)-sin(3-π4)].而0<2-π4<3-π4<π2⇒sin 2-sin 3<cos 2-cos 3⇒焦点在y 轴上.故选C .6.记集合T ={0,1,2,3,4,5,6},M ={a 17+a 272+a 373+a 474| a i ∈T ,i =1,2,3,4},将M 中的元素按从大到小排列,则第2005个数是 ( )A .57+572+673+374B .57+572+673+274C .17+172+073+474D .17+172+073+374选C .解:M ={174(a 1×73+a 2×72+a 3×7+a 4)| a i ∈T ,i =1,2,3,4},a 1×73+a 2×72+a 3×7+a 4可以看成是7进制数,(a 1a 2a 3a 4)7,其最大的数为(6666)7=74-1=2400.从而从大到小排列的第2005个数是2400-2004=396,即从1起从小到大排的第396个数,396=73+72+4⇒(1104)7,故原数为17+172+073+474.故选C .二、填空题:7.将关于x 的多项式f (x )=1-x +x 2-x 3+…-x 19 +x 20表为关于y 的多项式g (y )=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y =x -4,则a 0+a 1+…+a 20= ;填521+16解:f (x )=a 0+a 1(x -4)2+a 2(x -4)2+…+a 20(x -4)20.令x =5得f (5)=1-5+52-53+…-519+520=(-5)21-1(-5)-1=521+16=a 0+a 1+…+a 20.8.已知f (x )是定义在(0,+∞)上的减函数,若f (2a 2+a +1)<f (3a 2-4a +1)成立,则a 的取值范围是 ;填(0,13)∪(1,5).解:⎩⎨⎧2a 2+a +1>0,3a 2-4a +1>0.⇒a ∈(-∞,13)∪(1,+∞).2a 2+a +1>3a 2-4a +1⇒a 2-5a <0⇒0<a <5. 故所求取值范围为(0,13)∪(1,5).9.设α、β、γ满足0<α<β<γ<2π,若对于任意x ∈R ,cos(x +α)+cos(x +β)+cos(x +γ)=0,则γ-α= ;填43π. 解:由f (x )≡0,得f (-α)=f (-β)=f (-γ)=0:cos (β-α)+cos(γ-α)=cos(β-α)+cos(γ-β)=cos(γ-α)+cos(γ-β)=-1. 故cos(β-α)=cos(γ-β)=cos(γ-α)=-12,由于0<α<β<γ<2π,故β-α,γ-β,γ-α∈{23π,43π}.从而γ-α=43π.10.如图,四面体DABC 的体积为16,且满足∠ACB =45︒,AD +BC +AC2=3,则CD = ;填3.解:V =13×12AC ×BC sin45︒×h ≤16AC ×BC ×AD sin45︒.即AC ×BC ×AD sin45︒≥1⇒AC2×BC ×AD ≥1.而3=AD +BC +AC2≥33AD ·BC ·AD2=3,等号当且仅当AD =BC =AC2=1时成立,故AC =2,且AD =BC =1,AD ⊥面ABC .⇒CD =3.11.若正方形ABCD 的一条边在直线y =2x -17上,另外两个顶点在抛物线y =x 2上,则该正方形面积的最小值为 ;填80.解:设正方形ABCD 的顶点A 、B 在抛物线上,C 、D 在直线上. 设直线AB 方程为y =2x +b , ⑴ 求AB 交抛物线y =x 2的弦长:以y =2x +b 代入y =x 2,得x 2-2x -b =0.△=4+4b ⇒l =25(b +1).⑵ 两直线的距离=|b +17|5.⑶ 由ABCD 为正方形得,25(b +1)=|b +17|5⇒100(b +1)=b 2+34b +289⇒b 2-66b +189=0. 解得b =3,b =63.正方形边长=45或165⇒正方形面积最小值=80.12.如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a 5n = .填52000.解:一位的吉祥数有7,共1个;二位的吉祥数有16,25,34,43,52,61,70,共7个;三位的吉祥数为x 1+x 2+x 3=7的满足x 1≥1的非负整数解数,有C 82=28个(也可枚举计数).一般的,k 位的吉祥数为x 1+x 2+…+x k =7的满足x 1≥1的非负整数解数,令x i '=x i +1(i =2,3,…,k ),有x 1+x 2'+…+x k '=7+k -1.共有解C k +5k -1=C k +56组.45°ADCB4位吉祥数中首位为1的有28个,2005是4位吉祥数中的第29个.故n =1+7+28+28+1=65.5n =325.C 66+C 76+C 86+C 96+C 106=1+7+28+84+210=330.即是5位吉祥数的倒数第6个:5位吉祥数从大到小排列:70000,61000,60100,60010,60001,52000,…. 三、解答题:13.数列{a n }满足a 0=1,a n +1=7a n +45a n 2-362,n ∈N ,证明:⑴ 对任意n ∈N ,a n 为正整数;⑵ 对任意n ∈N ,a n a n +1-1为完全平方数. 证明:⑴ a 1=5,且a n 单调递增.所给式即 (2a n +1-7a n )2=45a n 2-36⇒a n +12 -7a n +1a n +a n 2+9=0. ①下标加1: a n +22 -7a n +2a n +1+a n +12+9=0. ②相减得: (a n +2-a n )(a n +2-7a n +1+a n )=0.由a n 单调增,故a n +2-7a n +1+a n =0⇒a n +2=7a n +1-a n . ③因a 0、a 1为正整数,且a 1>a 0,故a 2为正整数,由数学归纳法,可知,对任意n ∈N ,a n 为正整数.⑵ 由①:a n +12 +2a n +1a n +a n 2=9(a n +1a n -1)⇒a n +1a n -1=(a n +a n +13)2④由于a n 为正整数,故a n +1a n -1为正整数,从而(a n +a n +13)2为正整数.但a n 、a n +1均为正整数,于是a n +a n +13必为有理数,而有理数的平方为整数时,该有理数必为整数,从而a n +a n +13是整数.即a n +1a n -1是整数的平方,即为完全平方数.故证.原解答上有一段似无必要:记f (n )=a n +1a n -(a n +a n +13)2,则f (n )-f (n -1)=(a n +1a n -a n a n -1)-19(2a n +a n +1+a n -1)(a n +1-a n -1)=19(a n -1-a n +1)(a n +1-7a n +a n -1)=0.即f (n )=f (n -1)=…=f (0)=1,故④式成立.故a n a n +1-1为完全平方数.又证:由上证,得③式后:a n +2-7a n +1+a n =0.特征方程为 x 2-7x +1=0.解得: x =7±352=⎝ ⎛⎭⎪⎫3±522=⎝ ⎛⎭⎪⎫5±124.令 a n =α⎝ ⎛⎭⎪⎫5+124n +β⎝ ⎛⎭⎪⎫5-124n.由a 0=1,a 1=5解得 α=5+125,β=5-125; 得 a n =15[⎝ ⎛⎭⎪⎫5+124n +1+⎝ ⎛⎭⎪⎫5-124n +1] ⑤注意到5+12·5-12=1,5+12+5-12=5. 有, a n a n +1-1=15[⎝ ⎛⎭⎪⎫5-124n +1+⎝ ⎛⎭⎪⎫5+124n +1]·[⎝ ⎛⎭⎪⎫5+124n +5+⎝ ⎛⎭⎪⎫5-124n +5]-1=15[⎝ ⎛⎭⎪⎫5+128n +6+⎝ ⎛⎭⎪⎫5-128n +6+⎝ ⎛⎭⎪⎫5+124+⎝ ⎛⎭⎪⎫5+124-5]=15[⎝ ⎛⎭⎪⎫5+124n +3+⎝ ⎛⎭⎪⎫5-124n +3]2由二项式定理或数学归纳法知⎝⎛⎭⎪⎫5+124n +3+⎝ ⎛⎭⎪⎫5-124n +3为k 5型数(k ∈N *),故a n a n +1-1为完全平方数. (用数学归纳法证明:n =0时,⎝ ⎛⎭⎪⎫5+123+⎝ ⎛⎭⎪⎫5-123=25.设当n ≤m (m ∈N *)时,⎝ ⎛⎭⎪⎫5+124n +3+⎝ ⎛⎭⎪⎫5-124n +3=k n 5(k n ∈N *),且k 1<k 2<…<k m .⎝ ⎛⎭⎪⎫5+124(m +1)+3+⎝ ⎛⎭⎪⎫5-124(m +1)+3=[⎝ ⎛⎭⎪⎫5+124m +3+⎝ ⎛⎭⎪⎫5-124m +3]·[⎝ ⎛⎭⎪⎫5+124+⎝ ⎛⎭⎪⎫5-124]-[⎝ ⎛⎭⎪⎫5+124m -1+⎝⎛⎭⎪⎫5-124m -1]. =7k m 5-k m -15=(7k m -k m -1)5.由归纳假设知k m +1=7k m -k m -1∈N *,且k m <k m +1成立. 得证.14.将编号为1,2,3,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各放一个小球,设圆周上所有相邻两个球号码之差的绝对值之和为S ,求使S 达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后与另一种放法重合,则认为是相同的放法)解:9个有编号的小球放在圆周的九个九等分点上,考虑镜面反射的因素,共有8!2种放法;为使S 取得最小值,从1到9之间应按增序排列:设从1到9之间放了k 个球,其上的数字为x 1,x 2,…,x k ,则|1-x 1|+|x 1-x 2|+…+|x k -9|≥|1-x 1+x 1-x 2+…+x k -9|=8.当且仅当1-x 1、x 1-x 2、…、x k -9全部同号时其和取得最小值,即1,x 1,x 2,…,x k ,9递增排列时其和最小.故S ≥2×8=16.当S 取得最小值时,把除1、9外的7个元素分成两个子集,各有k 及7-k 个元素,分放1到9的两段弧上,分法总数为C 70+C 71+…+C 76种,考虑镜面因素,共有64种方法.所求概率P =64×28!=1315.15.过抛物线y =x 2上一点A (1,1)作抛物线的切线,分别交x 轴于点D ,交y 轴于点B ,点C 在抛物线上,点E 在线段AC 上,满足AEEC =λ1;点F 在线段BC 上,满足BF FC=λ2,且λ1+λ2=1,线段CD 与EF 交于点P ,当点C 在抛物线上移动时,求点P 的轨迹方程.解:过点A 的切线方程为y =2x -1.交y 轴于点B (0,-1).AB 与x 轴交于点D (12,0).设点C 坐标为C (x 0,y 0),CDCP=λ,点P 坐标为(x ,y ).由AE EC =λ1⇒AC CE =1+λ1,同理,CBCF=1+λ2; 而CA CE 、CD CP 、CBCF成等差数列(过A 、B 作CD 的平行线可证). 得2λ=1+λ1+1+λ2=3,即λ=32.从而点P 为△ABC 的重心.x =1+0+x 03,y =1+(-1)+y 03.y 0=x 02.解得x 0=3x -1,y 0=3y ,代入y 0=x 02得,y =13(3x -1)2. 由于x 0≠1,故x ≠23.所求轨迹方程为y =13(3x -1)2(x ≠23).又解:过点A 的切线方程为y =2x -1.交y 轴于点B (0,-1).AB 与x 轴交于点D (12,0).设点C 坐标为C (t ,t 2),CD 方程为x -12t -12=y t 2,即y =t 22t -1(2x -1).点E 、F 坐标为E (1+λ1t 1+λ1,1+λ1t 21+λ1);F (λ2t 1+λ2,λ2t 2-11+λ2).从而得EF 的方程为:y -1+λ1t 21+λ1λ2t 2-11+λ2-1+λ1t 21+λ1=x -1+λ1t1+λ1λ2t 1+λ2-1+λ1t1+λ1. 化简得:[(λ2-λ1)t -(1+λ2)]y =[(λ2-λ1)t 2-3]x +1+t -λ2t 2. ① 当t ≠12时,直线CD 方程为: y =2t 2x -t22t -1 ②联立①、②解得⎩⎨⎧x =t +13,y =t 23. 消去t ,得点P 的轨迹方程为y =13(3x -1)2.当t =12时,EF 方程为:-32y =(14λ2-14λ1-3)x +32-14λ2,CD 方程为:x =12,联立解得点(12,112),此点在上述点P 的轨迹上,因C 与A 不能重合,故t ≠1,x ≠23.故所求轨迹为 y =13(3x -1)2(x ≠23).加试卷一、如图,在△ABC 中,设AB >AC ,过点A 作△ABC 的外接圆的切线l ,又以点A 为圆心,AC 为半径作圆分别交线段AB 于点D ;交直线l 于点E 、F .证明:直线DE 、DF 分别通过△ABC 的内心与一个旁心.证明:连DC 、DE ,作∠BAC 的平分线交DE 于点I ,交CD 于G . 由AD =AC ,∠DAI =∠CAI ,AI =AI ⇒△ADI ≌△ACI . 故∠ADI =∠ACI ,但∠FAD =∠ACB (弦切角);∠FAD =2∠ADE (等腰三角形顶角的外角)所以∠FAD =2∠ACI ⇒∠ACB =2∠ACI ,即CI 是∠ACB 的平分线.故点I 是△ABC 的内心. 连FD 并延长交AI 延长线于点I ',连CI '.由于AD =AE =AF ⇒∠EDF =90︒⇒∠IDI '=90︒.而由△ADI ≌△ACI 知,∠AID =∠AIC ⇒∠DII '=∠CII ',又ID =IC ,II '为公共边.故△IDI '≌△ICI ',⇒∠ICI '=90︒.由于CI 是∠ACB 的平分线,故CI '是其外角的平分线,从而I '为△ABC 的一个旁心.又证:⑴ 连DE 、DC ,作∠BAC 的平分线分别交DE 于I ,DC 于G ,连IC ,则由AD =AC ,得AG ⊥DC ,ID =IC .又D 、C 、E 在⊙A 上,故∠IAC =12∠DAC =∠IEC .故A 、I 、C 、E 四点共圆.所以∠CIE =∠CAE =∠ABC ,而∠CIE =2∠ICD ,故∠ICD =12∠ABC .所以,∠AIC =∠IGC +∠ICG =90︒+12∠ABC ,所以∠ACI =12∠ACB .故I 为△ABC 的内心.⑵ 连FD 并延长交∠ABC 的外角平分线于I 1,连II 1,BI 1、BI ,则由⑴知,I 为△ABC 的内心,故∠IBI 1=90︒=∠EDI 1.故D 、B 、I 1、I 四点共圆.故∠BII 1=∠BDI 1=90︒-∠ADI =(12∠BAC +∠ADG )-∠ADI =12∠BAC +∠IDG ,故A 、I 、I 1共线.所以,I 1是△ABC 的BC 边外的旁心.二、设正数a 、b 、c 、x 、y 、z 满足cy +bz =a ,az +cx =b ,bx +ay =c .求函数f (x ,y ,z )=x 21+x +y 21+y +z 21+z的最小值.解:解方程组:⎩⎪⎨⎪⎧cy +bz =a ,az +cx =b ,bx +ay =c .得,⎩⎪⎨⎪⎧x =b 2+c 2-a 22bc ,y =c 2+a 2-b22ac,z =a 2+b 2-c 22ab.由于x 、y 、z 为正数,故⎩⎪⎨⎪⎧a 2+b 2>c 2,b 2+c 2>a 2,c 2+a 2=b 2.⇒⎩⎪⎨⎪⎧a +b >c ,b +c >a ,c +a =b .即以a 、b 、c 为边可以构成锐角三角形.记边a 、b 、c 的对角分别为∠A 、∠B 、∠C .则cos A =x ,cos B =y ,cos C =z .(A 、B 、C 为锐角)f (x ,y ,z )=f (cos A ,cos B ,cos C )=cos 2A 1+cos A +cos 2B 1+cos B +cos 2C1+cos C.令u =cot A ,v =cot B ,w =cot C ,则u ,v ,w ∈R +,且uv +vw +wu =1.于是,(u +v )(u +w )=u 2+uv +uw +vw =u 2+1.同理,v 2+1=(v +u )(v +w ),w 2+1=(w +u )(w +v ).cos 2A =sin 2A cot 2A =cot 2A 1+cot 2A =u 21+u 2,所以,cos 2A 1+cos A =u 21+u 21+u 1+u 2=u 21+u 2(1+u 2+u )=u 2(1+u 2-u )1+u 2=u 2-u 31+u 2=u 2-u 3(u +v )(u +w )≥u 2-u 32(1u +v +1u +w ). 同理cos 2B 1+cos B ≥v 2-v 32(1v +u +1v +w ),cos 2C 1+cos C ≥w 2-w 32(1w +u +1w +v).于是f ≥u 2+v 2+w 2-12(u 3+v 3u +v +v 3+w 3v +w +w 3+u 3w +u)=u 2+v 2+w 2-12(u 2-uv +v 2+v 2-vw +w 2+w 2-wu +u 2)=12(uv +vw +wu )=12(等号当且仅当u =v =w ,即a =b =c ,x =y =z =12时成立.)故知[f (x ,y ,z )]min =12.又证:由约束条件可知⎩⎪⎨⎪⎧x =b 2+c 2-a 22bc ,y =a 2+c 2-b 22ac ,z =a 2+b 2-c 22ab.故⎩⎪⎨⎪⎧1+x =(a +b +c )(-a +b +c )2bc,1+y =(a +b +c )(a -b +c )2ac,1+z =(a +b +c )(a +b -c )2ab.得,f (x ,y ,z )=12(a +b +c )⎣⎢⎡⎦⎥⎤(b 2+c 2-a 2)2bc (b +c -a )+(c 2+a 2-b 2)2ac (c +a -b ) +(a 2+b 2-c 2)2ab (a +b -c ). ⑴ 显然有a +b -c >0,a -b +c >0,-a +b +c >0.由Cauchy 不等式有,⎣⎢⎡⎦⎥⎤(b 2+c 2-a 2)2bc (b +c -a )+(c 2+a 2-b 2)2ac (c +a -b ) +(a 2+b 2-c 2)2ab (a +b -c )·[bc (b +c -a )+ca (c +a -b )+ab (a +b -c )]≥(a 2+b 2+c 2)2.故f (x ,y ,z )≥(a 2+b 2+c 2)22(a +b +c )(b 2c +bc 2+ac 2+a 2c +a 2b +ab 2-3abc )=12·a 4+b 4+c 4+2a 2b 2+2b 2c 2+2a 2c 22a 2b 2+2b 2c 2+2c 2a 2+b 3c +b 3c +a 3b +a 3c +c 3a +c 3b -abc (a +b +c ). 下面证明a 4+b 4+c 4+2a 2b 2+2b 2c 2+2a 2c 22a 2b 2+2b 2c 2+2c 2a 2+b 3c +b 3c +a 3b +a 3c +c 3a +c 3b -abc (a +b +c )≥1.即证a 4+b 4+c 4≥a 3b +a 3c +b 3c +b 3a +c 3a +c 3b -(a +b +c )abc . ⑵ 由于,a 4-a 3b -a 3c +a 2bc =a 2(a 2-ab -ac -bc )=a 2(a -b )(a -c ).故⑵式即a 2(a -b )(a -c )+b 2(b -a )(b -c )+c 2(c -a )(c -b )≥0.不妨设a ≥b ≥c .则a 2(a -b )(a -c )+b 2(b -a )(b -c )≥a 2(a -b )(b -c )-b 2(a -b )(b -c )=(a 2-b 2)(a -b )(b -c )≥0, 又,c 2(c -a )(c -b )≥0于是a 2(a -b )(a -c )+b 2(b -a )(b -c )+ c 2(c -a )(c -b )≥0成立.等号当且仅当a =b =c 时成立.所以,f (x ,y ,z )≥12,且f (12,12,12)=12.又证:令p =12(a +b +c ),⑴式即f (x ,y ,z )=18p ⎣⎢⎡⎦⎥⎤(b 2+c 2-a 2)2bc (p -a )+(c 2+a 2-b 2)2ac (p -b ) +(a 2+b 2-c 2)2ab (p -c )(由Cauchy 不等式)≥18p ·(a 2+b 2+c 2)2bc (p -a )+ca (p -b )+ab (p -c )=18p ·(a 2+b 2+c 2)2p (ab +bc +ca )-3abc .而a 2+b 2+c 2=2(p 2-4Rr -r 2),ab +bc +ca =p 2+4Rr +r 2,abc =4Rrp .(*) 故,f (x ,y ,z )≥12p ·(p 2-4Rr -r 2)2p (p 2+4Rr +r 2)-12pRr =12p 2·(p 2-4Rr -r 2)2p 2-8Rr +r 2. 而(p 2-4Rr -r 2)2p 2-8Rr +r 2≥p 2⇔p 4+16R 2r 2+r 4-8p 2Rr -2p 2r 2+8Rr 3≥p 4-8p 2Rr +p 2r 2⇔16R 2+8Rr +r 2≥3p 2⇔4R +r ≥3p . (**)最后一式成立.故得结论.关于(*)式:由△=rp ,得 r 2=△2p 2=p (p -a )(p -b )(p -c )p 2=(p -a )(p -b )(p -c )p=p 3-(a +b +c )p 2+(ab +bc +ca )p -abc p =-p 3+(ab +bc +ca )p -abcp; ①又由△=abc 4R ,得4Rr =abc p.故4Rr +r 2=-p 2+(ab +bc +ca ).就是 ab +bc +ca =p 2+4Rr +r 2;a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ca )=4p 2-2p 2-8Rr -2r 2=2(p 2-4Rr -r 2); abc =4R △=4Rrp . 关于(**)式:由r =4R sin A 2sin B 2sin C2,故4R +r =4R +4R sin A 2sin B 2sin C2=4R +4R (cos A +cos B +cos C -1)=R (3+ cos A +cos B +cos C )=2R (cos 2A2+cos 2B2+cos 2C2).而p =R sin A +R sin B +R sin C =4R cos A 2cos B 2cos C2.故4R +r ≥3p ⇔cos 2A2+cos 2B2+cos 2C 2≥23cos A 2cos B 2cos C2.又cos 2A2+cos 2B2+cos 2C2≥33cos 2A2cos 2B2cos 2C2,而33cos 2A2cos 2B2cos 2C 2≥23cos A 2cos B 2cos C2⇔32≤3cos A 2cos B 2cos C 2⇔ cos A 2cos B 2cos C 2≥338⇔ sin A +sin B +sin C ≤3sin π3.(由琴生不等式可证)三、对每个正整数n ,定义函数f (n )=⎩⎪⎨⎪⎧0,当n 为完全平方数, [1{n }],当n 不为完全平方数.(其中[x ]表示不超过x 的最大整数,{x }=x -[x ]).试求k =1∑240f (k )的值.解:对于任意n (n 不是完全平方数),存在k ,满足k 2<n <(k +1)2,则1≤n -k 2≤2k .此时n =k +{n }.⎣⎢⎡⎦⎥⎤1{n }=⎣⎢⎡⎦⎥⎤1n -k =⎣⎢⎡⎦⎥⎤n +k n -k 2=⎣⎢⎡⎦⎥⎤2k +{n }n -k 2. 由于2k <2k +{n }<2k +1.故2k n -k 2<2k +{n }n -k 2<2k +1n -k 2.从而在2k n -k 2与2k +1n -k 2之间没有整数.即⎣⎢⎡⎦⎥⎤2k +{n }n -k 2=⎣⎢⎡⎦⎥⎤2k n -k 2.若记n -k 2=i (i =1,2,…,2k ),又240=152+15. 于是,k =1∑240f (k )=k =1∑14i =1∑2k⎣⎢⎡⎦⎥⎤2k i +i =1∑15⎣⎢⎡⎦⎥⎤2×15i .由于k <i ≤2k 时⎣⎢⎡⎦⎥⎤2k i =1故i =k +1∑2k⎣⎢⎡⎦⎥⎤2k i =k .于是 k =1∑240f (k )=k =1∑15i =1∑k⎣⎢⎡⎦⎥⎤2k i +k =1∑14k =(2+6+11+16+22+29+34+42+49+56+63+72+78+87+96)+105=768.即所求值为768. 又解:为计算i =1∑2k⎣⎢⎡⎦⎥⎤2k i ,画一2k ×2k 的表格,在第i 行中,凡i 的倍数处填写*号,则这行的*号共有⎣⎢⎡⎦⎥⎤2k i个,全表共有i =1∑2k⎣⎢⎡⎦⎥⎤2k i 个.另一方面,第j 列中的*号个数等于j 的约数的个数T (j ),从而全表中的*号个数等于j =1∑2kT (j ).故i =1∑2k⎣⎢⎡⎦⎥⎤2k i =j =1∑2kT (j ).以2k =6为例:故a =1∑(n+1)2f (a )=k =1∑n j =1∑2kT (j )=n [T (1)+T (2)]+(n -1)[T (3)+T (4)]+…+[T (2n -1)+T (2n )]. ③由此,k =1∑162f (k )=k =1∑16(16-k )[T (2k -1)+T (2k )] ④记a n =T (2k -1)+T (2k ).可得a k 的取值如下表(k =1,2,…15):k =1∑162f (k )=k =1∑16(16-k )a k=783. ⑤又当k ∈{241,242,…,255}时,设k =152+r (r =16,17,…30).则k -15=152+r -15=r152+r +15,从而r 31<r 152+r +15<r 30,于是1≤30r <1{k }<31r <2. 故,⎣⎢⎡⎦⎥⎤1{k }=1,k ∈{241,242,…,255},又f (256)=0, 所以k =1∑240f (k )=783-15=768.呜呼!不怕繁死人,就怕繁不成!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005全国数学奥林匹克决赛试题
3、有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是多少?
4、设M、N都是自然数,记PM是自然数M的各位数字之和,PN是自然数N的各位数字之和。
又记M*N是M除以N的余数。
已知M+N=4084,那么(PM+PN)*9的值是多少?
5、如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成左右两部份,左边部份面积是38,右边部份面积是65,那么三角形ADG的面积是?
6、某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是?
7、已知甲酒精纯酒精含量为72%,乙酒精纯酒精含量为58%,两种酒精混合后纯酒精含量为62%。
如果每种酒精取的数量都比原来多15升,混合后纯酒精含量为63.25%,那么第一次混合时,甲酒精取了多少升?
8、在下面算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字。
那么“新年好”所代表的三位数是多少?
9、有两家商场,当第一家商场的利润减少15%,而第二家商场利润增加18%时,这两家商场的利润相同。
那么,原来第一家商场的利润是第二家商场利润的多少倍?
10、从1~9这9个数字中取出三个,由这三个数字可以组成六个不同的三位数。
如果六个三位数的和是3330,那么这六个三位数中最大的是多少?
11、有A、B、C、D、E五支球队参加足球循环赛,每两个队之间都要赛一场。
当比赛快要结束时,统计到的成绩如下:
队名获胜场数平局场数失败场数进球个数失球个数
A 2 1 0 4 1
B 1 2 0 4 2
C 1 1 1 2 3
D 1 0 3 5 5
E 0 2 1 1 5
已知A与E以及B与C都赛成平局,并且比分都是1:1,那么B与D两队之间的比分是多少?
12、一辆客车和一辆面包车分别从甲、乙两地同时出发相向而行。
客车每小时行驶32千米,面包车每小时行驶40千米,两车分别到达乙地和甲地后,立即返回出发地点,返回时的速度,客车第小时增加8千米,面包车每小时减少5千米。
已知两次相遇处相距70千米,那么面包车比客车早返回出发地多少小时?
参考答案。