2011-2017年高考全国卷1理科数学客观题汇编
2011年—2017年新课标全国1卷理科数学题型分类汇编(含答案)
2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)说明:2017 年高考中,安徽、湖北、福建、湖南、山西、河北、江西、广东、河南等9 个省份选择使用新课标全国Ⅰ卷.2017 年,除了保留北京、天津、上海、江苏、浙江实行自主命题外(山东省语文、数学卷最后一年使用),大陆其他省区全部使用全国卷.研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.正所谓知己知彼,才能百战不殆,为了方便老师和同学们备考2018 年高考,本人认真研究近7 年新课标高考全国Ⅰ卷理科数学和高考数学考试说明,将2011 年—2017 年新课标全国Ⅰ卷进行了分类整理.2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编1.集合与常用逻辑用语 (2)2.函数与导数 (3)3.三角函数、解三角形 (7)4.平面向量 (10)5.数列 (11)6.不等式、推理与证明 (13)7.立体几何 (14)8.解析几何 (18)9.统计、概率分布列、计数原理 (23)10.复数及其运算 (30)11.程序框图 (31)12.坐标系与参数方程 (33)13.不等式选讲 (36)1.集合与常用逻辑用语一、选择题【2017,1】已知集合A ={x x <1},B ={x 3x <1},则()A.A B = {x | x <0}B.A B =R C.A B = {x | x >1}D.A B=∅【2016,1】设集合A = {x x2 - 4x + 3 <0},B = {x 2x - 3 > 0} ,则A B =()A.(-3,-3)2B.(-3,3)2C.(1,3)2D.(3,3)2【2015,3】设命题p :∃n∈N,n2 > 2n ,则⌝p 为()A.∀n ∈N ,n2 >2n B.∃n∈N,n2 ≤2n C.∀n ∈N ,n2 ≤2n D.∃n∈N ,n2 =2n【2014,1】已知集合A={ x | x2 - 2x - 3 ≥ 0 },B= {x -2 ≤x < 2},则A ⋂B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-x<,则( )A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )| x∈A,y ∈A ,x -y ∈A },则B 中包含元素的个数为()A.3 B.6 C.8 D.102.函数与导数一、选择题【2017,5】函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1 ,则满足-1 ≤f (x - 2) ≤1的x 的取值范围是()A.[-2, 2]B.[-1,1]C.[0, 4] D.[1, 3]【2017,11】设x, y, z 为正数,且2x = 3y = 5z ,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【2016,7】函数y =2x2 -e x 在[-2,2] 的图像大致为()A.B.C.D.【2016,8】若a >b >1,0 <c <1,则()A.a c <b c B.ab c <ba c C.a logb c <b logac D.logac <logbc【2015,12】设函数f (x) = e x (2x -1) -ax +a ,其中a <1,若存在唯一的整数x ,使得f (x ) < 0 ,00则a 的取值范围是()A.⎡-3,1⎫B.⎡-3,3 ⎫C.⎡3,3 ⎫D.⎡3,1⎫ ⎣⎢2e⎪ ⎢2e 4 ⎪ ⎢2e 4 ⎪ ⎢2e ⎪⎭⎣ ⎭ ⎣⎭⎣ ⎭【2014,3】设函数f (x) ,g(x) 的定义域都为R,且f (x) 是奇函数,g(x) 是偶函数,则下列结论正确的是()A .f (x) g(x) 是偶函数B .| f (x) | g(x) 是奇函数C .f (x) | g(x) |是奇函数D .| f (x) g(x) |是奇函数【2014,11】已知函数f (x) = ax3 - 3x2 +1 ,若f (x) 存在唯一的零点x ,且x >0,则a 的取值范围为0 0A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)⎧-x2 + 2x,x ≤ 0,【2013,11】已知函数f(x)=⎨⎩ln( x+1),x > 0.若|f(x)|≥ax,则a 的取值范围是( ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,10】已知函数f ( x) =1,则y =f (x) 的图像大致为()A.B.D.【2012,12】设点P 在曲线y =1e x 上,点Q 在曲线y = ln(2x) 上,则| PQ |的最小值为()2A.1- ln 2B- ln 2)C.1+ ln 2D+ ln 2)【2011,12】函数y =1x -1的图像与函数y =2s in πx(-2 ≤x ≤ 4) 的图像所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【2011,2】下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y =x3B.y = x +1C.y =-x2 +1D.y = 2-x【2011,9】由曲线y =,直线y =x - 2 及y 轴所围成的图形的面积为()A.103二、填空题B.4 C.163D.6【2017,16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D、E、F 为圆O 上的点,△DBC,△ECA,△F AB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△F AB,使得D,E,F 重合,得到三棱锥.当△ABC.的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【2015,13】若函数f(x)=x ln(x a=【2013,16】若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2 对称,则f(x)的最大值为.三、解答题【2017,12】已知函数f (x)=ae2 x +(a -2)e x -x .(1)讨论f ( x) 的单调性;(2)若f ( x) 有两个零点,求a 的取值范围.【2016,12】已知函数f (x) = (x -2)e x +a(x -1)2 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x1 , x2 是f (x) 的两个零点,证明:x1 +x2 < 2 .【2015,12】已知函数f ( x) =x3 +ax +1,g(x) =-l n x .4(Ⅰ)当a 为何值时,x 轴为曲线y =f (x) 的切线;(Ⅱ)用min{m, n} 表示m, n 中的最小值,设函数h(x) = min{ f (x), g(x)} (x > 0 ),讨论h(x) 零点的个数.【2014,21】设函数f ( x0 =ae x ln x +be x-1,曲线y =f (x) 在点(1,f (1) 处的切线为y =e(x -1) + 2 .(Ⅰ) x求a,b;(Ⅱ)证明:f (x) >1.【2013,21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(1)求a,b,c,d 的值;(2)若x≥-2 时,f(x)≤kg(x),求k 的取值范围.【2012,21】已知函数f (x) 满足f (x) =f '(1)e x-1 -f (0)x+1x2 .2(1)求f (x) 的解析式及单调区间;(2)若f (x) ≥1x2 +ax +b ,求(a +1)b 的最大值.2【2011,21】已知函数f (x) =a ln x+b,曲线y =f (x) 在点(1, f (1)) 处的切线方程为x +2y- 3 = 0 .x +1x(Ⅰ)求a 、b 的值;(Ⅱ)如果当x > 0 ,且x ≠1时,f (x) > ln x+k,求k 的取值范围.x -1 x3.三角函数、解三角形一、选择题2π 【2017,9】已知曲线 C 1:y =cos x ,C 2:y =sin (2x +3),则下面结正确的是( )πA .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6得到曲线C 2 个单位长度,πB .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 12得到曲线C 2个单位长度,1 C .把 C 1 上各点的横坐标缩短到原来的 2得到曲线C 2π 倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,1D .把 C 1 上各点的横坐标缩短到原来的 2π倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C 2【2016,12】已知函数 f ( x ) = sin(ωx + ϕ )(ω > 0, ϕ≤ π , x = - π为 f ( x ) 的零点, x = π 为244y = f (x ) 图像的对称轴,且 f ( x ) 在 ( π 18 , 5π单调,则ω 的最大值为()36A .11B .9C .7D .5【2015,8】函数 f ( x ) = cos(ω x + ϕ) 的部分图象如图所示,则 f ( x ) 的单调递减区间为()A . (k π - 1 , k π + 3), k ∈ ZB . (2k π - 1 , 2k π + 3), k ∈ Z4 4 4 4 C . (k - 1 , k + 3k ∈ ZD . (2k - 1 , 2k + 3), k ∈ Z4 4【2015,2】 sin 20 cos10- cos160 sin10 4 4= ( )A .BC . - 12D . 12【2014,6】如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线OA ,终边为射线 OP ,过点 P 作直线OA 的垂线,垂足为 M ,将点 M 到直线OP 的距离表示为 x 的函数 f ( x ) ,则y= f ( x ) 在[0, π ]上的图像大致为()【2014,8】设α ∈ (0, π ) , β ∈ (0, π) ,且 tan α =1 + sin β,则()2A . 3α - β = π2 2B . 2α - β = π2cos βC . 3α + β = π 2D . 2α + β = π2【2012,9】已知ω > 0 ,函数 f ( x ) = sin(ω x + π ) 在( π,π )上单调递减,则ω 的取值范围是()4 2A .[ 1 , 5 ]B .[ 1 , 3 ]C .(0, 1 ]D .(0,2]2 4 2 4 2【2011,5】已知角θ 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y = 2x 上,则 cos 2θ =A . - 45B . - 35C . 35D . 45【2011,11】设函数 f ( x ) = sin(ω x + ϕ ) + cos(ω x + ϕ)(ω > 0, ϕ且 f (-x ) = f (x ) ,则( )< π 的最小正周期为π , 2A . f ( x ) 在 ⎛ 0, π ⎫单调递减 B . f ( x ) 在 ⎛ π ,3π ⎫单调递减2 ⎪ 4 4 ⎪⎝ ⎭⎝ ⎭C . f ( x ) 在 ⎛ 0, π ⎫单调递增 D . f ( x ) 在 ⎛ π ,3π ⎫单调递增2 ⎪ 4 4 ⎝ ⎭⎝ ⎭二、填空题【2015,16】在平面四边形 ABCD 中,∠A = ∠B = ∠C = 75 ,BC = 2 ,则 AB 的取值范围是.【2014,16】已知 a , b , c 分别为 ∆ABC 的三个内角 A , B , C 的对边, a =2,且 (2 + b )(sin A - sin B ) = (c - b ) sin C ,则 ∆ABC 面积的最大值为.【2013,15】设当 x =θ 时,函数 f (x )=sin x -2cos x 取得最大值,则 cos θ=.【2011,16】在 ABC 中, B = 60 , AC =AB + 2BC 的最大值为 .三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为 a ,b ,c ,已知△ABC 的面积为 a 23sin A(1)求 sin B sin C ;(2)若 6cos B cos C =1,a =3,求△ABC 的周长【2016,17】∆ABC 的内角A, B,C的对边分别为a,b, c ,已知2c os C(a cos B +b cos A) =c .(Ⅰ)求C ;(Ⅱ)若c = 7 ,∆ABC 的面积为3 3,求∆ABC 的周长.2【2013,17】如图,在△ABC 中,∠ABC=90°,AB=BC=1,P 为△ABC 内一点,∠BPC=90°.(1)若PB=1,求P A;(2)若∠APB=150°,求tan∠PBA.2【2012,17】已知a ,b ,c 分别为△ABC 三个内角A,B,C 的对边,a cos C +s in C -b -c = 0 .(1)求A;(2)若a = 2 ,△ABC 的面积为 b ,c .⎭⎝ ⎦4.平面向量一、选择题【2015,7】设 D 为 ∆ABC 所在平面内一点 BC = 3CD ,则()A . AD = - 1 AB + 4AC3 3 C . AD =4 AB + 1AC3 3B . AD = 1 AB - 4AC3 3 D . AD =4 AB - 1AC3 3【2011,10】已知 a 与 b 均为单位向量,其夹角为θ ,有下列四个命题P : a + b > 1 ⇔ θ ∈ ⎡0, 2π ⎫P : a + b > 1 ⇔ θ ∈ ⎛ 2π ,π ⎤1 ⎢⎣ 3 ⎪⎭ 2 3⎥ ⎝ ⎦⎡ π ⎫⎛ π ⎤P 3 : a - b > 1 ⇔ θ ∈ ⎢⎣0, 3 ⎪P 4 : a - b > 1 ⇔ θ ∈ 3 ,π ⎥其中的真命题是()A . P 1 , P 4B . P 1 , P 3C . P 2 , P 3D . P 2 , P 4二、填空题【2017,13】已知向量 a ,b 的夹角为 60°,|a |=2, | b |=1,则| a +2 b |=.【2016,13】设向量 a = (m ,1) ,b = (1,2) ,且| a + b |2= | a |2+ | b |2,则 m =.【2014,15】已知 A ,B ,C 是圆 O 上的三点,若 AO = 1( A B + AC ) ,则 AB 与 AC 的夹角为 . 2【2013,13】已知两个单位向量 a ,b 的夹角为 60°,c =t a +(1-t )b .若 b ·c =0,则 t =.【2012,13】已知向量 a , b 夹角为 45°,且| a |= 1,| 2a - b |= 10 ,则| b |=.n 2 15.数列一、选择题【2017,4】记S n 为等差数列{a n } 的前 n 项和.若 a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为( )A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们 推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2, 1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2016,3】已知等差数列{a n } 前 9 项的和为 27 , a 10 = 8 ,则 a 100 = ( )A .100B . 99C .98D .97 【2013,7】设等差数列{a n }的前 n 项和为 S n ,若 S m -1=-2,S m =0,S m +1=3,则 m =( ).A .3B .4C .5D .6 【2013,12】设△A n B n C n 的三边长分别为 a n ,b n ,c n ,△A n B n C n 的面积为 S n ,n =1,2,3,….c + a b + a 若 b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1= nn,c n +1=2nn,则( ).2A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列2 1【2013,14】若数列{a n }的前 n 项和 S n =a n 3+ ,则{a n }的通项公式是 a n = .3 【2012,5】已知{ a n }为等比数列, a4 + a 7 = 2 , a 5a 6 = -8 ,则 a 1 + a 10 = ()A .7B .5C .-5D .-7二、填空题【2016,15】设等比数列{a n } 满足 a 1 + a 3 = 10 , a 2 + a 4 = 5 ,则 a 1a 2a n 的最大值为.【2012,16】数列{ a n }满足 a n +1 + (-1) a n = 2n -1 ,则{ a n }的前 60 项和为 .三、解答题【2015,17】 S n 为数列{a n } 的前 n 项和.已知 a n >0, a+ 2a n = 4S n + 3 . n(Ⅰ)求{a n } 的通项公式;(Ⅱ)设 b n =,求数列{b n } 的前n 项和. a n a n +12【2014,17】已知数列{ a n }的前 n 项和为 S n , a 1 =1, a n ≠ 0 , a n a n +1 = λS n -1,其中 λ 为常数.(Ⅰ)证明: a n +2 - a n = λ ;(Ⅱ)是否存在 λ ,使得{ a n }为等差数列?并说明理由.【2011,17】等比数列{a n } 的各项均为正数,且 2a 1 + 3a 2 = 1, a 3 = 9a 2 a 6 .(Ⅰ)求数列{a n } 的通项公式;(Ⅱ)设 ⎧ 1 ⎫ b n = log 3 a 1 + log 3 a 2 + ...... + log 3 a n , 求数列 ⎨ ⎬ 的前n 项和. ⎩ b n ⎭⎩⎨⎩⎪ ⎨ x ≥ 06.不等式、推理与证明一、选择题⎧ x + y ≥ 1 【2014,9)】不等式组 ⎨⎩ x - 2 y ≤ 4的解集记为D .有下面四个命题: p 1 : ∀(x , y ) ∈ D , x + 2 y ≥ -2 ;p 2 : ∃(x , y ) ∈ D , x + 2 y ≥ 2 ; P 3 : ∀(x , y ) ∈ D , x + 2 y ≤ 3 ; p 4 : ∃(x , y ) ∈ D , x + 2 y ≤ -1 .其中真命题是()A . p 2 , P 3B . p 1 , p 4C . p 1 , p 2D . p 1 , P 3二、填空题⎧ x + 2 y ≤ 1⎪【2017,14】设 x ,y 满足约束条件 ⎨2x + y ≥ -1,则z = 3x - 2 y 的最小值为 .⎪ x - y ≤ 0 【2016,16】某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg , 乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时.生产一件 产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则 在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 元.⎧ x -1 ≥ 0【2015,15】若 x ,y 满足约束条件 ⎪x - y ≤ 0 ⎪ x + y - 4 ≤ 0,则 y 的最大值为 .x【2014,14】甲、乙、丙三位同学被问到是否去过 A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.⎧ x - y ≥ -1⎪x + y ≤ 3【2012,14】设 x , y 满足约束条件 ⎪ ⎪⎩ y ≥ 0,则 z = x - 2 y 的取值范围为 .⎧3 ≤ 2x + y ≤ 9,【2011,13】若变量 x , y 满足约束条件 ⎨⎩6 ≤ x - y ≤ 9,则 z = x + 2 y 的最小值为 .7.立体几何一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若 干个是梯形,这些梯形的面积之和为( ) A .10B .12C .14D .16【2016,11】平面α 过正方体 ABCD - A 1 B 1C 1 D 1 的顶点 A ,α // 平面CB 1 D 1 ,α 平面 ABCD= m ,α 平面 ABB 1 A 1 = n ,则 m , n 所成角的正弦值为3A .B .2 3 1 C .D .2233【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直 的半径.若该几何体的体积是28π,则它的表面积是( )3A .17πB .18πC . 20πD . 28π【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下 问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思 为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的 弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估算出堆放的米约有( )A .14 斛B .22 斛C .36 斛D .66 斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体三视图中的正视 图和俯视图如图所示. 若该几何体的表面积为16 + 20π ,则 r =()A .1B .2C .4D .8【2015 年,11 题】【2014 年,12 题】 【2013 年,6 题】【2014,12】如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个 条棱中,最长的棱的长度为()A . 6 2B . 4 2C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高 8 cm ,将一个球放在容器口,再向 容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容器的厚度,则球的体积为( )A .500π cm 3B .866π cm 3C .1372π cm 3D .2048π cm 33333【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013 年,8】【2012 年,7】【2011 年,6】【2012,7】如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( )A .6B .9C .12D .15 【2012,11】已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球O 的直径,且 SC =2,则此棱锥的体积为( )A6B C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()二、填空题【2011,15】已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB = 6, BC =则棱锥O - ABCD 的体积为.三、解答题【2017,18】如图,在四棱锥 P-ABCD 中,AB//CD ,且 ∠BAP = ∠CDP = 90(1)证明:平面P AB ⊥平面 P AD ;(2)若P A =PD =AB =DC , ∠APD = 90 ,求二面角 A -PB -C 的余弦值.o 【2016,18】如图,在以 A , B , C , D , E , F 为顶点的五面体中,面 ABEF 为正方形,AF = 2FD , ∠AFD = 90︒ ,C且二面角 D - AF - E 与二面角 C - BE - F 都是 60︒ .DEB(Ⅰ)证明:平面 ABEF ⊥ 平面 EFDC ; (Ⅱ)求二面角 E - BC - A 的余弦值.【2015,18】如图,四边形 ABCD 为菱形,∠ABC = 120A,E , F是平面 ABCD 同一侧的两点,BE ⊥平面 ABCD ,DF ⊥平面ABCD , BE = 2DF , AE ⊥ EC .(I )证明:平面 AEC ⊥平面 AFC ;(II )求直线 AE 与直线 CF 所成角的余弦值.【2014,19】如图三棱柱 ABC - A 1B 1C 1 中,侧面 BB 1C 1C 为菱形, AB ⊥ B 1C .(Ⅰ) 证明: AC = AB 1 ;(Ⅱ)若 AC ⊥ AB 1 , ∠CBB 1 = 60 ,AB=BC ,求二面角A - A 1B 1 -C 1 的余弦值.【2013,18】如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.1AA1,D 是棱AA1 的中点,DC1⊥BD.【2012,19】如图,直三棱柱ABC-A1B1C1 中,AC=BC=2(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1 的大小.B1AB【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C 的余弦值.C2 2 2 2 2 22 28.解析几何一、选择题【2017,10】已知F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点,直线 l 2 与C 交于D 、E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10【2016,10】以抛物线 C 的顶点为圆心的圆交 C 于 A , B 两点,交 C 的准线于 D , E 两点,已知 AB = 4 2 ,DE = 2 5 ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程x 2 m 2+ ny 2- 3m 2 - n= 1 表示双曲线,且该双曲线两焦点间的距离为 4 ,则 n 的 取值范围是( )A . (-1,3)B . (-1, 3)C . (0,3)D . (0, 3)x 2 【2015,5】已知 M ( x 0 , y 0 ) 是双曲线 C : 2- y 2= 1上的一点,F 1 , F 2 是 C 的两个焦点,若 MF 1 ⋅ MF 2 < 0 ,则 y 0 的取值范围是()A . (- , )B . (-, )C . (-,D . (-,3 36 63 33 3【2014,4】已知 F 是双曲线 C :x 2 - my 2 = 3m (m > 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为A B .3C .D . 3m【2014,10】已知抛物线 C : y 2= 8x 的焦点为 F ,准线为 l , P 是l 上一点,Q 是直线 PF 与C 的一个 交点,若 FP = 4FQ ,则| QF | =()A . 72B . 5222C .3D .2x y 【2013,4】已知双曲线 C : - a 2 b 2 =1 (a >0,b >0)的离心率为 ,则 C 的渐近线方程为( ).2A .y = ± 1 x 4B .y = ± 1 x 3 2 2C .y = ± 1 x 2D .y =±x x y 【2013,10】已知椭圆E : + a 2 b 2=1 (a >b >0)的右焦点为 F (3,0),过点 F 的直线交 E 于 A ,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为()A . x + y =1B . x + y =1C . x + y =1D . x + y =145 3636 2727 1818 9x 2 y 2 3a【2012,4】设 F 1 、 F 2 是椭圆 E : a 2 + b 2 ( a > b > 0 )的左、右焦点,P 为直线 x = 上一点,2∆F 2 PF 1 是底角为 30°的等腰三角形,则 E 的离心率为()A . 12B . 23C . 34D . 45【2012,8】等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2= 16x 的准线交于 A ,B 两点,| AB |=,则 C 的实轴长为( )A B .C .4 D .8【2011,7】设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A ,B 两点, AB 为C 的实轴长的 2 倍,则 C 的离心率为( )A B C .2 D .3二、填空题【2017,15】已知双曲线 C : x 2y 2-= 1 (a >0,b >0)的右顶点为 A ,以 A 为圆心,b 为半径作圆 A ,圆 A a 2 b 2与双曲线 C 的一条渐近线交于 M 、N 两点.若∠MAN =60°,则 C 的离心率为 .x 2 【2015,14】一个圆经过椭圆 y 2+ = 1的三个顶点,且圆心在 x 轴的正半轴上,则该圆的标准方程为 .16 4【2011,14】在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F 1 , F 2 在 x 轴上,离心率为 .过2F 1 的直线 L 交 C 于 A , B 两点,且 ABF 2 的周长为 16,那么 C 的方程为.三、解答题【2017,20】已知椭圆 C : x 2 y 2 + =1(a >b >0),四点 P (1,1),P (0,1),P (–1 ),P (1, ) a 2 b 2 1 2 3 42 2中恰有三点在椭圆C 上.(1)求 C 的方程;(2)设直线 l 不经过 P 2 点且与 C 相交于 A ,B 两点.若直线 P 2A 与直线 P 2B 的斜率 的和为–1,证明:l 过定点.【2016,20】设圆x2 +y2 + 2x -15 = 0 的圆心为A ,直线l 过点B(1,0) 且与x 轴不重合,l 交圆A 于C, D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EA +EB 为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C1 ,直线l 交C1 于M , N 两点,过B 且与l 垂直的直线与圆A 交于P,Q两点,求四边形MPNQ 面积的取值范围.x2【2015,20】在直角坐标系xOy 中,曲线C :y =与直线l :y =kx +a (a > 0 )交于M , N 两点.4(Ⅰ)当k = 0 时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.x 2 y 2 【2014,20】已知点 A (0,-2),椭圆 E : + a 2 b 2直线 AF 的斜率为, O 为坐标原点.3= 1(a > b > 0) 的离心率为, F 是椭圆的焦点,(Ⅰ)求 E 的方程;(Ⅱ)设过点 A 的直线l 与 E 相交于 P , Q 两点,当 ∆OPQ 的面积最大时,求l 的方程.【2013,20】已知圆 M :(x +1)2+y 2=1,圆 N :(x -1)2+y 2=9,动圆 P 与圆 M 外切并且与圆 N 内切,圆 心 P 的轨迹为曲线 C .(1)求 C 的方程;(2)l 是与圆 P ,圆 M 都相切的一条直线,l 与曲线 C 交于 A ,B 两点,当圆 P 的半径 最长时,求|AB |.【2012,20】设抛物线C:x2 =2py(p > 0 )的焦点为F,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B,D 两点.(1)若∠BFD=90°,△ABD 的面积为4 2 ,求p 的值及圆F 的方程;(2)若A,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3 上,M 点满足MB / /OA ,MA⋅AB =MB ⋅BA ,M 点的轨迹为曲线C.(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.59.统计、概率分布列、计数原理一、选择题【2017,2】如图,正方形 ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部 分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()1 π 1 π A .B .C .D .4824【2017,6】(1 + 1+ x )6 展开式中 x 2 的系数为( ) x 2A .15B .20C .30D .35【2016,4】某公司的班车在 7 : 30 ,8 : 00 ,8 : 30 发车,小明在 7 : 50 至8 : 30 之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过 10 分钟的概率是( )A .1 B .1C .2 D .3 3234【2015,10】 (x 2 + x + y )5 的展开式中, x 5 y 2 的系数为()A .10B .20C .30D .60【2015,4】投篮测试中,每人投 3 次,至少投中 2 次才能通过测试.已知某同学每次投篮投中的概率为 0.6, 且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 【2014,5】4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活 动的概率( )A . 18 B . 38 C . 58 D . 78【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事 先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在 下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 【2013,9】设 m 为正整数, ( x + y )2m 展开式的二项式系数的最大值为 a , (x + y )2m +1展开式的二项式系 数的最大值为 b .若 13a =7b ,则 m =( )A .5B .6C .7D .8 【2012,2】将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有( )A .12 种B .10 种C .9 种D .8 种【2011,8】 ⎛ x + a ⎫ ⎛2x - 1 ⎫的展开式中各项系数的和为 2,则该展开式中常数项为( ) x ⎪ x ⎪ ⎝ ⎭ ⎝⎭ A . -40B . -20C .20D .40【2011,4】有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A . 13二、填空题B . 12C . 23D . 34【2016,14】 (2x +x )5 的展开式中, x 3 的系数是 .(用数字填写答案)【2014,13】 (x - y )(x + y )8 的展开式中 x 2 y 7 的系数为 .(用数字填写答案)【2012,15】某一部件由三个电子元件按下图方式连接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,则部件正常工作.设三个 电子元件的使用寿命(单位:小时)均服从正态分布 N (1000,502),且各个元件元件1元件2元件3 能否正常工作相互独立,那么该部件的使用寿命超过 1000 小时的概率为 . 三、解答题【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件, 并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从 正态分布N (μ,σ2). (1)假设生产状态正常,记X 表示一天内抽取的 16 个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的 生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16 个零件的尺寸:1 16经计算得 x = ∑ x i = 9.97 ,s ==≈ 0.212 ,其中 x i 为抽取 16 i =1的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为 μ 的估计值 μˆ ,用样本标准差 s 作为 σ 的估计值σˆ ,利用估计值判断是否需对当 天的生产过程进行检查?剔除(μˆ - 3σˆ , μˆ + 3σˆ ) 之外的数据,用剩下的数据估计 μ 和 σ(精确到 0.01). 附:若随机变量Z 服从正态分布 N (μ,σ2),则 P (μ–3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592≈ 0.09 .【2016,19】某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求P( X ≤n) ≥ 0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n = 19 与n = 20 之中选其一,应选用哪个?8【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售 量 y (单位:t )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费 x i 和年销售量 y i (i = 1, 2, , 8 )数据作了初步处理,得到下面的散点图及一些统计量的值.1 8表中 w i =, w =∑ wii =1(Ⅰ)根据散点图判断, y = a + bx 与 y = c + y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立 y 关于 x 的回归方程;(III )已知这种产品的年利润 z 与 x , y 的关系为 z = 0.2 y - x ,根据(Ⅱ)的结果回答下列问题:(i )年宣传费 x =49 时,年销售量及年利润的预报值是多少?(ii )年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据 (u 1 , v 1 ), (u 2 , v 2 ), , (u n , v n ) ,其回归直线 v = α + β u 的斜率和截距的最小二乘估计n∑ (ui- u )(v i - v )分别为 β = i =1n,α = v - β u .∑i =1(u i- u )2【2014,18)】从某企业的某种产品中抽取500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500 件产品质量指标值的样本平均数x 和样本方差s 2 (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布N(μ,δ2 ) ,其中μ近似为样本平均数x ,δ2 近似为样本方差s 2 .(i)利用该正态分布,求P(187.8 <Z < 212.2) ;(ii)某用户从该企业购买了100 件这种产品,记X 表示这100 件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .12.2.若Z ~N(μ,δ2 ) ,则P(μ-δ<Z <μ+δ) =0.6826,P(μ- 2δ<Z <μ+ 2δ) =0.9544.【2013,19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4 件作检验,这4 件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4 件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质2品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100 元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.【2012,18】某花店每天以每枝5 元的价格从农场购进若干枝玫瑰花,然后以每枝10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16 枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n N )的函数解析式;(2)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:以100 天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16 枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16 枝或17 枝玫瑰花,你认为应购进16 枝还是17 枝?请说明理由.⎨ ⎩ 【2011,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或 等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产 品,并测量了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率;⎧-2, t < 94(Ⅱ)已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的关系式为y = ⎪2, 94 ≤ t < 102 ⎪4, t ≥ 102从用 B 配方生产的产品中任取一件,其利润记为 X (单位:元),求 X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)10.复数及其运算一、选择题【2017,3】设有下面四个命题1p 1 : 若复数 z 满足 ∈ R ,则 z ∈ R ; p 2 : 若复数 z 满足 z 2 ∈ R ,则z ∈ R ; z p 3 : 若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 : 若复数 z ∈ R ,则 z ∈R . 其中的真命题为( )A . p 1 , p 3B . p 1 , p 4C . p 2 , p 3D . p 2 , p 4【2016,2】设 (1 + i )x = 1 + yi ,其中 x , y 是实数,则 x + yi = ( )A .1B . 2C . 3D . 2【2015,1】设复数 z 满足1 + z= i ,则| z | =( ) 1 - zA .1B C .D .2(1 + i )3【2014,2】(1 - i )2=( )A .1 + iB .1 - iC . -1+ iD .-1- i 【2013,2】若复数 z 满足(3-4i)z =|4+3i|,则 z 的虚部为().A .-4B . - 45C .4D . 45【2012,3】下面是关于复数 z = 22 -1 + i的四个命题:p 1 :| z |= 2 ; p 2 : z = 2i ; p 3 : z 的共轭复数为1 + i ; p 4 : z 的虚部为 -1.其中的真命题为( )A . p 2 , p 3B . p 1 , p 2C . p 2 , p 4D . p 3 , p 4【2011,1】复数2 + i的共轭复数是( ) 1 - 2iA . - 3 i5B . 3 iC . -i5D .i11.程序框图一、选择题【2017,8】右面程序框图是为了求出满足3n - 2n >1000 的最小偶数n,那么在两个空白框中,可以分别填入A.A+1 B.A>1000 和n=n+2C.A ≤1000 和n=n+1 D.A ≤1000 和n=n+2【2017,8】【2016,9】【2015,9】【2016,9】执行右面的程序框图,如果输入的x = 0 ,y =1,n =1,则输出x, y 的值满足()A.y =2x B.y =3x C.y =4x D.y =5x【2015,9】执行右面的程序框图,如果输入的t =0.01,则输出的n =()A.5 B.6 C.7 D.8【2014,7】执行下图的程序框图,若输入的a,b, k 分别为1,2,3,则输出的M =()A .203B .165C .72D .158【2013,5】执行下面的程序框图,如果输入的t∈[-1,3],则输出的s 属于( ).A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]【2012,6】如果执行右边和程序框图,输入正整数N (N ≥ 2 )和实数a1 ,a2 ,…,a N ,输出A,B,则()A.A +B 为a1 ,a2 ,…,a N 的和B.A +B为a ,a ,…,a 的算术平均数2 1 2 NC.A 和B 分别是a1 ,a2 ,…,a N 中最大的数和最小的数D.A 和B 分别是a1 ,a2 ,…,a N 中最小的数和最大的数【2013,5】【2012,6】【2011,3】【2011,3】执行右面的程序框图,如果输入的N 是6,那么输出的p 是()A.120 B.720 C.1440 D.5040⎩12.坐标系与参数方程一、解答题⎧ x = 3cos θ ,【2017,22】(选修 4-4,坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨(θ ⎩ y = sin θ ,⎧ x = a + 4t ,为参数),直线 l 的参数方程为 ⎨ y = 1 - t , ( t 为参数).(1)若 a = -1 ,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 的距离的最大值为a .⎧x = a cos t ,【2016,23】(选修 4-4:坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎨⎩ y = 1 + a sin t ,(t 为参数, a > 0) .在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ = 4 c os θ .(Ⅰ)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(Ⅱ)直线 C 3 的极坐标方程为θ = α 0 ,其中α 0 满足 tan α 0 = 2 ,若曲线 C 1 与 C 2 的公共点都在C 3 上, 求 a .。
2017年高考全国卷Ⅰ理科数学试题后附详细解析
绝密★启用前2017年普通高等学校招生全国统一考试(全国I 卷)理科数学一、 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .A B =RC .{}1=>A B x xD .AB =∅2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43. 设有下面四个命题()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .85. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是()A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .168. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<< D .325y x z <<12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是() A .440 B .330 C .220 D .110 二、 填空题:本题共4小题,每小题5分,共20分。
2011年高考理科数学精彩试题及问题详解-全国卷1
2011年普通高等学校招生全国统一考试(全国卷1)理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是( ) (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )(A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =2y x =-及y 轴所围成的图形的面积为 ( )(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 ( )12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是 ( ) (A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 ( )(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11-y x=的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) (A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年—2017年新课标全国1卷理科数学题型分类汇编(含答案)
2011 年—2017 年新课标高考全国Ⅰ卷 理科数学分类汇编(含答案)
说明:2017 年高考中,安徽、湖北、福建、湖南、山西、河北、江西、广东、河南等 9 个省份选择使 用新课标全国Ⅰ卷.2017 年,除了保留北京、天津、上海、江苏、浙江实行自主命题外(山东省语文、数 学卷最后一年使用) ,大陆其他省区全部使用全国卷. 研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、 考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂. 正所谓知己知彼,才能百战不殆,为了方便老师和同学们备考 2018 年高考,本人认真研究近 7 年新 课标高考全国Ⅰ卷理科数学和高考数学考试说明,将 2011 年—2017 年新课标全国Ⅰ卷进行了分类整理.
1
整理人,中山一中,朱欢
1.集合与常用逻辑用语
一、选择题 【2017,1】已知集合 A x x 1 , B x 3
A. A
B {x | x 0}
B. A
BR
C. A
B {x | x 1}
B
【2016,1】设集合 A {x x 2 4 x 3 0} , B {x 2 x 3 0} ,则 A A. (3, )
2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编
1.集合与常用逻辑用语 ................................................................................................................................. 2 2.函数与导数 ................................................................................................................................................. 3 3.三角函数、解三角形 ................................................................................................................................. 7 4.平面向量 ................................................................................................................................................... 10 5.数列 ........................................................................................................................................................... 11 6.不等式、推理与证明 ............................................................................................................................... 13 7.立体几何 ................................................................................................................................................... 14 8.解析几何 ................................................................................................................................................... 18 9.统计、概率分布列、计数原理 ............................................................................................................... 23 10.复数及其运算 ......................................................................................................................................... 30 11.程序框图 ................................................................................................................................................. 31 12.坐标系与参数方程 ................................................................................................................................. 33 13.不等式选讲 ............................................................................................................................................. 36
全国卷1高考英语试卷题型结构及分值
山西高考总分及各科分数山西高考总分数为750分。
山西高考考试科目及对应的科目满分值分别为:语文150、数学(文|理)150、外语150、文综300(历史100|地理100|政治100)、理综300(物理110|化学100|生物90)。
山西中考总分及各科分数山西中考总分数为730分。
山西高考考试科目及对应的科目满分值分别为:语文120、数学120、外语120、文综150(历史75|政治75)、理综150(物理80|化学70)、体育50、理化实验10、信息技术10。
2017全国卷1高考英语试卷题型结构及分值由于2017年高考还没有开始,小编整理了2016年全国卷1高考英语真题中各题型分值,供大家参考。
除部分高考改革地区外,一般每年高考试题题型变化不大。
第I卷选择题第一部分听力(共两节,满分30分)第一节(共5小题:每小题1.5分,满分7.5分)[对话]1~5,单选第二节(共15小题:每小题1.5分,满分22.5分)[对话或独白]6~20,单选第二部分阅读理解(共两节,满分40分)第一节(共15小题:每小题2分,满分30分)21~35,单选第二节(共5小题:每小题2分,满分10分)36~40,七选五第三部分英语知识运用(共两节,满分45分)第一节完形填空(共20小题:每小题1.5分,满分30分)41~60,单选第二节语法填空(共10小题:每小题1.5分,满分15分)61~70,填空第四部分写作(共两节,满分35分)第一节短文改错(共10小题:每小题1分,满分10分)第二节书面表达(满分25分)2017全国卷1高考文科数学试卷题型结构及分值由于2017年高考还没有开始,小编整理了2016年全国卷1高考真题中各题型分值,供大家参考。
除部分高考改革地区外,一般每年高考试题题型变化不大。
第I卷一、选择题:本题共12小题,每小题5分,共60分1~12,单选第II卷(13~21必考题,22~24选考题)二、填空题:本题共4小题,每小题5分,共20分13~16,填空三、解答题17~21题,每小题12分22~24题,选做题22题,10分,选修4-1,几何证明选讲23题,10分,选修4-4,坐标系与参数方程24题,10分,选修4-5,不等式选讲最主要的区别有两点:1、从难易程度看,高考理科数学要难于高考文科数学;2、从内容方面看,高考理科数学考的比较全面,高考文科数学有些内容不考,具体不同点,要看当年的考试大纲;题的大样类似,有六成以上的题是一样的;一般第一题不一样,第一题一般理科考察虚数,文科不考;填空题可能理科会出现统计的问题,相对难一些;排列组合一般理科可能会多一问;最后一题问法会有区别,理科的弯会大一些。
2011—2017年新课标全国卷1理科数学分类汇编——5.平面向量
一、选择题【2015,7】设D 为ABC ∆所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( )A .14,P PB .13,P PC .23,P PD .24,P P二、填空题【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________.一、选择题【2015,7】设D 为ABC ∆所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 解析:11()33AD AC CD AC BC AC AC AB =+=+=+-=1433AB AC -+,选A .. 【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( )A .14,P PB .13,P PC .23,P PD .24,P P解析:1a b +==>得, 1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭.由1a b -==>得1cos 2θ<,,3πθπ⎛⎤⇒∈ ⎥⎝⎦. 选A . 二、填空题 【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= . 【解析】()22222(2)22cos602a b a b a a b b+=+=+⋅⋅⋅︒+221222222=+⨯⨯⨯+444=++12=,∴212a b += 【法二】令2,c b =由题意得,2a c ==,且夹角为60,所以2a b a c +=+的几何意义为以,a c 夹角为60的平行四边形的对角线所在的向量,易得223a b a c +=+=;【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .【解析】由已知得:()1,3a b m +=+,∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-. 【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .【解析】∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径,∴090BAC ∠=,∴AB 与AC 的夹角为090.【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2,又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t ,∴ t =2. 【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________. 【解析】由已知||2245cos ||||=︒⋅⋅=⋅,因为|2|10a b -=,所以10||4||422=+⋅-, 即06||22||2=--b b , 解得23||=b .。
2012年-2021年(10年)全国高考数学真题分类汇编 立体几何客观题(精解精析版)
2012-2021十年全国高考数学真题分类汇编立体几何客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D解析:如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D2.(2021年高考全国甲卷理科)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()()A.B.C.D.【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D3.(2021年高考全国甲卷理科)已如A.B.C是半径为1的球O的球面上的三个点,且,1AC BC AC BC⊥==,则三棱锥O ABC-的体积为()A.212B.312C.24D.34【答案】A解析:,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则22d =,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A .【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.4.(2020年高考数学课标Ⅰ卷理科)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.(2020年高考数学课标Ⅰ卷理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()()A .514-B .512-C .514+D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a =(负值舍去).故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6.(2020年高考数学课标Ⅱ卷理科)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A .3B .32C .1D .32【答案】C解析:设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC 是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.7.(2020年高考数学课标Ⅱ卷理科)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()()A .EB .FC .GD .H【答案】A解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2020年高考数学课标Ⅲ卷理科)下图为某几何体的三视图,则该几何体的表面积是()()A .6+4B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.(2019年高考数学课标Ⅲ卷理科)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】取DC 中点E ,如图连接辅助线,在BDE △中,N 为BD 中点,M 为DE 中点,所以//MN BE ,所以BM ,EN 共面相交,选项C ,D 错误. 平面CDE ⊥平面ABCD ,EF CD ⊥,EF ∴⊥平面ABCD ,又DC CD ⊥,∴DC ⊥平面DCE ,从而EF FN ⊥,BC MC ⊥.所以MCB △与EFN△均为直角三角形.不妨设正方形边长为2,易知3,1MC EF NF ===,所以22(3)27BM =+=,22(3)12EN =+=,BM EN ∴≠,故选B .【点评】本题比较具有综合性,既考查了面面垂直、线面垂直等线面关系,还考查了三角形中的一些计算问题,是一个比较经典的题目.10.(2019年高考数学课标全国Ⅱ卷理科)设α、β为两个平面,则αβ//的充要条件是()()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ//的充分条件,由面面平行性质定理知,若αβ//,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ//的必要条件,故选B .【点评】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.(2019年高考数学课标全国Ⅰ卷理科)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A .B .C .D 【答案】D解析:三棱锥P ABC -为正三棱锥,取AC 中点M ,连接,PM BM ,则,AC PM AB BM ⊥⊥,PM BM M = ,可得AC ⊥平面PBM ,从而AC PB ⊥,又//,PB EF EF CE ⊥,可得PB CE ⊥,又AC CE C = ,所以PB ⊥平面PAC ,从而,PB PA PB PC ⊥⊥,从而正三棱锥P ABC -的三条侧棱,,PA PB PC 两两垂直,且PA PB PC ===,,PA PB PC 为棱的正方体,正方体的体对角线即为球O 的直径,即22R R ==,所以球O 的体积为343V R π==.12.(2018年高考数学课标Ⅲ卷(理))设,,,A B C D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为()A.B.C.D.【答案】B解析:设ABC △的边长为a,则21sin 6062ABC S a a =︒=⇒=△,此时ABC △外接圆的半径为112sin 60232a r =⋅=⨯︒,故球心O 到面ABC2==,故点D 到面ABC 的最大距离为26R +=,此时11633D ABC ABC D ABC V S d --=⋅=⨯=△,故选B.点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型.13.(2018年高考数学课标Ⅲ卷(理))中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是()()【答案】A解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.14.(2018年高考数学课标Ⅱ卷(理))在长方体1111ABCD A B C D -中,1AB BC ==,1AA =线1AD 与1DB 所成角的余弦值为()A .15B .56C .55D .22【答案】C解析:以D 为坐标原点,1,,DA DC DD DA 为,,x y z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),(0,0,3)D A B D ,所以11(1,0,3),(1,1,3)AD DB =-=因为111111135cos ,5||||25AD DB AD DB AD DB ⋅-+<>===⋅⨯所以异面直线1AD 与1DB 所成角的余弦值为55,故选C .15.(2018年高考数学课标卷Ⅰ(理))已知正方体的校长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面而积的最大值为()A .334B .233C .324D .32【答案】A【解析一】根据题意,平面α与正方体对角线垂直,记正方体为111ABCD A B C D -不妨设平面α与1AC 垂直,且交于点M .平面ABD 与平面11B D C 与1AC 分别交于,P Q .正方体中心为O ,则容易证明当M 从A 运动到P 时,截面为三角形且周长逐渐增大:当M 从P 运动到Q 时,截面为六边形且周长不变;当M 从Q 运动到1C 时,截面为三角形且周长还渐减小。
2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)
绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。
考试用时 120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4. 考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A ={x |x <1},B ={x | 3x < 1 },则 A . A B = {x | x < 0} C . A B = {x | x > 1}B . A B = R D . A B = ∅2. 如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A . 14C. 123.设有下面四个命题B . π8D . π4p :若复数 z 满足 1∈ R ,则 z ∈ R ; 1zp 2 :若复数 z 满足 z 2 ∈ R ,则 z ∈ R ;p 3 :若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ;p4:若复数 z ∈R,则 z∈R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n 为等差数列{a n } 的前n 项和.若a4 +a5 = 24 ,S6 = 48 ,则{a n } 的公差为A.1 B.2 C.4 D.85.函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1,则满足-1 ≤f (x - 2) ≤ 1的x 的取值范围是A.[-2, 2]B.[-1,1]C.[0, 4]D.[1, 3]6.(1+ 1)(1+x)6展开式中x2的系数为x2A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A ≤1 000 和n=n+1D.A ≤1 000 和n=n+29.已知曲线C :y=cos x,C :y=sin (2x+ 2π),则下面结论正确的是1 23⎨ ⎩A. 把 C 1 π 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得6到曲线 C 2B. 把 C 1 π上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得 12 到曲线 C 2C. 把 C 1 1 π 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得26到曲线 C 2D. 把 C 1 1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移2 π个单位长度,12得到曲线 C 210.已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点, 直线 l 2 与 C 交于 D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设 xyz 为正数,且2x = 3y = 5z ,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4, 8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22, 依此类推.求满足如下条件的学科网&最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2008年高考(全国卷I)理科数学客观题点通
A. 向左 平 移 个 长 度 单 位 B 向右 平 移 个 长 度 单位 .
1 al al 0( + o)
一
l a5+ a6) O(
故 选 C.
c左移个度位 . 平 警 长 单 向
D 向 右 平移 个 长度 单 位 .
【 通 1 化 为 同一 函数 , 取 点 】 提
8 得 函 c( + 的 象 只 . 到 数 。 2 詈) 图 , 为 sz
须 将 函数 =s 2 i x的 图象 ( n
有
【 通 2 巧 用性 质 点 】
) . ‘
由性 质 , Ⅱ +Ⅱ — 2 3n +n = 2 得 2 4 a ,3 s
“3= 2, = 5, = 8, = 1 . 04 05 口6 1
择 题 还 可 用 特 殊 点排 除法 , 以解 决 , 点通 2 加 如 .
~
分 画 函 ysz Y c 2 号) 别 出 数. i 及 —o z 的 —n 2 s +
图 ,图易 为 得 函 y ∞ 2 号) 象如 ,知 了 到 数 - s 的 +
J一 1
图 ,以 函 sv图 向 平 器 单 象可 将 数一i 的 象 左 移 个 n Z
由 ( “ , 得 一 ,: f+4 解 : 4 f 一 d
I 十n a3 一 1 0
是
【 点评 】 对 于 曲线 切 线 问 题 , 常 先 求 导 , 常 再 求 切 线 的斜 率 , 而 使 问 题解 决 . 从
S。 l ×( ) : o 一4 +
×3 5 故 选 C —9 , .
象 上 , 选 B 故 .
分 取 数y g2 C 一 及 = 别 函 =i, O 2 号) n" S 2 =
2012年-2021年(10年)全国高考数学真题分类汇编 导数客观题(精解精析版)
2012-2021十年全国高考数学真题分类汇编导数客观题(精解精析版)一、选择题1.(2021年高考全国乙卷理科)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.2.(2020年高考数学课标Ⅰ卷理科)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题3.(2020年高考数学课标Ⅲ卷理科)若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l 在曲线y x =上的切点为(00x x ,则00x >,函数y x =的导数为12y x'=,则直线l 的斜率02k x =,设直线l 的方程为)0002y x x x x =-,即000x x x -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.4.(2019年高考数学课标Ⅲ卷理科)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则()A .,1a e b ==-B .,1a eb ==C .1,1a e b -==D .1,1a eb -==-【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
(2011-2017)高考试题新课标理科数学分类汇编(精校版)
§ 1 . 集合及其运算1 . ( 201 7 ·2 )设集合,.若,则()A .B .C .D .2 . ( 201 6 · 2 )已知集合 A ={1 , 2 , 3} , B ={ x |( x +1)( x - 2)<0 ,x ∈ Z } ,则()A . {1}B . {1 , 2}C . {0 , 1 , 2 , 3}D . { - 1 , 0 , 1 , 2 , 3}3 . ( 2015· 1 )已知集合 A = { - 2 , - 1 , 0 , 2 } , B = { x | ( x - 1 )( x +2 )< 0 } ,则A ∩ B = ()A . { - 1 , 0 }B . {0 , 1 }C . { - 1 , 0 , 1 }D . {0 , 1 , 2 }4 . ( 201 4 · 1 )设集合 M = { 0, 1, 2 } , N = ,则= ()A . {1}B . {2}C . {0 , 1}D . {1 , 2}5 . ( 201 3 · 1 )已知集合 M = { x| ( x - 1) 2 < 4, x ∈ R } , N = { - 1 , 0 , 1 , 2 ,3 } ,则M ∩ N = ()A . { 0 , 1 , 2 }B . { - 1 , 0 , 1 , 2 }C . { - 1 , 0 , 2 , 3}D . {0 , 1 , 2 , 3}6 . ( 2012·1 )已知集合 A ={1, 2, 3, 4, 5} ,B ={( x , y )| x ∈ A , y ∈ A , x - y ∈A } ,则B 中所含元素的个数为()A. 3B. 6C. 8D. 10§ 2 . 复数计算1 . ( 201 7 · 1 )()A .B .C .D .2 . ( 201 6 · 1 )已知在复平面内对应的点在第四象限,则实数m 的取值范围是 ( )A .( - 3 , 1 )B .( - 1 , 3 )C .( 1 ,+∞ )D .( - ∞ , - 3 )3 . ( 2015· 2 )若 a 为实数且 ( 2+ ai )( a - 2 i ) = -4 i ,则 a = ()A . - 1B . 0C . 1D . 24 . ( 201 4 · 2 )设复数,在复平面内的对应点关于虚轴对称,,则()A . - 5B . 5C . - 4 + iD . - 4 - i5 . ( 201 3 · 2 )设复数满足,则()A .B .C .D .6 . ( 2012·3 )下面是关于复数的四个命题中,真命题为()P 1 : | z |=2 , P 2 : z 2 =2 i , P 3 : z 的共轭复数为 1+ i , P 4 : z 的虚部为- 1 .A. P 2 , P 3B. P 1 , P 2C. P 2 , P 4D. P 3 , P 47 . ( 201 1 · 1 )复数的共轭复数是()A .B .C .D .§ 3 . 简易逻辑1 . ( 201 7 · 7 )甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩2. ( 201 1 · 10 )已知 a 与 b 均为单位向量,其夹角为θ,有下列四个命题中真命题是()A . P 1 , P 4B . P 1 , P 3C . P 2 , P 3D . P 2 , P 43 . ( 201 6 · 15 )有三张卡片,分别写有 1 和 2 , 1 和 3 , 2 和 3 . 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“ 我与乙的卡片上相同的数字不是2 ” ,乙看了丙的卡片后说:“ 我与丙的卡片上相同的数字不是1 ” ,丙说:“ 我的卡片上的数字之和不是5 ” ,则甲的卡片上的数字是 .§ 4 . 平面向量1 . ( 201 7 · 12 )已知△ ABC 是边长为 2 的等边三角形, P 为平面 ABC 内一点,则的最小值是()A. B. C. D.2 . ( 201 6 ·3 )已知向量,且,则 m = ()A . - 8B . - 6C . 6D . 83 . ( 2014 · 3 )设向量满足,,则= ()A . 1B . 2C . 3D . 54 . ( 2015· 13 )设向量 a , b 不平行,向量与平行,则实数=____________ .5 . ( 201 3 · 13 )已知正方形的边长为 2 ,为的中点,则_______.6 . ( 2012·13 )已知向量 a , b 夹角为 45 º,且,,则 .§ 5 . 程序框图1 . ( 201 7 · 8 )执行右面的程序框图,如果输入的 a = - 1 ,则输出的 S = ()A . 2B . 3C . 4D . 52 . ( 201 6 · 8 )中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的 x =2 , n =2 ,依次输入的 a 为2 , 2 , 5 ,则输出的 s = ()A . 7B . 12C . 17D . 343 . ( 2015· 8 )右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术” . 执行该程序框图,若输入 a , b 分别为 14 , 18 ,则输出的 a = ()A . 0B . 2C . 4D . 144 . ( 201 4 · 7 )执行右面程序框图,如果输入的 x , t 均为 2 ,则输出的 S = ()A . 4B . 5C . 6D . 75 . ( 201 3 ·6 )执行右面的程序框图,如果输入的,那么输出的()A .B .C .D .6 . ( 2012·6 )如果执行右边的程序框图,输入正整数 N ( N ≥2 )和实数 a 1 , a 2 ,… , a N ,输入 A 、 B ,则()A. A + B 为 a 1 , a 2 ,… , a N 的和B. 为 a 1 , a 2 ,… , a N 的算术平均数C. A 和 B 分别是 a 1 , a 2 ,… , a N 中最大的数和最小的数D. A 和 B 分别是 a 1 , a 2 ,… , a N 中最小的数和最大的数7 . ( 201 1 · 3 )执行右面的程序框图,如果输入的 N 是 6 ,那么输出的 p 是()A . 120B . 720C . 1440D . 5040§ 6 . 线性规划1 . ( 201 7 · 5 )设,满足约束条件,则的最小值是()A . - 15B . - 9C . 1D . 92 . ( 201 4 · 9 )设 x , y 满足约束条件,则的最大值为()A . 10B . 8C . 3D . 23 . ( 201 3 · 9 )已知, x , y 满足约束条件,若的最小值为 1 ,则 a = ()A .B .C . 1D . 24 . ( 2015· 14 )若 x , y 满足约束条件,则的最大值为_______ .5 . ( 201 4 · 14 )设 x , y 满足约束条件,则的取值范围为 .6 . ( 201 1 · 13 )若变量 x , y 满足约束条件,则的最小值为 .§ 7 . ※二项式定理1 . ( 201 3 · 5 )已知的展开式中的系数为 5 ,则()A .B .C .D .2 . ( 201 1 · 8 )的展开式中各项系数的和为 2 ,则该展开式中常数项为()A . - 40B . - 20C . 20D . 403 . ( 2015· 15 )的展开式中 x 的奇数次幂项的系数之和为 32 ,则 a =_______ .4 . ( 201 4 · 13 )的展开式中,的系数为 15 ,则 a =________.§ 8 . 数列1. ( 201 7 · 3 )我国古代数学名著《算法统宗》中有如下问题:“ 远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?” 意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯()A . 1 盏B . 3 盏C . 5 盏D . 9 盏2 . ( 2015· 4 )已知等比数列 { a n } 满足 a 1 =3 , a 1 + a 3 + a 5 =21 ,则 a 3 + a5 + a 7 = ()A . 21B . 42C . 63D . 843 . ( 201 3 · 3 )等比数列的前项和为,已知,,则()A .B .C .D .4 . ( 2012·5 )已知 { a n } 为等比数列, a 4 + a 7 = 2 , a 5 a6 = - 8 ,则 a 1 +a 10 = ()A. 7B. 5C. - 5D. - 75 . ( 201 7 · 15 )等差数列的前项和为,,,则.6 . ( 2015· 16 )设 S n 是数列 { a n } 的前项和,且,,则 S n= .7 . ( 201 3 · 16 )等差数列的前项和为,已知,,则的最小值为 ___ _.8 . ( 2012·16 )数列满足,则的前 60 项和为 .9 . ( 201 6 · 17 ) S n 为等差数列 { a n } 的前 n 项和,且 a 1 =1 , S 7 =28 . 记 b n=[lg a n ] ,其中 [ x ] 表示不超过 x 的最大整数,如 [0.9]=0 , [lg99]=1 .(Ⅰ)求 b 1 , b 11 , b 101 ;(Ⅱ)求数列 { b n } 的前 1 000 项和 .10 . ( 201 4 ·1 7 )已知数列 { a n } 满足 a 1 =1 , a n +1 =3 a n +1.(Ⅰ)证明是等比数列,并求 { a n } 的通项公式;(Ⅱ)证明:.11 . ( 201 1 · 17 )等比数列的各项均为正数,且(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前 n 项和 .§ 9 . 三角函数1 . ( 201 6 · 7 )若将函数 y =2sin2 x 的图像向左平移个单位长度,则平移后图象的对称轴为()A .B .C .D .2 . ( 201 6 · 9 )若,则sin 2 α = ()A .B .C .D .3 . ( 2014 · 4 )钝角三角形 ABC 的面积是, AB =1 , BC = ,则 AC = ()A . 5B .C . 2D . 14 . ( 2012·9 )已知,函数在单调递减,则的取值范围是()A. B. C. D.5 . ( 201 1 · 5 )已知角θ的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y =2 x 上,则 cos2 θ = ()A .B .C .D .6 . ( 201 1 · 11 )设函数的最小正周期为,且,则()A .在单调递减B .在单调递减C .在单调递增D .在单调递增7 . ( 201 7 · 14 )函数()的最大值是.8 . ( 201 6 · 13 )△ ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,若,, a = 1 ,则 b = .9 . ( 201 4 · 14 )函数的最大值为 _________.10 . ( 201 3 · 15 )设为第二象限角,若,则_________.1 1 . ( 201 1 · 16 )在△ AB C 中,,则的最大值为 .1 2 . ( 201 7 · 17 )的内角的对边分别为,已知.( 1 )求( 2 )若, 面积为 2 ,求1 3 . ( 2015· 17 )在∆ ABC 中, D 是 BC 上的点, AD 平分∠ BAC ,∆ ABD 面积是∆ ADC 面积的2 倍.(Ⅰ)求;(Ⅱ)若 AD =1 , DC = ,求 BD 和 AC 的长.1 4 . ( 201 3 · 17 )在△ ABC 内角 A 、 B 、 C 的对边分别为 a , b , c ,已知a=bcosC+csinB .(Ⅰ)求 B ;(Ⅱ)若 b= 2 ,求△ ABC 面积的最大值 .1 5 . ( 2012 · 17 )已知 a , b , c 分别为△ ABC 三个内角 A , B , C 的对边,.(Ⅰ)求 A ;(Ⅱ)若 a =2 ,△ ABC 的面积为,求 b , c .§ 10 . 立体几何1 . ( 201 7 · 4 )如图,网格纸上小正方形的边长为 1 ,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A . B . C . D .2 . ( 201 7 · 10 )已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A .B .C .D .3 . ( 201 6 · 6 )右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A .20 πB .24 πC .28 πD .32 π4 . ( 2015· 6 )一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A .B .C .D .5 . ( 2015· 9 )已知 A , B 是球 O 的球面上两点,∠ AOB =90 º ,C 为该球面上的动点,若三棱锥 O - ABC 体积的最大值为 36 ,则球 O 的表面积为()A .36 πB .64 πC .144 πD .256 π6 . ( 201 4 · 6 )如图,网格纸上正方形小格的边长为 1 (表示 1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为 3cm ,高为 6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A .B .C .D .7 . ( 201 4 · 11 )直三棱柱 ABC - A 1 B 1 C 1 中,∠ BCA =90 º , M , N 分别是 A1 B 1 , A 1 C 1 的中点, BC = CA = CC 1 ,则 BM 与 AN 所成的角的余弦值为()A .B .C .D .8 . ( 201 3 · 4 )已知为异面直线,平面,平面. 直线满足,,,,则()A . α // β且 l // αB . 且C . 与相交,且交线垂直于D . 与相交,且交线平行于9 . ( 201 3 · 7 )一个四面体的顶点在空间直角坐标系中的坐标分别是(1,0,1) , (1,1,0) , (0,1,1) , (0,0,0) ,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()10 . ( 2012·7 )如图,网格纸上小正方形的边长为 1 ,粗线画出的是某几何体的三视图,则此几何体的体积为()A. 6B. 9C. 12D. 1811 . ( 2012·11 )已知三棱锥 S - ABC 的所有顶点都在球 O 的球面上,△ ABC 是边长为 1 的正三角形, SC 为球 O 的直径,且 SC =2 ,则此棱锥的体积为()A. B. C. D.12 . ( 201 1 · 6 )在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()A. B. C. D.1 3 . ( 201 6 · 14 )α、β是两个平面, m 、 n 是两条直线,有下列四个命题:( 1 )如果 m ⊥ n , m ⊥ α ,n ∥ β ,那么α ⊥ β .( 2 )如果 m ⊥ α ,n ∥ α ,那么 m ⊥ n .( 3 )如果α ∥ β , m α ,那么m ∥ β .( 4 )如果m ∥ n ,α ∥ β ,那么 m 与α 所成的角和 n 与β 所成的角相等 .其中正确的命题有 . ( 填写所有正确命题的编号 .)1 4 . ( 201 1 · 15 )已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且,则棱锥 O - ABCD 的体积为 .1 5 . ( 201 7 · 19 )如图,四棱锥 P-ABCD 中,侧面 PAD 为等边三角形且垂直于底面三角形 BCD , E 是 PD 的中点 .( 1 )证明:直线 CE // 平面 PAB( 2 )点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成锐角为 45 º,求二面角 M-AB-D 的余弦值 .1 6 . ( 201 6 · 19 )(满分 12 分)如图,菱形 ABCD 的对角线 AC 与 BD 交于点O , AB =5 , AC =6 ,点 E , F 分别在 AD , CD 上, AE = CF = , EF 交 BD 于点H . 将△ DEF 沿 EF 折到△ D ´ EF 的位置,.(Ⅰ)证明:平面 ABCD ;(Ⅱ)求二面角的正弦值 .1 7 . ( 2015· 19 )如图,长方体 ABCD - A 1 B 1 C 1 D 1 中AB =16 , BC =10 , AA 1 =8 ,点 E , F 分别在 A 1 B 1 , D 1 C 1 上, A 1 E = D 1 F =4 ,过点 E , F 的平面与此长方体的面相交,交线围成一个正方形 .(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线 AF 与平面所成角的正弦值 .1 8 . ( 201 4 · 18 )如图,四棱锥 P - ABCD 中,底面 ABCD 为矩形, PA ⊥平面ABCD , E 为 PD 的中点 .(Ⅰ)证明: PB // 平面 AEC ;(Ⅱ)设二面角 D - AE - C 为 60 º, AP =1 , AD = ,求三棱锥 E - ACD 的体积 .19 . ( 201 3 · 18 )如图,直三棱柱中,,分别是,的中点,.(Ⅰ)证明:// 平面;(Ⅱ)求二面角的正弦值 .2 0 . ( 201 2 · 19 )如图,直三棱柱 ABC - A 1 B 1 C 1 中,, D 是棱 AA 1 的中点, DC 1 ⊥ BD .(Ⅰ)证明: DC 1 ⊥ BC ;(Ⅱ)求二面角 A 1 - BD - C 1 的大小 .21 . ( 201 1 · 18 )如图,四棱锥 P - ABCD 中,底面ABCD 为平行四边形,∠ DAB =60° , AB =2 AD , PD ⊥底面 ABCD .(Ⅰ)证明: PA ⊥ BD ;(Ⅱ)若 PD = AD ,求二面角 A - PB - C 的余弦值 .§ 1 1 . 排列组合、概率统计1 . ( 201 7 · 6 )安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由1 人完成,则不同的安排方式共有()A . 12 种B . 18 种C . 24 种D . 36 种2 . ( 201 6 · 5 )如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A . 24B . 18C . 12D . 93 . ( 201 6 · 10 )从区间 [0 , 1] 随机抽取 2 n 个数 x 1 , x 2 ,… , x n , y 1 ,y 2 ,… , y n ,构成 n 个数对,,… ,,其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方法得到的圆周率π的近似值为()A .B .C .D .4 . ( 2015· 3 )根据下面给出的 2004 年至 2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较, 2008 年减少二氧化硫排放量的效果最显著 .B . 2007 年我国治理二氧化硫排放显现成效 .C . 2006 年以来我国二氧化硫年排放量呈减少趋势 .D . 2006 年以来我国二氧化硫年排放量与年份正相关 .5 . ( 201 4 · 5 )某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75 ,连续两天为优良的概率是 0.6 ,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A . 0.8B . 0.75C . 0.6D . 0.456 . ( 2012·2 )将 2 名教师, 4 名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和 2 名学生组成,不同的安排方案共有()A. 12 种B. 10 种C. 9 种D. 8 种7 . ( 201 1 · 4 )有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A .B .C .D .8 . ( 201 7 · 13 )一批产品的二等品率为 0.02 ,从这批产品中每次随机取一件,有放回地抽取 100 次,表示抽到的二等品件数,则.9 . ( 201 3 · 14 )从个正整数 1 , 2 ,…, n 中任意取出两个不同的数,若取出的两数之和等于 5 的概率为,则 n= ________ .10 . ( 2012·15 )某一部件由三个电子元件按下图方式连接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,则部件正常工作 . 设三个电子元件的使用寿命(单位:小时)服从正态分布 N (1000 , 50 2 ) ,且各元件能否正常工作互相独立,那么该部件的使用寿命超过 1000 小时的概率为 .1 1 . ( 201 7 · 18 )淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取 100 个网箱,测量各箱水产品的产量(单位: kg )某频率直方图如下:( 1 )设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于 50kg ,新养殖法的箱产量不低于 50kg ,估计 A 的概率;( 2 )填写下面列联表,并根据列联表判断是否有 99% 的把握认为箱产量与养殖方法有关:<50kg ≥ 50kg旧养殖法新养殖法( 3 )根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01 )P ( K 2 ≥ k )0.050 0.010 0.001k 3.841 6.635 10.8281 2 . ( 201 6 · 18 )某险种的基本保费为 a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 5保费0.85 a a 1.25 a 1.5 a 1.75 a 2 a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5概率0.30 0.15 0.20 0.20 0.10 0. 05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60% 的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值 .13 . ( 2015· 18 )某公司为了解用户对其产品的满意度,从 A , B 两地区分别随机调查了 20 个用户,得到用户对产品的满意度评分如下:A 地区6273819295857464537678869566977888827689B 地区7383625191465373648293486581745654766579(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于 70 分70 分到 89 分不低于 90 分满意度等级不满意满意非常满意记事件 C :“ A 地区用户的满意度等级高于 B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求 C 的概率.14 . ( 201 4 · 19 )某地区 2007 年至 2013 年农村居民家庭纯收入 y (单位:千元)的数据如下表:年份2007 2008 2009 2010 2011 2012 2013年份代号 t 1 2 3 4 5 6 7人均纯收入 y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求 y 关于 t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析 2007 年至 2013 年该地区农村居民家庭人均纯收入的变化情况,并预测该地区 2015 年农村居民家庭人均纯收入 .附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.15 . ( 201 3 · 19 )经销商经销某种农产品,在一个销售季度内,每售出 1 t 该产品获利润 500 元,未售出的产品,每 1 t 亏损 300 元 . 根据历史资料,得到销售季度内市场需求量的频率分布直方图,如有图所示 . 经销商为下一个销售季度购进了130 t 该农产品 . 以 x (单位: t ,100≤ x ≤150 )表示下一个销售季度内的市场需求量, T (单位:元)表示下一个销售季度内经销该农产品的利润 .(Ⅰ)将 T 表示为 x 的函数;(Ⅱ)根据直方图估计利润 T 不少于 57000 元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈ [100, 110) ,则取 x =105 ,且 x =105 的概率等于需求量落入 [100, 110) 的概率),求利润 T 的数学期望 .1 6 . ( 2012 · 18 )某花店每天以每枝 5 元的价格从农场购进若干枝玫瑰花,然后以每枝 10 元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理 .(Ⅰ)若花店某天购进 16 枝玫瑰花,求当天的利润 y (单位:元)关于当天需求量 n (单位:枝,n ∈ N )的函数解析式;(Ⅱ)花店记录了 100 天玫瑰花的日需求量(单位:枝),整理得下表:日需求量 n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以 100 天记录的各需求量的频率作为各需求量发生的概率 .( i )若花店一天购进 16 枝玫瑰花, X 表示当天的利润(单位:元),求 X 的分布列、数学期望及方差;( ii )若花店计划一天购进 16 枝或 17 枝玫瑰花,你认为应购进 16 枝还是 17 枝?请说明理由 .1 7 . ( 201 1 · 19 )某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表指标值分组[90,94) [94,98) [98,102) [102,106) [106,110 ]频数8 20 42 22 8B 配方的频数分布表指标值分组[90,94) [94,98) [98,102) [102,106) [106,110 ]频数 4 12 42 32 10(Ⅰ)分别估计用 A 配方, B 配方生产的产品的优质品率;(Ⅱ)已知用 B 配方生成的一件产品的利润 y ( 单位:元 ) 与其质量指标值 t 的关系式为,从用 B 配方生产的产品中任取一件,其利润记为 X (单位:元),求 X 的分布列及数学期望 . (以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)§ 1 2 . 解析几何1 . ( 201 7 · 9 )若双曲线(,)的一条渐近线被圆所截得的弦长为 2 ,则的离心率为()A . 2B .C .D .2 . ( 201 6 · 4 )圆的圆心到直线的距离为 1 ,则a = ()A .B .C .D . 23 . ( 201 6 · 11 )已知 F 1 , F 2 是双曲线 E :的左,右焦点,点 M 在E 上, MF 1 与 x 轴垂直,,则 E 的离心率为()A .B .C .D . 24 . ( 2015· 7 )过三点 A ( 1, 3 ) , B ( 4, 2 ) , C ( 1, - 7 ) 的圆交于 y 轴于 M 、 N 两点,则= ()A .B . 8C .D . 105 . ( 2015· 11 )已知 A , B 为双曲线 E 的左,右顶点,点 M 在 E 上,∆ ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为()A .B . 2C .D .6 . ( 201 4 · 10 )设 F 为抛物线 C : 的焦点,过 F 且倾斜角为 30º的直线交C 于 A , B 两点, O 为坐标原点,则△ OAB 的面积为()A .B .C .D .7 . ( 201 3 · 11 )设抛物线的焦点为,点在上,,若以为直径的园过点,则的方程为()A . 或B . 或C . 或D . 或8 . ( 201 3 · 12 )已知点,,,直线将分割为面积相等的两部分,则的取值范围是()A .B .C .D .9 . ( 2012·4 )设 F 1 , F 2 是椭圆 E : 的左右焦点, P 为直线上的一点,是底角为 30 º的等腰三角形,则 E 的离心率为()A. B. C. D.10 . ( 2012·8 )等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 2=16 x 的准线交于 A , B 两点, | AB |= ,则 C 的实轴长为()A. B. C. 4 D. 811 . ( 201 1 · 7 )设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直, l与 C 交于 A , B 两点, | AB | 为 C 的实轴长的 2 倍,则 C 的离心率为()A .B .C . 2D . 31 2. ( 201 7 · 16 )已知 F 是抛物线 C : 的焦点, M 是 C 上一点, FM 的延长线交轴于点 N .若 M 为 FN 的中点,则 | FN |= .13 . ( 201 4 · 6 )设点 M ( ,1) ,若在圆 O : 上存在点 N ,使得∠ OMN =45 º,则的取值范围 .1 4 . ( 201 1 · 14 )在平面直角坐标系 xoy 中,椭圆 C 的中心为原点,焦点 F 1 ,F 2 在 x 轴上,离心率为. 过 F 1 的直线 l 交 C 于 A , B 两点,且△ ABF 2 的周长为 16 ,那么 C 的方程为 .1 5 . ( 201 7 · 20 )设 O 为坐标原点,动点 M 在椭圆 C :上,过 M 做 x轴的垂线,垂足为 N ,点 P 满足.( 1 )求点 P 的轨迹方程;( 2 )设点 Q 在直线 x = - 3 上,且. 证明:过点 P 且垂直于 OQ 的直线 l过 C 的左焦点 F .1 6 . ( 201 6 · 20 )已知椭圆 E : 的焦点在轴上, A 是 E 的左顶点,斜率为 k ( k >0) 的直线交 E 于 A , M 两点,点 N 在 E 上, MA ⊥ NA .(Ⅰ)当 t =4 , | AM | =| AN | 时,求△ AMN 的面积;(Ⅱ)当 2| AM | =| AN | 时,求 k 的取值范围 .17 . ( 2015· 20 )已知椭圆 C : ( m > 0) ,直线 l 不过原点 O 且不平行于坐标轴, l 与 C 有两个交点 A , B ,线段 AB 的中点为 M .(Ⅰ)证明:直线 OM 的斜率与 l 的斜率的乘积为定值;(Ⅱ)若 l 过点,延长线段 OM 与 C 交于点 P ,四边形 OAPB 能否平行四边形?若能,求此时 l 的斜率;若不能,说明理由.18 . ( 201 4 · 20 )设 F 1 , F 2 分别是椭圆的左右焦点, M是 C 上一点且 MF 2 与 x 轴垂直,直线 MF 1 与 C 的另一个交点为 N .(Ⅰ)若直线 MN 的斜率为,求 C 的离心率;(Ⅱ)若直线 MN 在 y 轴上的截距为 2 ,且,求 a, b .1 9 . ( 201 3 · 20 )平面直角坐标系中,过椭圆右焦点的直线交于两点,为的中点,且的斜率为.(Ⅰ)求的方程;(Ⅱ)为上的两点,若四边形的对角线,求四边形面积的最大值 .20 . ( 201 2 · 20 )设抛物线的焦点为 F ,准线为 l , A 为 C上的一点,已知以 F 为圆心, FA 为半径的圆 F 交 l 于 B , D 两点 .(Ⅰ)若∠ BFD =90 º ,△ AB D 面积为,求 p 的值及圆 F 的方程;(Ⅱ)若 A 、 B 、 F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点,求坐标原点到 m , n 的距离的比值 .21 . ( 201 1 · 20 )在平面直角坐标系 xOy 中,已知点 A (0, - 1) , B 点在直线 y= - 3 上, M 点满足,, M 点的轨迹为曲线 C .(Ⅰ)求 C 的方程;(Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值 .§ 1 3 . 函数与导数1 . ( 201 7 · 11 )若是函数的极值点,则的极小值为()A. B. C. D.12 . ( 201 6 · 12 )已知函数满足,若函数与图像的交点为,,… ,,则()A . 0B . mC . 2 mD . 4 m3 . ( 2015· 5 )设函数,则()A . 3B . 6C . 9D . 124 . ( 2015· 10 )如图,长方形 ABCD 的边 AB =2 , BC =1 ,O 是 AB 的中点,点 P 沿着边 BC , CD 与 DA 运动,记∠ BOP = x. 将动点 P 到 A ,B 两点距离之和表示为 x 的函数 f ( x ),则 f ( x )的图像大致为()A .B .C .D .5 . ( 2015· 12 )设函数是奇函数的导函数,,当 x >0 时,,则使得 f ( x ) >0 成立的 x 的取值范围是()A .B .C .D .6 . ( 201 4 · 8 )设曲线 y = ax - ln( x +1) 在点 (0,0) 处的切线方程为 y =2 x ,则 a = ()A . 0B . 1C . 2D . 37 . ( 201 4 · 12 )设函数,若存在的极值点满足,则 m 的取值范围是()A .B .C .D .8 . ( 201 3 · 8 )设,,,则()A .B .C .D .9 . ( 201 3 · 10 )已知函数,下列结论中错误的是()A .B . 函数的图像是中心对称图形C . 若是的极小值点,则在区间单调递减D . 若是的极值点,则10 . ( 2012·10 )已知函数,则的图像大致为()A. B. C. D.11 . ( 2012·12 )设点 P 在曲线上,点在曲线上,则的最小值为()A. B. C. D.12 . ( 201 1 · 2 )下列函数中,既是偶函数又在单调递增的函数是()A .B .C .D .13 . ( 201 1 · 9 )由曲线,直线及 y 轴所围成的图形的面积为()A .B . 4C .D . 614 . ( 201 1 · 12 )函数的图像与函数的图像所有交点的横坐标之和等于()A . 2B . 4C . 6D . 81 5 .( 201 6 · 16 )若直线 y = kx + b 是曲线 y = ln x +2 的切线,也是曲线 y = ln ( x + 1 ) 的切线,则 b = .1 6 . ( 201 4 · 15 )已知偶函数 f ( x ) 在[0, + ∞ ) 单调递减, f (2)=0. 若 f ( x - 1)>0 ,则 x 的取值范围是 _________.17 . ( 201 7 · 21 )已知函数,且.( 1 )求 a ;( 2 )证明:存在唯一的极大值点,且.18 . ( 201 6 · 21 )(Ⅰ)讨论函数的单调性,并证明当>0 时,;(Ⅱ)证明:当时,函数有最小值 . 设 g ( x ) 的最小值为,求函数的值域 .19 . ( 2015· 21 )设函数.(Ⅰ)证明: f ( x ) 在( - ∞ , 0 )单调递减,在( 0 ,+∞ )单调递增;(Ⅱ)若对于任意 x 1 , ,x 2 ∈ [ - 1 , 1] ,都有| f ( x 1 ) - f ( x 2 ) |≤ e - 1 ,求 m 的取值范围.20 . ( 201 4 · 21 )已知函数.(Ⅰ)讨论的单调性;(Ⅱ)设,当时,,求的最大值;(Ⅲ)已知,估计 ln2 的近似值(精确到 0.001 ) .21 . ( 201 3 · 21 )已知函数.(Ⅰ)设是的极值点,求,并讨论的单调性;(Ⅱ)当时,证明.22 . ( 201 2 · 21 )已知函数.(Ⅰ)求的解析式及单调区间;(Ⅱ)若,求的最大值 .23 . ( 201 1 · 21 )已知函数,曲线在点处的切线方程为.(Ⅰ)求 a 、 b 的值;(Ⅱ)如果当,且时,,求 k 的取值范围 .§ 1 4 . 几何证明选讲1 . ( 201 6 · 22 )如图,在正方形 ABCD 中, E , G 分别在边DA , DC 上(不与端点重合),且 DE = DG ,过 D 点作 DF ⊥ CE ,垂足为 F . (Ⅰ)证明: B , C , G , F 四点共圆;(Ⅱ)若 AB =1 , E 为 DA 的中点,求四边形 BCGF 的面积 .2 . ( 201 5 · 22 )如图, O 为等腰三角形 ABC 内一点,⊙ O 与△ ABC 的底边 BC 交于 M 、 N 两点,与底边上的高 AD 交于点 G ,且与 AB , AC 分别相切于 E , F 两点 .(Ⅰ)证明:EF ∥ BC ;(Ⅱ)若 AG 等于⊙ O 的半径,且 AE=MN= ,求四边形 EBCF 的面积 .3 . ( 2014 · 22 )如图, P 是⊙ O 外一点, PA 是切线, A 为切点,割线 PBC 与⊙ O 相交于点 B 、 C , PC =2 PA , D 为 PC 的中点, AD 的延长线交⊙ O 于点 E .证明:(Ⅰ) BE = EC ;(Ⅱ) AD · DE = 2 PB 2 .4 . ( 201 3 · 22 )如图,为外接圆的切线,的延长线交直线于点,,分别为弦与弦上的点,且, B 、 E 、 F 、 C 四点共圆 .(Ⅰ)证明:是外接圆的直径;(Ⅱ)若,求过 B 、 E 、 F 、 C 四点的圆的面积与外接圆面积的比值 .5 . ( 201 2 · 22 )如图, D , E 分别为△ ABC 边 AB , AC 的中点,直线 DE 交于△ ABC 的外接圆于 F , G 两点,若 CF // AB ,证明:(Ⅰ) CD = BC ;(Ⅱ)△ BCD ∽ △ GBD .6 . ( 201 1 · 22 )如图, D , E 分别为△ ABC 的边 AB , AC 上的点,且不与△ ABC 的顶点重合 . 已知 AE 的长为 m , AC 的长为 n , AD ,AB 的长是关于 x 的方程 x 2 - 14 x + mn =0 的两个根 .(Ⅰ)证明: C 、 B 、 D 、 E 四点共圆;(Ⅱ)若∠ A =90 º ,且 m =4 , n =6 ,求 C 、 B 、 D 、 E 所在圆的半径 .§ 1 5 . 坐标系与参数方程1 . ( 201 7 · 22 )在直角坐标系 xo y 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为.( 1 ) M 为曲线 C 1 上的动点,点 P 在线段 OM 上,且满足,求点 P 的轨迹 C 2 的直角坐标方程;( 2 )设点 A 的极坐标为,点 B 在曲线 C 2 上,求△ OAB 面积的最大值.2 . ( 201 6 · 23 )在直角坐标系 xOy 中,圆 C 的方程为.(Ⅰ)以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,求 C 的极坐标方程;(Ⅱ)直线 l 的参数方程是( t 为参数), l 与 C 交于 A , B 两点,,求 l 的斜率 .3 . ( 201 5 · 23 )在直角坐标系中,曲线 C 1 :( t 为参数,t ≠ 0 )其中,在以 O 为极点, x 轴正半轴为极轴的极坐标系中,曲线 C 2 :, C 3 : .(Ⅰ)求 C 2 与 C 3 交点的直角坐标;(Ⅱ)若 C 1 与 C 2 相交于点 A , C 1 与 C 3 相交于点 B ,求 | AB | 的最大值 .4 . ( 201 4 · 23 )在直角坐标系 xoy 中,以坐标原点为极点, x 轴为极轴建立极坐标系,半圆 C 的极坐标方程为,.(Ⅰ)求 C 的参数方程;(Ⅱ)设点 D 在 C 上, C 在 D 处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定 D 的坐标 .5 . ( 201 3 · 23 )已知动点 P , Q 都在曲线上,对应参数分别为t= α 与t= 2 α ( 0< α <2 π ) , M 为 PQ 的中点 .(Ⅰ)求 M 的轨迹的参数方程;(Ⅱ)将 M 到坐标原点的距离 d 表示为α 的函数,并判断 M 的轨迹是否过坐标原点 .6 . ( 201 2 · 23 )已知曲线 C 1 的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程是ρ = 2 .正方形 ABCD 的顶点都在 C 2 上,且 A , B , C , D 依逆时针次序排列,点 A 的极坐标为.(Ⅰ)点 A , B , C , D 的直角坐标;(Ⅱ)设 P 为 C 1 上任意一点,求 | PA | 2 + | PB | 2 + | PC | 2 + | PD | 2 的取值范围 .7 . ( 201 1 · 23 )在直角坐标系 xOy 中,曲线 C 1 的参数方程为(为参数), M 是 C 1 上的动点, P 点满足, P 点的轨迹为曲线 C 2 . (Ⅰ)求 C 2 的方程;(Ⅱ)在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,射线与 C 1 的异于极点的交点为 A ,与 C 2 的异于极点的交点为 B ,求 | AB | .§ 1 6 . 不等式选讲1 . ( 201 7 · 23 )已知,证明:( 1 );( 2 ).2 . ( 201 6 · 24 )已知函数, M 为不等式的解集 . (Ⅰ)求 M ;(Ⅱ)证明:当 a ,b ∈ M 时,.3 . ( 201 5 · 24 )设 a , b , c , d 均为正数,且,证明:(Ⅰ)若> ,则;(Ⅱ)是的充要条件 .4 . ( 201 4 · 24 )设函数.(Ⅰ)证明:f ( x ) ≥ 2 ;(Ⅱ)若 f (3) < 5 ,求 a 的取值范围 .5 . ( 201 3 · 24 )设均为正数,且.证明:(Ⅰ);(Ⅱ).6 . ( 201 2 · 24 )已知函数 f ( x ) = | x + a | + | x - 2|.(Ⅰ)当 a = - 3 时,求不等式f ( x ) ≥ 3 的解集;(Ⅱ)若f ( x ) ≤ | x - 4 | 的解集包含 [1, 2] ,求 a 的取值范围 .7 . ( 201 1 · 24 )设函数,其中.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集为,求 a 的值 .参考答案§ 1 . 集合及其运算1 .【答案: C 】解析:由,得,所以,,故选 C.2. 【答案: C 】解析:,∴ ,∴ ,故选C .3 . 【答案: A 】解析:由已知得,故,故选 A .4 .【答案: D 】解析:∵ ,∴ .5 .【答案: A 】解析:解不等式 ( x - 1) 2 < 4 ,得 - 1 < x < 3 ,即 M = { x | - 1 < x < 3} .而 N = { - 1, 0, 1, 2, 3} ,所以M ∩ N = {0, 1, 2} ,故选 A.6 .【答案: D 】解析:要在 1 , 2 , 3 , 4 , 5 中选出两个,大的是 x ,小的是 y ,共种选法 .§ 2 . 复数计算1 .【答案: D 】解析:,故选 D.2 .【答案: A 】解析:∴ ,,∴ ,故选 A .3 . 【答案: B 】解析:由已知得 4 a + ( a 2 - 4) i = - 4 i ,所以 4 a = 0 , a 2 - 4 = - 4 ,解得 a =0 ,故选 B.4 .【答案: A 】解析:∵ ,复数,在复平面内的对应点关于虚轴对称,∴ ,∴ .5 .【答案: A 】解析:由 (1 - i ) · z =2 i ,得==- 1 + i .6 .【答案: C 】解析:经计算,复数的共轭复数为,的虚部为,综上可知 P 2 , P 4 正确 .7 . 【答案: C 】解析:= 共轭复数为 C .§ 3 . 简易逻辑1 .【答案: D 】解析:由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选 D .2 . 【答案: A 】解析:由得.由得,故选 A .3 . 【答案: 1 和 3 】解析:由题意得:丙不拿( 2 , 3 ),若丙( 1 , 2 ),则乙( 2 , 3 ),甲( 1 , 3 )满足;若丙( 1 , 3 ),则乙( 2 , 3 ),甲( 1 , 2 )不满足,故,甲( 1 , 3 ) . § 4 . 平面向量1 .【答案: B 】解析:以 B C 为 x 轴, BC 的垂直平分线 AD 为 y 轴, D 为坐标原点建立坐标系,则,设 P ( x , y ) ,所以,所以当时,所求的最小值为,故 B.2. 【答案: D 】解析:,∵ ,∴ ,解得,故选 D .3 .【答案: A 】解析:两式相减得:. 故选 A .4 . 【答案:】解析:因为向量与平行,所以,则,所以.5 .【答案: 2 】解析:以 AB 所在直线为 x 轴, AD 所在直线为 y 轴建立平面直角坐标系,则点 A的坐标为 (0,0) ,点 B 的坐标为 (2,0) ,点 D 的坐标为 (0,2) ,点 E 的坐标为 (1,2) ,则= (1,2) ,= ( - 2, 2) ,所以.6 .【答案:】解析:因,即:,解得.§ 5 . 程序框图1 .【答案: B 】解析:,故选 B .2. 【答案: C 】解析:第一次运算:,第二次运算:,第三次运算:,故选 C .3 . 【答案: B 】解析:程序在执行过程中, a , b 的值依次为 a =14 , b =18 , b =4 , a =10 , a =6 , a =2 , b =2 ,此时 a = b =2 程序结束,输出 a 的值为 2 ,故选 B .4 .【答案: D 】。
2011年—2017年新课标全国卷1理科数学分类汇编——1.集合与常用逻辑用语
2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)1.集合与常用逻辑用语一、选择题【2017,1】已知集合A ={x x <1},B ={x 3x <1},则()A.A B = {x | x <0}B.A B =R C.A B = {x | x >1}D.A B=∅【2016,1】设集合A = {x x2 - 4x + 3 <0},B = {x 2x - 3 > 0} ,则A B =()A.(-3,-3)2B.(-3,3)2C.(1,3)2D.(3,3)2【2015,3】设命题p :∃n∈N,n2 > 2n ,则⌝p 为()A.∀n ∈N ,n2 >2n B.∃n∈N,n2 ≤2n C.∀n ∈N ,n2 ≤2n D.∃n∈N ,n2 =2n【2014,1】已知集合A={ x | x2 - 2x - 3 ≥ 0 },B= {x -2 ≤x < 2},则A ⋂B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-x<,则( )A.A∩B= B.A∪B=R C.B ⊆A D.A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )| x∈A,y ∈A ,x -y ∈A },则B 中包含元素的个数为()A.3 B.6 C.8 D.101.集合与常用逻辑用语(解析版)一、选择题【2017,1】已知集合A = {x x < 1}, B = {x 3x < 1},则( )A . AB = {x | x < 0} B . A B = RC . A B = {x | x > 1}D . A B =∅【解析】 A = {x x < 1} , B = {x 3x < 1} = {x x < 0} ,∴ A B = {x x < 0} , A B = {x x < 1} ,故选A【2016,1】设集合 A = {x x 2 - 4x + 3 < 0} , B = {x 2x - 3 > 0} ,则 A B = ()A . (-3,- 3)2B . (-3, 3)2C . (1, 3)2D . ( 3,3)2⎫【解析】 A = {x 1 < x < 3} , B = {x 2x - 3 > 0} = ⎧x x > 3 ⎫ .故A B = ⎧x 3< x < 3 .故选 D . ⎨ 2 ⎬ ⎨ 2 ⎬ ⎩ ⎭ ⎩ ⎭【2015,3】设命题 p : ∃n ∈ N , n 2 > 2n ,则 ⌝p 为()A .∀n ∈ N , n 2 > 2nB .∃n ∈ N , n 2 ≤ 2nC .∀n ∈ N , n 2 ≤ 2nD .∃n ∈ N , n 2 = 2n解析:命题 p 含有存在性量词(特称命题),是真命题(如 n = 3 时),则其否定( ⌝p )含有全称量词(全称命题),是假命题,故选 C ..【2014,1】已知集合 A={ x | x 2- 2x - 3 ≥ 0 },B= {x -2 ≤ x < 2},则 A ⋂ B =()A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【解析】∵ A = {x | x ≤ -1或x ≥ 3},B= {x -2 ≤ x < 2},∴ A ⋂ B = {x -2 ≤ x ≤ 1},选 A.【2013,1】已知集合 A ={x |x 2-2x >0},B ={x |-x <,则()A .A ∩B =B .A ∪B =RC .B ⊆ AD .A ⊆ B解析:∵x (x -2)>0,∴x <0 或 x >2,∴集合 A 与 B 可用图象表示为:由图象可以看出 A ∪B =R ,故选 B.【2012,1】已知集合 A={1,2,3,4,5},B={( x , y )| x ∈ A , y ∈ A , x - y ∈ A },则 B 中包含元 素的个数为( )A .3B .6C .8D .10 【解析】由集合 B 可知, x > y ,因此 B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1)},B 的元素 10 个,所以选择 D .。
2011-2017年新课标全国卷2理科数学试题分类汇编(1-8章节-含解析)
2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑一、选择题(2017·2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,5(2016·2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}(2014·1)设集合M ={0,1,2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}(2013·1)已知集合M ={x|(x -1)2 < 4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}(2012·1)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )A . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 42011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑(逐题解析)(2017·2)C 【解析】∵{}1AB =,∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=,故{}1,3B =,选C.(2016·2)C 解析:()(){}120Z B x x x x =+-<∈,,∴{}01B =,,∴{}0123A B =,,,,故选C . (2015·1)A 解析:由已知得{}21B x x =-<<,故,故选A. (2014·1)D 解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}MN =.(2013·1)A 解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1,0,1,2,3},所以M ∩N={0,1,2},故选A.(2012·1)D 解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2011·10)A 解析:由||1+==a b 得1cos 2θ>-2[0,)3πθ⇒∈.由||1-==>a b 得1cos 2θ<(,]3πθπ⇒∈,故选A.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编2.复数一、选择题 (2017·1)31ii+=+() A .12i + B .12i - C .2i + D .2i -(2016·1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)(2015·2)若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .2(2014·2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4+ iD .- 4 -i(2013·2)设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i - (2012·3)下面是关于复数iz +-=12的四个命题中,真命题为( ) P 1:|z |=2,P 2:z 2=2i ,P 3:z 的共轭复数为1+i , P 4:z 的虚部为-1 .A. P 2,P 3B. P 1,P 2C. P 2,P 4D. P 3,P 4(2011·1)复数212ii +-的共轭复数是( ) A .35i -B .35i C .i -D .i2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编2.复数(逐题解析)(2017·1)D 【解析】()()()()3134221112i i i ii i i i +-+-===-++-. (2016·1)A 解析:∴30m +>,10m -<,∴31m -<<,故选A .(2015·2)B 解析:由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B. (2014·2)A 解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-.(2013·2)A 解析:由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i-+=-1+i.(2012·3)C 解析:经计算2221,||(1)21z i z z i i i==--∴==---+ =,复数z 的共轭复数为1i -+,z 的虚部为1-,综上可知P 2,P 4正确. (2011·1)C 解析:212i i+-=(2)(12),5i i i ++=共轭复数为C.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编3.程序框图(2017·8)执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2B .3C .4D .5(2017·8)(2016·8)(2015·8)(2014·7)(2016·8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( ) A .7B .12C .17D .34(2015·8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a =( ) A .0B .2C .4D .14(2014·7)执行右面程序框图,如果输入的x ,t 均为2,则输出的S = ( )A .4B .5C .6D .7(2013·6)(2012·6)(2011·3)(2013·6)执行右面的程序框图,如果输入的10N =,那么输出的S =( )A .11112310++++B .11112!3!10!++++ C .11112311++++D .11112!3!11!++++(2012·6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输入A 、B ,则( )A. A +B 为a 1,a 2,…,a N 的和B.2B A +为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D. A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(2011·3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .50402011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编3.程序框图(2017·8)【解析】解法一:常规解法否是开始 k<N输出p 输入N 结束k =1, p =1 k =k+1p=p·k∵00S =,01K =,01a =-,S S a K =+⋅,a a =-,∴ 执行第一次循环:11S =-﹑11a =﹑ 12K =;执行第二次循环:21S =﹑21a =-﹑23K =;执行第三次循环:32S =-﹑31a =﹑ 34K =;执行第四次循环:42S =﹑41a =-﹑45K =;执行第五次循环:53S =-﹑51a =﹑ 56K =;执行第五次循环:63S =﹑61a =﹑67K =;当676K =>时,终止循环,输出63S =,故输出值为3. 解法二:数列法()11nn n S S n -=+-⋅,1n K n =+,裂项相消可得()121nin i S S i =-=-⋅∑;执行第一次循环:11S =-﹑11a =﹑12K =,当6n K >时,6n =即可终止,61234564S +=-+-+=,即63S =,故输出值为3. (2016·8)C 解析:第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=,第三次运算:62517s =⨯+=,故选C . (2015·8)B 解析:程序在执行过程中,a ,b 的值依次为a =14,b =18,b =4,a =10,a =6,a =2,b =2,此时a =b =2程序结束,输出a 的值为2,故选B .(2014·7)D 解析:输入的x ,t 均为2.判断12≤?是,1221M =⋅=,235S =+=,112k =+=;判断22≤?是,2222M =⋅=,257S =+=,213k =+=,判断32≤?否,输出7S =. (2013·6)B 解析:由程序框图知,当k =1,S =0,T =1时,T =1,S =1;当k =2时,12T =,1=1+2S ; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯; …………; 当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++, k 增加1变为11,满足k >N ,输出S ,故选B .(2012·6)C 解析:由程序框图判断x >A 得A 应为a 1,a 2,…,a N 中最大的数,由x <B 得B 应为a 1,a 2,…,a N 中最小的数.(2011·3)B 解析:框图表示1n n a n a -=⋅,且11a =所求6a =720,故选B.【题目7】(2017·新课标全国Ⅱ卷理7)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 【命题意图】本题考查推理与证明的有关知识,考查考生推理论证能力.【解析】解法一:假设法甲看乙﹑丙成绩,甲不知道自己的成绩,那么乙﹑丙成绩中有一人为优,一人为良;乙已经知道 自己的成绩要么良,要么优,丙同样也是,当乙看到丙的成绩,一定知道自己的成绩,但是丙一 定不知道自己的成绩;而丁同学也知道自己的成绩要么良,要么优,只有看到甲的成绩,才能判 断自己的成绩,丁同学也一定知道自己的成绩,故只有乙﹑丁两位同学知道自己的成绩. 解法二:选项代入法当我们不知道如何下手,则从选项入手,一一假定成立,来验证我们的假设是否成立,略2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量一、选择题(2017·12)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- (2016·3)已知向量(1)(32),,=,m =-a b ,且()⊥a +b b ,则m =( )A .-8B .-6C .6D .8(2014·3)设向量a ,b 满足10|a b |+=,6|a b |-=,则a b ⋅=( )A .1B .2C .3D .5 二、填空题(2015·13)设向量a ,b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ____________. (2013·13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=_______. (2012·13)已知向量a ,b 夹角为45º,且1=||a ,102=-||b a ,则=||b .2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量(逐题解析版)一、选择题(2017·12)【解析】解法一:建系法,连接OP ,(0,OA =,()1,0OB =-,()1,0OC =.2PC PB PO +=,∴()(),PO PA x y x y ⋅=--⋅-,∴222234PO PA x y x y ⎛⋅=+=+- ⎝⎭∴34PO PA ⋅≥-,∴()322PA PC PB PO PA ⋅+=⋅≥-,∴最小值为32-解法二:均值法:∵2PC PB PO +=,∴()2PA PC PB PO PA ⋅+=⋅ 由上图可知:OA PA PO =-;两边平方可得()()2232PA POPA PO =+-⋅∵()()222PA POPA PO +≥-⋅,∴322PO PA ⋅≥-,∴()322PA PC PB PO PA ⋅+=⋅≥-,∴最小值为32-.(2016·3)D 【解析】(42)a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--=,解得8m =,选D .(2014·3)A 解析:2222||10||6210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=,两式相减得:1a b ⋅=. 二、填空题 (2015·13)12解析:因为向量a b λ+与2a b +平行,所以(2)a b k a b λ+=+,则12k k λ=⎧⎨=⎩,所以12λ=. (2013·13)2解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE =(1,2),BD =(-2,2),所以=2AE BD ⋅. (2012·13)32解析:由已知得222222|2|(2)444||4||||cos45||a b a b a a b b a a b b -=-=-⨯+=-⋅+24|||10b b =-+=,解得||32b =.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编5.线性规划一、选择题(2017·5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .9(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =()A .14B .12C .1D .2 二、填空题(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为. (2011·13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编 5.线性规划一、选择题(2017·5)A 【解析】根据约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩画出可行域(图中阴影部分), 作直线:20l x y +=,平移直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+,可得15Z =-,即min 15Z =-.解法二:直接求法对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分别为15-﹑9﹑1,故min 15Z =-,max 9Z =.(2014·9)B 解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8.(2013·9)B 解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B.二、填空题l 0l 1 3x-y-5=0yxo 12 x-3y+1=0l 2x+y-7=052CABA (1, -2a )lAy = -32x +3y -3=02x -3y +3=0x O yC B(2015·14)32解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y =-x +z 的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32.(2014·14)[3,3]-解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z 取最小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-.(2011·13)-6】解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编6.二项式定理一、选择题(2013·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-(2011·8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 二、填空题(2015·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______. (2014·13)10()x a +的展开式中,7x 的系数为15,则a =________.2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编6.二项式定理(逐题解析)一、选择题(2013·5)D 解析:因为(1+x )5的二项展开式的通项为5C r rx (0≤r ≤5,r ∈Z ),则含x 2的项为225C x +ax ·15C x =(10+5a )x 2,所以10+5a =5,a =-1. 故选D. (2011·8)D 解析:由51()(2)a x x x x+-的展开式中各项系数的和为2,得a =1(令x =1).故原式=511()(2)x x x x+-,所以通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40,故选D . 二、填空题(2015·15)3解析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.(2014·13)12解析:∵10110r r r r T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =. 2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数一、填空题(2017·11)若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -(2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑()A .0B .mC .2mD .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3(2014·12)设函数()x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞B .(,4)(4,+)-∞-∞C .(,2)(2,+)-∞-∞D .(,1)(4,+)-∞-∞ (2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= (2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A. B.C.D.(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1- B.)2ln 1(2- C. 2ln 1+ D.)2ln 1(2+(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x =B .||1y x =+C .21y x =-+D .||2x y -=(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .6 (2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A .2B .4C .6D .8 二、填空题(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. (2016·16)若直线y =kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b =. 三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(2016·21)(Ⅰ)讨论函数2()2x x f x e x -=+的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.14.(2015·21)设函数2()mx f x e x mx =+-.xxxx(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001). 16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >. 17.(2012·21)已知函数121()(1)(0)2x f x f ef x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. 18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数(解析版)(2017·11)A 【解析】∵()()211x f x x ax e -=+-∴ 导函数()()2121x f x x a x a e -'⎡⎤=+++-⎣⎦, ∵()20f '-=,∴1a =-,∴导函数()()212x f x x x e -'=+-,令()0f x '=,∴12x =-,11x =, 当x 变化时,()f x ,()f x '随变化情况如下表:从上表可知:极小值为()11f =-.故选A(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=,'=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=,'=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . (2015·5)C 解析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(2015·10)B 解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +当2x π=时,PA PB +=当点P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=tan x ,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .(2015·12)A 解析:记函数()()f x g x x =,则2()()()x f x f x g x x '-'=,因为当x >0时,xf ´(x )-f (x )<0,故当x >0时,g ´ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞, -1)∪(0, 1),故选A . (2014·8)D 解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =. (2014·12)C解析:∵()xf x mπ'=,令()0xf x mπ'==得1(),2x m k k Z =+∈,∴01(),2x m k k Z =+∈,即01|||||()|22m x m k =+≥,mxx f πsin 3)(= 的极值为3±,∴3)]([20=x f ,,34)]([22020+≥+∴m x f x 22200[()]x f x m +<,2234∴m m <+, 即:24m >,故:2m <-或2m >. (2013·8)D 解析:根据公式变形,lg 6lg 21lg3lg3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以lg 2lg 2lg 2lg 7lg 5lg 3<<,即c <b <a .故选D. (2013·10)C 解析:∵f ´(x )=3x 2+2ax +b ,∴y =f (x )的图像大致如右图所示,若x 0是f (x )的极小值点,则则在(-∞,x 0)上不单调,故C 不正确. (2012·10)B 解析:易知ln(1)0y x x =+-≤对(1,0)(0,)x ∈-+∞恒成立,当且仅当0x =时,取等号,故的值域是(-∞, 0). 所以其图像为B. (2012·12)B 解析:因为12x y e =与ln(2)y x =互为反函数,所以曲线12x y e =与曲线ln(2)y x =关于直线y =x 对称,故要求|PQ |的最小值转化为求与直线y =x平行且与曲线相切的直线间的距离,设切点为A ,则A 点到直线y =x 距离的最小值的2倍就是|PQ |的最小值.则11()122x x y e e ''===,2x e ∴=,即ln 2x =,故切点A 的坐标为(ln 2,1),因此,切点A点到直线y =x距离为d ==,所以||2ln 2)PQ d ==-. (2011·2)B 解析:由各函数的图像知,故选B.(2011·9)C 】解析:用定积分求解342420021162)(2)|323S x dx x x x =+=-+=⎰,故选C. (2011·12)D 解析:11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D . 二、填空题(2014·15)(1,3)-解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->⇔->=,又∵()f x 在[0,)+∞单调递减,∴|1|2x -<,解得:13x -<< (2016·16)1ln2-解析:ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ),()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++,∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =212x =-,∴1ln 11ln 2b x =+=-. 三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.(2017·21)解析:(1)法一:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥, 所以()1ln 0a x x --≥,即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-;当1x =时,()1ln 0a x x --≥成立. 令()1ln g x x x =--,()11'1x g x x x-=-=,当()0,1x ∈时,()'0g x <,()g x 递减,()()10g x g <=,所以:1ln x x ->,即:ln 11xx >-,所以1a ≤;当()1,x ∈+∞时,()'0g x >,()g x 递增,()()10g x g >=,所以:1ln x x ->,即:ln 11xx <-. 所以,1a ≥.综上,1a =.法二:洛必达法则:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥,所以:()1ln 0a x x --≥.即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-; 当1x =时,()1ln 0a x x --≥成立.令()ln 1x g x x =-,()()()()22111ln 1ln '11x x x x x g x x x ----==--. 令()11ln h x x x =--,()22111'xh x x x x-=-=. 当()0,1x ∈时,()'0h x >,()h x 递增,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()111ln 'ln 1limlimlim 111'x x x x xg x x x x→→→>===--,所以:1a ≤; 当()1,x ∈+∞时,()'0h x <,()h x 递减,()()10h x h <=;所以()'0g x <,()g x 递减,()()()111ln 'ln 1lim lim lim 111'x x x x x g x x x x→→→<===--,所以:1a ≥.故1a =.(2)由(1)知:()()1ln f x x x x =--,()'22ln f x x x =--,设()22ln x x x ϕ=--,则()1'2x xϕ=-.当10,2x ⎛⎫∈ ⎪⎝⎭时,()'0x ϕ<;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()'0x ϕ>. 所以()x ϕ在10,2⎛⎫ ⎪⎝⎭递减,在1,2⎛⎫+∞ ⎪⎝⎭递增.又()20e ϕ->,102ϕ⎛⎫< ⎪⎝⎭,()10ϕ=,所以()x ϕ在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎛⎫+∞ ⎪⎝⎭有唯一零点1,且当()00,x x ∈时,()0x ϕ>;当()0,1x x ∈时,()0x ϕ<; 当()1,x ∈+∞时,()0x ϕ>.又()()'f x x ϕ=,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-.由()00,1x ∈得()014f x <.因为0x x =是()f x 在()0,1的唯一极大值点,由()10,1e -∈,()10f e -≠得()()120f x f e e -->=所以220()2ef x --<<.(2016·21)(Ⅰ)讨论函数2()2x x f x e x -=+的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax a g x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. (2016·21)证明:⑴()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞,时,()0f x '>,∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>.⑵()()()24e2e xxa x x ax a g x x ----'=()4e 2e 2xxx x ax a x -++=32(2)(e )2xx x a x x -+⋅++=,[)01a ∈,,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈,,当(0,)x t ∈时,()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增,()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. (2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. (2015·21)解析:(Ⅰ)()(1)2mxf x m ex '=-+,若0m ≥,则当(,0)x ∈-∞时,10,()0mx e f x '-≤<;当(0,)x ∈+∞时,10mxe -≥,()0f x '>. 若0m <,则当(,0)x ∈-∞时,10,()0mxef x '-><;当(0,)x ∈+∞时,10mxe -<,()0f x '>,所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[-1,0]单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值,所以对于任意12,[1,1]x x ∈-,12|()()|1f x f x e -≤-的充要条件是(1)(0)1(1)(0)1f f e f f e -≤-⎧⎨--≤-⎩,即11m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①. 设函数()1t g t e t e =--+,则()1t g t e '=-,当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m ≤-≤,即①式成立;当1m >时,由()g t 的单调性,()0g m >,即1me m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-,综上,m 的取值范围是[-1,1].(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001).(2014·21)解析:(Ⅰ)1()2()2=220.x x x x xxf x e e x x R f x e e e e --'=--∈∴=+-+-≥=,,∴当且仅当x =0时等号成立,所以函数()f x 在R 上单调递增. (Ⅱ)22()(2)4()44(2),x x x x g x f x bf x e e x b e e x --=-=-----∴当x >0时,2244(2)0,x x x x e e x b e e x ------->22()2[2()(42)]x x x x g x e e b e e b --'∴=+-++- 2(2)[(22)]x x x x e e e e b --=+-+--,2x x e e -+≥=,2(2)0x x e e -∴+-≥,(1) 当2b ≤时,()0g x '≥,当且仅当x =0时等号成立. 所以此时g (x )在R 上单调递增,而g (0)=0,所以对任意x >0,有g (x )>0.(2) 当2b >时,若x 满足222x x e e b -<+<-时,即0ln(1x b <<-时,()0g x '<,而g (0)=0,因此当0ln(1x b <<-时,g (x )<0.综上可知,当2b ≤时,才对任意的x >0,有g (x )>0,因此b 的最大值为2. (Ⅲ)由(Ⅱ)知,32(21)ln 22g b =-+-, 当b =2时,36ln 202g =->,3ln 20.692812>>;当1b =时,ln(1b -=32)ln 202g =--<,18ln 20.693428+<<,所以ln2的近似值为0.693. (2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >. (2013·21)解析:(Ⅰ)f ′(x )=1x e x m-+.由x =0是f (x )的极值点得f ′(0)=0,所以m =1.于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=11x e x -+.函数f ′(x )=11x e x -+在(-1,+∞)单调递增,且f ′(0)=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.(Ⅱ)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=12x e x -+在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得0x e =012x +,ln(x 0+2)=-x 0,故f (x )≥f (x 0)=012x ++x 0=20012x x (+)+>0.综上,当m ≤2时,f (x )>0. (2012·21)已知函数121()(1)(0)2x f x f ef x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. (2012·21)解析:(Ⅰ)1()(1)(0)x f x f e f x -''=-+,令x =1得,f (x )=1,再由121()(1)(0)2x f x f e f x x -'=-+,令0x =得(1)f e '=.所以)(x f 的解析式为21()2x f x e x x =-+,∴()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00f x x '>⇔>,()00f x x '<⇔<,所以函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞.(Ⅱ)若b ax x x f ++≥221)(恒成立,即21()()(1)02x h x f x x ax b e a x b =---=-+-≥恒成立,()(1)x h x e a '=-+.(1)当10a +<时,()0h x '>恒成立,()h x 为R 上的增函数,且当x →-∞时,()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立,则0b ≤,(1)0a b +=;(3)当10a +>时,()(1)xh x e a '=-+为增函数,由()0h x '=得ln(1)x a =+,故()0ln(1)f x x a '>⇔>+,()0ln(1)f x x a '<⇔<+,当ln(1)x a =+时,()h x 取最小值(ln(1))1(1)ln(1)h a a a a b +=+-++-.依题意有(ln(1))1(1)ln(1)0h a a a a b +=+-++-≥,即1(1)ln(1)b a a a ≤+-++,10a +>,22(1)(1)(1)ln(1)a b a a a ∴+≤+-++,令22()ln 0u x x x x x =-> (),则()22ln (12ln )u x x x x x x x '=--=-,()00()0u x x u x ''>⇔<<<x ⇔>,所以当x =时,()u x 取最大值2eu =.故当1a b +==(1)a b +取最大值2e.综上,若b ax x x f ++≥221)(,则b a )1(+的最大值为2e. (2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 解析:(Ⅰ)221(ln )()(1)x x b x f x x x α+-'=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (Ⅱ)由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.考虑函数2(1)(1)()2ln k x h x x x --=+(0)x >,则22(1)(1)2'()k x x h x x-++=. (i)设0k ≤,由222(1)(1)()k x x h x x+--'=知,当1x ≠时,()0h x '<. 而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-;当x ∈(1,+∞)时,h (x )<0,可得21()01h x x>-,从而当x >0,且x ≠1时,ln ()01x k f x x x -+>-,即ln ()1x kf x x x>+-. (ii )设0<k <1.由于当x ∈(1,k-11)时,(k -1)(x 2 +1)+2x >0,故h ´(x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x - h (x )<0,与题设矛盾. (iii )设k ≥1.此时h ´(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x)>0,可得211x -h (x )<0,与题设矛盾.综上可得,k 的取值范围为(-∞,0].2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编8.函数及其性质一、填空题(2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑()A .0B .mC .2mD .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= (2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A. B.C.D.(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x =B .||1y x =+C .21y x =-+D .||2x y -=(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A .2B .4C .6D .8 二、填空题(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.xxxx2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编8.函数及其性质(逐题解析版)(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=,'=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=,'=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2015·5)C 解析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(2015·10)B 解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +当2x π=时,PA PB +=当点P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=tan x ,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .(2013·8)D 解析:根据公式变形,lg 6lg 21lg3lg3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以lg 2lg 2lg 2lg 7lg 5lg 3<<,即c <b <a .故选D. (2012·10)B 解析:易知ln(1)0y x x =+-≤对(1,0)(0,)x ∈-+∞恒成立,当且仅当0x =时,取等号,故的值域是(-∞, 0). 所以其图像为B. (2011·2)B 解析:由各函数的图像知,故选B. (2011·12)D 解析:11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D . 二、填空题(2014·15)(1,3)-解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->⇔->=,又∵()f x 在[0,)+∞单调递减,∴|1|2x -<,解得:13x -<<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011—2017年新课标高考全国Ⅰ卷理科数学客观题分类汇编1.集合与常用逻辑用语一、选择题【2017,1】已知集合,,则()A.B.C.D.【2016,1】设集合,,则()A.B.C.D.【2015,3】设命题:,,则为()A.,B.,C.,D.,【2014,1】已知集合A={|},B=,则=( ) .[-2,-1] .[-1,2).[-1,1] .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-<x<},则( ) A.A∩B=B.A∪B=R C.B A D.A B【2012,1】已知集合A={1,2,3,4,5},B={(,)|,,},则B中包含元素的个数为()A.3 B.6 C.8 D.102.函数及其性质一、选择题【2017,5】函数在单调递减,且为奇函数.若,则满足的的取值范围是()A.B.C.D.【2017,11】设为正数,且,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【2016,7】函数在的图像大致为()A.B.C.D.【2016,8】若,,则()A .B .C .D .【2014,3】设函数,的定义域都为R ,且是奇函数,是偶函数,则下列结论正确的是().是偶函数.||是奇函数.||是奇函数.||是奇函数【2013,11】已知函数f(x)=若|f(x)|≥ax,则a的取值范围是( ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,10】已知函数,则的图像大致为()【2011,12】函数的图像与函数的图像所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【2011,2】下列函数中,既是偶函数又在单调递增的函数是()A.B.C.D.xyO 11A.1yxO 1xyO 111xy1OB.C.D.二、填空题【2015,13】若函数f(x)=x ln(x+)为偶函数,则a=3.导数及其应用一、选择题【2014,11】已知函数=,若存在唯一的零点,且>0,则的取值范围为.(2,+∞).(-∞,-2).(1,+∞).(-∞,-1)【2012,12】设点P在曲线上,点Q在曲线上,则的最小值为()A.B.C.D.【2011,9】由曲线,直线及轴所围成的图形的面积为()A.B.4 C.D.6二、填空题【2017,16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D,E,F重合,得到三棱锥.当△ABC.的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【2013,16】若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.4.三角函数、解三角形一、选择题【2017,9】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【2016,12】已知函数,为的零点,为图像的对称轴,且在单调,则的最大值为()A.11 B.9 C.7 D.5【2015,8】函数=的部分图象如图所示,则的单调递减区间为()A.B.C.D.【2015,2】()A.B.C.D.【2014,6】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示为的函数,则=在[0,]上的图像大致为()【2014,8】设,,且,则()....【2012,9】已知,函数在(,)上单调递减,则的取值范围是()A.[,] B.[,] C.(0,] D.(0,2] 【2011,5】已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=A.B.C.D.【2011,11】设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增二、填空题【2015,16】在平面四边形中,,,则的取值范围是.【2014,16】已知分别为的三个内角的对边,=2,且,则面积的最大值为.【2013,15】设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.【2011,16】在中,,则的最大值为.5.平面向量一、选择题【2015,7】设为所在平面内一点,则()A.B.C.D.【2011,10】已知a与b均为单位向量,其夹角为,有下列四个命题其中的真命题是()A.B.C.D.二、填空题【2017,13】已知向量a,b的夹角为60°,|a|=2, | b |=1,则| a +2 b |= .【2016,13】设向量a,b,且a b a b,则.【2014,15】已知A,B,C是圆O上的三点,若,则与的夹角为.【2013,13】已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t=_____ _____.【2012,13】已知向量,夹角为45°,且,,则_________.6.数列一、选择题【2017,4】记为等差数列的前项和.若,,则的公差为()A.1 B.2 C.4 D.8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110 【2016,3】已知等差数列前项的和为,,则()A.B.C.D.【2013,7】设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=( ).A.3 B.4 C.5 D.6【2013,12】设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=,c n+1=,则( ).A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列【2013,14】若数列{a n}的前n项和,则{a n}的通项公式是a n=__________.【2012,5】已知{}为等比数列,,,则()A.7 B.5 C.-5 D.-7二、填空题【2016,15】设等比数列满足,,则的最大值为.【2012,16】数列{}满足,则{}的前60项和为__________.7.不等式、推理与证明一、选择题【2014,9)】不等式组的解集记为.有下面四个命题::;:;:;:.其中真命题是().,.,.,.,二、填空题【2017,14】设x,y满足约束条件,则的最小值为.【2016,16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B 的利润之和的最大值为元.【2015,15】若x,y满足约束条件,则的最大值为.【2014,14】甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.【2012,14】设,满足约束条件,则的取值范围为__________ _.【2011,13】若变量满足约束条件则的最小值为.8.立体几何一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【2016,11】平面过正方体的顶点,平面,平面,平面,则所成角的正弦值为A.B.C.D.【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A. B. C.D.【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为,则( )A .1B .2C .4D .8【2015年,11题】 【2014年,12题】 【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )...6.4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )3cm D .3cm C .3 cm B .3cm A .【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013年,8】【2012年,7】【2011年,6】【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.15【2012,11】已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()二、填空题【2011,15】已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.9.解析几何一、选择题【2017,10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【2016,10】以抛物线的顶点为圆心的圆交于两点,交的准线于两点,已知,,则的焦点到准线的距离为()A.2 B.4 C.6 D.8【2016,5】已知方程表示双曲线,且该双曲线两焦点间的距离为,则的取值范围是()A.B.C.D.【2015,5】已知是双曲线:上的一点,是的两个焦点,若,则的取值范围是()A.B.C.D.【2014,4】已知是双曲线:的一个焦点,则点到的一条渐近线的距离为..3 ..【2014,10】已知抛物线:的焦点为,准线为,是上一点,是直线与的一个交点,若,则=()...3 .2【2013,4】已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为( ).A.y=B.y=C.y=D.y=±x【2013,10】已知椭圆E:(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB 的中点坐标为(1,-1),则E的方程为( )A.B.C.D.【2012,4】设、是椭圆E:()的左、右焦点,P为直线上一点,是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【2012,8】等轴双曲线C的中心在原点,焦点在轴上,C与抛物线的准线交于A,B两点,,则C的实轴长为()A.B.C.4 D.8【2011,7】设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A ,B两点,为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3二、填空题【2017,15】已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【2015,14】一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为.【2011,14】在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为.过的直线L交C于两点,且的周长为16,那么的方程为.10.统计、概率分布列、计数原理一、选择题【2017,2】如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【2017,6】展开式中的系数为()A.15 B.20 C.30 D.35【2016,4】某公司的班车在,,发车,小明在至之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【2015,10】的展开式中,的系数为()A.10 B.20 C.30 D.60【2015,4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【2014,5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率()....【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【2013,9】设m为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为.若13a=7b,则m=( )A.5 B.6 C.7 D.8【2012,2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【2011,8】的展开式中各项系数的和为2,则该展开式中常数项为()A.B.C.20 D.40【2011,4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.二、填空题【2016,14】的展开式中,的系数是.(用数字填写答案)【2014,13】的展开式中的系数为.(用数字填写答案) 【2012,15】某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为_________.11.复数及其运算一、选择题【2017,3】设有下面四个命题若复数满足,则;若复数满足,则;若复数满足,则;若复数,则.其中的真命题为()A.B.C.D.【2016,2】设,其中是实数,则()A.B.C.D.【2015,1】设复数满足,则=()A.1 B.C.D.2 【2014,2)】=()....【2013,2】若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.C.4 D.【2012,3】下面是关于复数的四个命题::;:;:的共轭复数为;:的虚部为.其中的真命题为()A.,B.,C.,D.,【2011,1】复数的共轭复数是()A.B.C.D.11.程序框图一、选择题【2017,8】右面程序框图是为了求出满足的最小偶数n,那么在和和两个空白框中,可以分别填入A.A>1000和n=n+1 B.A>1000和n=n+2C.A1000和n=n+1 D.A1000和n=n+2【2017,8】【2016,9】【2015,9】【2016,9】执行右面的程序框图,如果输入的,,,则输出的值满足()A.B.C.D.【2015,9】执行右面的程序框图,如果输入的,则输出的()A.B.C.D.【2014,7】执行下图的程序框图,若输入的分别为1,2,3,则输出的=()....【2013,5】执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]【2012,6】如果执行右边和程序框图,输入正整数()和实数,,…,,输出A,B,则()A.为,,…,的和B.为,,…,的算术平均数C.和分别是,,…,中最大的数和最小的数D.和分别是,,…,中最小的数和最大的数【2013,5】 【2012,6】 【2011,3】 【2011,3】执行右面的程序框图,如果输入的N 是6,那么输出的p 是( ) A .120 B .720 C .1440 D .5040。