步进电机驱动器的设计资料.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机驱动器的设计资料.doc
1 绪论
1.1 引言
步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不高,且对成本敏感的领域。
技术进步给步进电动机带来挑战的同时,也带来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱动器。
1.2 步进电机及其驱动器的发展概况
按励磁方式分类,可以将步进电动机分为永磁式(PM) 、反应式(VR)和混合式(HB)三类,混合式步进电动机在结构和原理上综合了反应式和永磁式步进电动机的优点,因此混合式步进电动机具有诸多优良的性能,本课题的研究对象正是混合式步进电机。20 世纪60 年代后期,各种实用性步进电动机应运而生,而半导体技术的发展则推进了步进电动机在众多领域的应用。在近30 年间,步进电动机迅速的发展并成熟起来。从发展趋势来讲,步进电动机已经能与直流电动机、异步电动机以及同步电动机并列,从而成为电动机的一种基本类型。特别是混合式步进电动机以其优越的性能(功率密度高于同体积的反应式步进电动机50%)得到了较快的发展。其中,60 年代德国百格拉公司申请了四相(两相)混合式步进电动机专利,70 年代中期,百格拉公司又申请了五相混合式步进电动机及驱动器的专利,发展了
性能更高的混合式步进电动机系统。这个时期各个发达工业国家建立了混合式步进电动机规模生产企业。此外,1993 年,也就是五相混合式步进电动机及驱动器专利到期之时,百格拉公司又申请了三相混合式步进电动机的专利。
步进电机具有以下优点:(1)步距值不容易受各种干扰因素的影响。它的速度主要取决于输入脉冲的频率,转子运动的总位移取决于输入的脉冲总数,相对来说,电压大小、电流数值和温度的变化等因素不影响步距值;(2)无位置累积误差。步进电动机每走一步的实际步距值与理论值总有一定的误差,走任意步数之后也总有一定误差,但是因每转一周的累计误差为零,所以步距值的误差是不累积的;(3)控制性能好。改变通电顺序,就可以方便的控制电动机正转或反转,起动、转向、制动、改变转速及其他任何运动方式的改变都可以在少数脉冲内通过改变电脉冲输入就能控制,在一定的频率范围内运行时,任何运行方式都不会丢失一步;(4)步进电机还有自锁能力,当步进电机停止输入,而让最后一个脉冲控制的绕组继续保持通电时,则电动机可以保持在最后一个脉冲控制的角位移的终点位置上,能够实现停车时转子定位。因此,步进电机在机械、冶金、电力、纺织、电信、仪表、办公自动化设备、医疗、印刷以及航空航天等工业领域获得了广泛的应用。例如机械行业中,在数控机床上的应用,可以算是典型的例子。可以说步进电动机是经济型数控机床的核心。
我国的步进电机行业起步较早,但大多都是反应式步进电动机,直到目前,仍有许多国内用户使用反应式步进电机。混合式步进电机的特点是效率高、力矩大、运行平稳、高频运行时矩频特性好,在发达国家中,越来越广泛的使用性能优越的五相和三相混合式步进电机,步进电机驱动技术的发展也十分迅速。我国步进电机的应用虽然起步较早,但其驱动技术的发展相对落后,成为制约步进电机应用与发展的主要因素。国内仍有不少用户沿用己被国外淘汰的单电压串电阻等落后的驱动方式,驱动器电路中使用分立元件居多,可靠性差,且各厂家的驱动技术规范、技术等级、生产工艺参差不齐。目前发达国家的驱动器已进入恒相电流与细分技术相结合的阶段,使步进电机低速运行振荡很小、高速运行时转矩下降较小。[1-3]步进电机驱动技术的进步离不开电力电子技术和微机控制技术的发展。交流调速技术的发展过程表明,现代工业生产及社会发展的需要推动了交流调速系统的飞速发展;现代控制理论的发展和应用,电力电子技术的发展和应用,微机控制技术及大规模集成电路的发展和应用为交流调速的飞速发展创造了技术和物质条件。
电力电子器件及微处理器是高性能交流传动系统和现代电力电子设备的核心。电力半导体器件以开关阵列的形式应用于电力变流器中,把相同频率、或者是不同频率的电能进行交-直(整流器)、直-直(斩波器)、直-交(逆变器)和交-交变换。电力电子器件经历了以下几个发
展阶段:第一个阶段是20 世纪80 年代中期以前,是以门极不可关断的晶闸管(Thyristor)为代表的半控型器件,这种在20 世纪50 年代晚期出现的器件使得固态电力电子器件进入了一个新纪元。晶闸管主要用于直流电动机的驱动器中,必须配以辅助换流措施才能实现可靠的换流,控制线路复杂、效率低、可靠性差,而且开关频率低,使得变频电源中含有大量的谐波分量,转矩脉动大、噪声大及发热严重。第二个阶段是20 世纪80 年代中期到90 年代,是以门极可关断晶闸管(GTO)、双极型晶体管(BJT)、电力场效应晶体管(P-MOSFET)等为代表的全控型器件。如今GTO 产品的额定电流、电压已超过6kA、6kV,在10MViA 以上的特大型电力电子变换装置中已有不少应用,但其为电流驱动,故所需的驱动功率较大;BJT已模块化,在中小容量装置中得到推广,但其驱动功率较大,开关速度慢,影响了逆变器的工作频率和输出波形;MOSFET 开关速度快,驱动功率小,电压型控制,但器件功率等级低,导通压降大,限制了逆变器的容量。第三个阶段是20 世纪90 年代,是以绝缘栅双极型晶体管(IGBT)为代表的复合型功率器件,主要特点为门极电压控制,故其所需驱动功率较小。IGBT 结合了MOSFET和BJT的优点,具有高开关频率,门极电压驱动,不存在二次击穿问题,无需吸收电路,又具有BJT大电流密度,低导通压降的特性。新一代的智能功率模块(IPM)集功率器件IGBT、驱动电路、检测电路和保护电路于一体,实现过流、短路、过热、欠压保护,模块包含三相桥逆变器,从而使装置体积缩小,可靠性提高。20 世纪90 年代末至今,电力电子器件的发展进入了第四代,这里只介绍一下电力半导体家族中的最新成员—集成门极换向晶闸管(Integrated gate-commutated thyristor),它是ABB公司于1997年发明的,它基本上是一种高压、大功率、非对称截止GTO 晶闸管,其关断电流增益为1,可见其驱动功率之小。该器件的导通压降、开通di/dt、门极驱动损耗、少数载流子存储时间和关断dv/dt 据称都优于GTO晶闸管。器件更快的开关速度使得无缓冲器运行成为可能,也使其开关频率高于GTO晶闸管。多个IGCT 可以串联或并联成更高功率的应用。该器件已经用于电力系统的联网设备(100M ViA)和中等功率(高达5MW)工业传动中。[4-6]
全数字化是交流调速系统的发展趋势。交流调速系统最初多为模拟电子电路组成,由于模拟电路固有的弊端,决定了很多控制算法很难在系统上实现。近几十年来,由于微机控制技术,特别是以单片机及数字信号处理器(DSP)为控制核心的计算机控制技术的飞速发展和广泛应用,许多复杂的控制算法得以实现,如矢量控制中的复杂坐标变换、解耦控制、滑模变结构控制、参数辨识的自适应控制等,这些是模拟电路无法做到的,可以毫不夸张的说以微处理器为核心的数字控制已成为现代交流调速系统的主要特征之一。常用于交流调速系统的微处理器简介如下。
(1). 单片机。一片单片机芯片就是一台微型计算机,其上集成有用户需要的一些外设,如定时/计数器、D/A、A/D等,这样就大大缩小了控制器的体积,降低了成本,提高了可靠性。然而单片机对大量数据的处理能力有限,因此只用于一些对性能要求不高的场合。
(2). 数字信号处理器(DSP)。为了提高运算速度,在20世纪80年代出现了数字信号处理器,其上一般集成有硬件乘法器、时钟频率很高,一些高性能的DSP 还支持浮点运算。世界各大DSP生产商还推出了集成有PWM 生成硬件、A/D、正交编码电路等专门针对于电机控制的DSP 芯片,常见的如TI 公司的C2000系列。电机控制专用的DSP芯片使控制系统硬件简化,性能和可靠性得到了空前的提高。
(3). 高级专用集成电路(ASIC)。ASIC也称为适合特定用途的IC,是能完成特定功能的专用芯片。例如用于交流变压变频用的SPWM波发生器HEF4752 (英国Mullard公司产品,适用于开关频率1kH 以下)、SLE4520(德国西门子公司产品,适用于开关频率20kH以下)。现代高级专用集成电路的功能远远超过一个发生器,往往能够包括一种特定的控制系统,例如,德国应用微电子研究所(IAM)1994 年推出的VECON,是一个交流伺服系统的单片矢量控制器,包括控制器,能完成矢量运算的DSP 协处理器、PWM 定时器,以及其他外围和接口电路,都集成在一片芯片之内,使可靠性大幅度提高。
2 混合式步进电动机的原理及其驱动控制
三相混合式步进电动机与反应式和永磁式步进电动机相比,具有很多优点,获得了越来
越广泛的应用。电流闭环、三相正弦电流驱动是三相混合式步进电动机常用的驱动方式。2.1 三相混合式步进电动机的结构和工作原理
2.1.1 三相混合式步进电动机的结构
混合式步进电动机是一种十分流行的步进电动机。它既有反应式步进电动机的高分辨率,每转步数比较多的特点,又有永磁式步进电动机的高效率,绕组电感比较小的特点,故称混合式。图2-1 给出了三相混合式步进电动机的内部结构图及其定子结构图。从结构上看,它的定子通常有多相绕组,定、转子上开有很多齿槽,类似反应式步进电动机。转子上有永久磁铁产生的轴向磁场,这与永磁式步进电动机相似。
图2-1三相混合式步进电机内部结构图及定子示意
图
Fig.2-1Three-phase hybrid stepping motor and the stator internal schematic diagram 混合式步进电动机的转子一般由环形磁钢及两段铁心组成,环形磁钢在转子的中部,轴向充磁,两段铁心分别装在磁钢的两端,转子的铁心外圆周有均匀分布的小齿,两段铁心上面的小齿沿圆周相互错开半个齿距。定、转子小齿的齿距通常相同。一段转子的磁力线沿转子表而呈放射形进入定子铁心,称为N极转子,另一段转子的磁力线是从定子沿定子表面穿过气隙回归到转子中去的,称为S极转子。可见,通过转子分段错齿和转子轴向永磁励磁,三相混合式步进电机在结构上巧妙的实现了多极对数永磁凸极同步电机的思想,从原理上讲是低速凸极永磁同步电机。可见,混合式步进电动机既可以用作同步电动机进行速度控制,又可以用作步进电动机进行位置开环控制。[7-9]
2.1.2 三相混合式步进电动机的工作原理
图2-2 给出了一台简单的三相混合式步进电动机的横截面示意图。图中三相混合式步
图2-2三相混合式步进电动机示意图
Fig.2-2Three-phase hybrid stepping motor diagram
进电动机的定子为三相六极,三相绕组分别绕在相对的两个磁极上,且这两个磁极的极性是相同的。它的每段转子铁心上有八个小齿,两段铁心上的小齿相互错开半个齿距。从电动机的某一端看,当定子的一个磁极与转子齿的轴线重合时,相邻磁极与转子齿的轴线就错开1/3齿距。
混合式步进电动机的气隙磁动势由转子永磁体产生的磁动势Fr 和定子绕组电流产生的磁动势Fs 组成。在电机运行过程中,随着绕组中通入的电流方向的变化,这两种磁动势有时是相加的,有时又是相减的,转子磁动势与定子磁势相互作用,产生电磁转矩。当A相绕组通电时,转子处于图2-2 中所示的稳定平衡位置,此时与N 段转子铁心相对的定子 A 相极下气隙磁导最大,与S 段转子铁心相对的定子 A 相极下气隙磁导最小。当外加力矩使转子偏离稳定平衡位置时,例如转子向顺时针方向转了一个小角度θ,则定子与两段转子齿的相对位置及作用转矩的方向如图2-3 所示。可以看到,两段转子铁心所受到的电磁转矩方向相同,都是使转子回到稳定平衡位置的方向。绕组的通电状态改变,电动机的稳定平衡位置也改变,在电磁转矩的作用下,转子将转到新的平衡位置。
上面说的是单相通电时的情况,但是为了增加电机的输出转矩,提高电机绕组利用率,在三相混合式步进电动机的应用中,一般采用三相同时通电的控制方式。图2-4给出了三相混合式步进电动机三相同时通电时绕组电流状态示意图, 图2-4a 到图2-4f中的转子位置分别与图2-4g中t1至t6时刻的绕组通电状态相对应。每相绕组的电流在每个周期内共上面说的是单相通电时的情况,但是为了增加电机的输出转矩,提高电机绕组利用率,在三相混合式步进电动机的应用中,一般采用三相同时通电的控制方式。图2-4给出了三相
图2-3 A相绕组通电时转子偏离平衡位置的受力图
Fig.2-3A rotor winding energized by trying to deviate from the equilibrium position
混合式步进电动机三相同时通电时绕组电流状态示意图, 图2-4a 到图2-4f中的转子位置分别与图2-4g中t1至t6时刻的绕组通电状态相对应。每相绕组的电流在每个周期内共有三个状态,电流变化一个周期,转子旋转一周。此时电机每转的步数S可由式(2-1)得到。
S=k*m*Z (2-1)式中,k 为电动机每转电流状态变化的次数;m 为电机的相数;Z 为电机齿数。对于三相混合式步进电动机,设转子有50 个齿,根据式(2-1)和图2-4 可以计算出此时电机每转步数S为:
S=4*3*50=600 (2-2)
若电机每转一周,相电流只有两个状态,即电机绕组只有正、负通电状态,无零电流状态,根据式(2-1),可得电机每转步数为300。可见,通过增加绕组通电状态数可以使混合式步进电动机的步距角减小,增加走步精度,对于减小混合式步进电动机运行过程中的振动有很大的作用。其实,这个例子也暗含了混合式步进电动机细分控制的基本原理,细分控制是目前最有效的减小步进电动机振动的方法,后面将会给出详细的介绍。
2.2 步进电动机应用中要注意的问题
当选用步进电动机作为系统的执行元件时,一定要了解步进电机的技术参数,特别是其矩频特性。步进电机输出转矩随转速升高而下降,选型时一定要参考矩频特性曲线图,
图2-4三相同时通电半步运行时绕组电流示意图
Fig.2-4Three-phase power half a step while
running winding current diagram 根据设备运动速度和加速度,计算好所需工作转矩和转动惯量。步进电动机的选用主要考虑以下几个指标:[1-3]
(1).步距角θ:每给定一个电脉冲信号,电动机转子所应该转过角度的理论值,步距角越
小,分辨率越高。其计算公式如下:
θ=NZ 360 (2-3) 式中,Z 为转子的齿数,N 为转子转过一个齿距的运行拍数。 (2).步进电机的转速n 。若步进电动机所加的控制脉冲频率为f,则步进电动机的转速为: n=NZ
f 60 (2-4) 可见步进电机转速的高低,取决于输入到步进电机驱动器的脉冲频率的高低。步进电动机在不失步、不丢步的前提下,其转速和转角与电压、负载、温度等因素无关,因而步进电动机可直接采用开环控制,简化控制系统。
(3).最大空载起动频率。电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率,起动频率越高,则电机快速响应性能越好。
图
2-5 90BYG350C 型电机的矩频特
性图 Fig.2-5 90BYG350C type motor
moment frequency response plots
(4).矩频特性。电机在某种测试条件下测得运行中输出力矩与控制脉冲频率关系的曲线称为运行矩频特性,这是步进电动机最重要的参数之一,是电机诸多动态曲线中最重要的,也是电机选择的根本依据。图 2-5为本课题所用的混合式步进电动机(型号为 90BYG350C)的矩频特性图。由图可以看到,该步进电动机的保持转矩为 6Nm,随着转速的升高,其转矩不断减小,当转速达到 1200r/min 时,转矩已不到 1.6Nm 。所以选用步进电动机时一定要参考其矩频特性图,不能只看保持转矩或最大静转矩,要根据电机运行工况,考虑一定的裕量。
(5).步进电动机的共振点。步进电机均有固定的共振区域,二、四相混合式步进电机的共振区一般在180Hz 到250Hz 之间(步距角 1.8 度)或在400Hz 左右(步距角为0.9 度),电机驱动电压越高、电机电流越大、负载越轻、电机体积越小,则共振区向上偏移。为使电机输出转矩大,避免失步和降低整个系统的噪音,一般要求工作点均偏离共振区。
2.3 步进电动机的振动和失步
步进电动机的振动是其固有的缺点,在上节所说的步进电动机选择标准中就提到,使用步进电动机时一定要考虑电动机的共振点,这样可以人为的让步进电动机运行区域避开步进电动机的共振点,使步进电动机运行的更加平稳、噪声小,避免失步。下面介绍一下步进电动机运行时产生振动的原因。
步进电动机在步进状态运行时,转子运动是一衰减振荡过程。电动机在低频步进运行时,定子绕组每改变一次通电状态,转子就前进一个步距角。由于转子的自由振荡,它将不能及时的停留在新的平衡位置。而是按自由振荡频率振荡几次才衰减到新的平衡位置。每加一次脉冲,进行一次转换,转子都从新的转矩曲线的跃变中获得一次能量的补充,这样步进电动机在低频步进运行时,类似于一种强迫振荡。当控制脉冲的频率等于或接近于步进电动机振荡频率的1/k 倍(k=1,2,3…..)时,电动机就会出现强烈的振动现象,严重的将导致失步或无法工作。
当步进电动机在高频脉冲下连续运行时,前一次的振荡尚未达到第一次回摆的最大值,下一个脉冲已经到来。当频率更高时,甚至在前一步振荡尚未达到第一次的峰值就开始下一步,则电机可以连续、平滑地转动,转速也比较稳定。但是当脉冲频率过高,达到或超过最大连续运行频率fmax时,由于绕组电感的作用,动态转矩下降很多,负载能力较弱,且由于电机的损耗,如轴承摩擦、风摩擦等都大为增加,即使在空载下也不能正常运行。另外,当脉冲频率过高时,矩角特性的移动速度相当快,转子的惯性导致转子跟不上矩角特性的移动,则转子位置距平衡位置之差越来越大,最后因超出动稳区而丢步。[10-15]
由于步进电动机特殊的运行机理,要完全消除其振荡是不可能的,只有采取一定的措施,在一定程度上抑制其振荡,防止发生失步。目前,抑制步进电机振荡的方法主要有:(1)采用细分驱动方式,适当增加细分数;(2)增加阻尼;(3)采用位置或速度闭环控制。其中第三条方法能从根本上解决步进电动机振荡的问题,但此时控制系统较复杂,成本也高。因此在实际应用中一般采用第一条和第二条方法。
增加阻尼一般有两种方法:增加机械阻尼和电气阻尼。机械阻尼是增加电机转子的干
摩擦阻力或粘性阻力。其缺点是增大了惯性,使电机的速度性能变坏,体积增大。电气阻尼则有多相激磁阻尼、延迟断开阻尼等。其实,从原理上说,细分驱动也就是采用了增加电气阻尼的技术。
对于混合式步进电动机,由于其转子中加入了永磁体,因而,混合式步进电动机具有较强的反电动势,其自身阻尼作用比较好,使其在运行过程中比较平稳、噪声低、低频振动小。从这也可以看到混合式步进电动机的性能要优于反应式步进电动机。
2.4 步进电动机的细分驱动技术
2.4.1 传统的步进电机驱动方式
单电压驱动:单电压驱动是指在步进电机绕组上加上恒定的电压,这种驱动方式的电路相当简单。但是当电机高速运行时,流经绕组的电流还未上升到额定电流就被关断,相应的平均电流减少而导致输出转矩下降。为改善高速运行的电机转矩特性,通常在连接电机绕组的线路中串联一个无感电阻来减少电气时间常数,同时成比例的增加电源电压以保持额定电流不变。但是串入电阻将加大功耗, 降低功放电路的功率,必须具备相应的散热条件才能保证电路稳定可靠的工作。所以这种电路一般仅适合于驱动小功率步进电机或对步进电机运行性能要求不高的情况。
高低压驱动:高低压驱动电路使用两种电压电源,即步进电机额定电压和比它高几倍的电源电压。当相绕组导通时,加到绕组上的电压为高电压,上升电流具有较陡峭的前沿特性。当电流上升到额定值时,关闭高压电源,用额定电压供电来维持绕组的电流。由于电机旋转反电势、相间互感等因素的影响,易使电流波形在高压工作结束和低压工作开始的衔接处呈凹形,致使电机的输出力矩有所下降。低频时绕组电流有较大的上冲,所以低频时电机振动较大,低频共振现象仍然存在。
斩波恒流驱动:斩波恒流驱动方式的供电电压比电机额定电压高得多,使电流上升和衰减速度很快,通过斩波方式使电机绕组电流在低速到高速运行范围内保持恒电流,从而保持电机输出转矩恒定。但是此种方法线路复杂、低速运行时绕组电流冲击大,使低频产生振荡,运行不平稳,噪声大、定位精度不高。
调频调压驱动:随着步进电机运行频率的提高,同时提高功率放大电路的电源电压,以补偿因运行频率上升造成的输出转矩下降。当步进电机的运行频率降低时,同时降低功率放大电路电源电压。因电压随频率而变,故既可增加高频输出转矩,又能避免低频可能出现的振荡。从理论上讲,调频调压驱动基本克服了单电压驱动、高低压驱动、斩波恒流驱动等电路。