线段的垂直平分线与角平分线综合压轴题五种模型全攻略(学生版)--初中数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段的垂直平分线与角平分线综合压轴题五种模型全攻略
【考点导航】
目录
【典型例题】
【考点一利用线段垂直平分线的性质求解】
【考点二线段垂直平分线的判定】
【考点三利用角平分线的性质求解】
【考点四角平分线的判定】
【考点五线段的垂直平分线与角平分线的综合问题】
【过关检测】
【典型例题】
【考点一利用线段垂直平分线的性质求解】
1(2023春·江苏淮安·七年级校考阶段练习)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB、AC于E,D,连接EC,则∠BEC=.
【变式训练】
1(2023·江苏·八年级假期作业)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的()
A.三条角平分线的交点
B.三边中线的交点
C.三边上高所在直线的交点
D.三边的垂直平分线的交点
2(2023春·山东济南·七年级济南市章丘区第二实验中学校考阶段练习)如图,在△ABC中,BC=8,AB的中垂线交BC于E,AC的中垂线交BC于G,则△AGE的周长等于.
3(2023春·广东深圳·七年级校考期末)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交
边AB于M,N两点,DM与EN相交于点F.
(1)若AB=10cm,求△CMN的周长;
(2)若∠MFN=65o,则∠MCN的度数为°.
【考点二线段垂直平分线的判定】
1(2023春·陕西西安·七年级校考阶段练习)如图,AD为三角形ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F,连接EF交AD于点O.
(1)若BE=DE,∠BAC=60°,求∠CDF的度数;
(2)写出AD与EF的关系,并说明理由;
【变式训练】
1(2023秋·广西河池·八年级统考期末)如图,在△ABC中,边AB,BC的垂直平分线交于点P.
(1)求证:PA=PB=PC;
(2)求证:点P在线段AC的垂直平分线上.
2(2023春·全国·八年级专题练习)如图,点D是等边△ABC外一点,∠BDC=120°,DB=DC,点E,F分别在AB,AC上,连接AD、DE、DF、EF.
(1)求证:AD是BC的垂直平分线;
(2)若ED平分∠BEF,BC=5,求△AEF的周长.
【考点三利用角平分线的性质求解】
1(2023春·山东威海·七年级统考期末)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,AB= 8,DE=4,AC=6,则S△ABC=()
A.14
B.26
C.56
D.28
【变式训练】
1(2023春·甘肃张掖·八年级校考期末)一块三角形的草坪,现要在草坪上建一个凉亭供大家休息,要使凉亭到草坪三边的距离相等,凉亭的位置应选在()
A.三角形三条边的垂直平分线的交点
B.三角形三条角平分线的交点
C.三角形三条高所在直线的交点
D.三角形三条中线的交点
2(2023春·山西运城·七年级统考期末)如图,BD平分∠ABC,P是BD上一点,过点P作PQ⊥BC 于点Q,PQ=5,O是BA上任意一点,连接OP,则OP的最小值为.
3(2023春·陕西榆林·七年级校考期末)如图,在四边形ABCD中,AD∥BC,∠D=90°,∠DAB的平分线与∠CBA的平分线相交于点P,且点P在线段CD上,∠CPB=30°.
(1)求∠PAD的度数;
(2)试说明PD=PC.
【考点四角平分线的判定】
1(2023·全国·八年级假期作业)如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.
【变式训练】
1(2023·广东惠州·校联考二模)如图,CB=CD,∠D+∠ABC=180°,CE⊥AD于E.
(1)求证:AC平分∠DAB;
(2)若AE=10,DE=4,求AB的长.
2(2023·江苏·八年级假期作业)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.
(1)求证:AD平分∠BAC;
(2)请猜想AB+AC与AE之间的数量关系,并给予证明.
【考点五线段的垂直平分线与角平分线的综合问题】
1(2023秋·河北保定·八年级统考期末)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.
(1)求证:CF=EB.
(2)连接CE,求证AD垂直平分CE.
(3)若AB=10,AF=6,求CF的长.
【变式训练】
1(2023秋·河南洛阳·八年级统考期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC 于点F,连接EF.
(1)求证:点D在EF的垂直平分线上;
(2)若AB+AC=16,S△ABC=24,则DE的长为
2(2023春·全国·八年级专题练习)如图,D为△ABC外一点,DG为BC的垂直平分线,分别过点D 作DE⊥AB,DF⊥AC,垂足分别为点E,F,且BE=CF.
(1)求证:AD为∠CAB的角平分线;
(2)若AB=8,AC=6,求AE的长.
3(2023春·全国·八年级开学考试)如图1,射线BD交△ABC的外角平分线CE于点P,已知∠A= 78°,∠BPC=39°,BC=7,AB=4.
(1)求证:BD平分∠ABC;
(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.
【过关检测】
一、选择题
1(2023春·四川成都·八年级统考期末)如图,在△ABC中,DE是AC边的垂直平分线,分别交BC、AC于D、E两点,连接AD,∠BAD=25°,∠C=35°,则∠B的度数为()
A.70°
B.75°
C.80°
D.85°
2(2023春·四川达州·八年级统考期末)如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论中,不正确的是()
A.OM+ON的值不变
B.∠PNM=∠POB
C.MN的长不变
D.四边形PMON的面积不变
二、填空题
3(2023春·山东青岛·七年级山东省青岛实验初级中学校考期末)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,AF是△ABC的中线,AB=16,AC=6,DE=5.则△ADF的面积为.
4(2023春·湖南衡阳·七年级校联考期末)如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.
三、解答题
5(2023春·河南商丘·七年级统考阶段练习)如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.
(1)如图1,若DE∥OB.
①∠DEO的度数是°,当DP⊥OE时,x=;
②若∠EDF=∠EFD,求x的值;
(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,
说明理由.
6(2023春·黑龙江哈尔滨·七年级统考期末)在△ABC中,∠BAC=60°,线段BF、CE分别平分
∠ABC、∠ACB交于点G.
(1)如图1,求∠BGC的度数;
(2)如图2,求证:EG=FG;
(3)如图3,过点C作CD⊥EC交BF延长线于点D,连接AD,点N在BA延长线上,连接NG交AC于点M,使∠DAC=∠NGD,若EB:FC=1:2,CG=10,求线段MN的长.
7(2023春·八年级课时练习)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B,点C,连接AB,PB.
(1)如图1,请指出AB与PB的数量关系,并说明理由.
(2)如图2,当P,Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.
8(2023春·浙江宁波·七年级校考期末)角平分线性质定理描述了角平分线上的点到角两边距离的关系,小储发现将角平分线放在三角形中,有一些新的发现,请完成下列探索过程:
【知识回顾】
(1)如图1,P是∠BOA的平分线上的一点,PE⊥OB于点E,作PD⊥OA于点D,试证:PE=PD
【深入探究】
(2)如图2,在△ABC中,BD为∠ABC的角平分线交于AC于D点,其中AB+BC=10,AD=2,CD=3,求AB.
【应用迁移】
(3)如图3,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连接PF,若CP=4,S△BFP=20,则AB的长度为.
9(2023·贵州遵义·校考三模)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.
(1)如图1,当D,B,F共线时,求证:
①EB=EP;
②∠EFP=30°;
(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.
10(2023春·全国·八年级专题练习)【了解概念】如图1,已知A,B为直线MN同侧的两点,点P为直线MN的一点,连接AP,BP,若∠APM=∠BPN,则称点P为点A,B关于直线l的“等角点”.
(1)【理解运用】如图2,在△ABC中,D为BC上一点,点D,E关于直线AB对称,连接EB并延长至点F,判断点B是否为点D,F关于直线AB的“等角点”,并说明理由;
(2)【拓展提升】
如图2,在(1)的条件下,若∠A=70°,AB=AC,点Q是射线EF上一点,且点D,Q关于直线AC的“等角点”为点C,请利用尺规在图2中确定点Q的位置,并求出∠BQC的度数;
(3)【拓展提升】
如图3,在△ABC中,∠ABC,∠BAC的平分线交于点O,点O到AC的距离为1,直线l垂直平分边BC,点P为点O,B关于直线l“等角点”,连接OP,BP,当∠ACB=60°时,OP+BP的值为.。