中考数学 相似 培优练习(含答案)及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学相似培优练习(含答案)及答案解析
一、相似
1.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.
(1)求抛物线对应的二次函数的表达式;
(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;
(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.
【答案】(1)解:
∴
代入,得
解得
∴抛物线对应二次函数的表达式为:
(2)解:如图,
设直线CD切⊙P于点E.连结PE、PA,作点.
由得对称轴为直线x=1,
∴
∴
∴为等腰直角三角形.
∴
∴
∴
∴为等腰三角形.
设
∴
在中,
∴
∴
整理,得
解得,
∴点P的坐标为或
(3)解:存在点M,使得∽.如图,连结
∵
∴为等腰直角三角形,
∴
由(2)可知,
∴
∴分两种情况.
当时,
∴,解得.
∴
∴
当时,
∴,解得
∴
∴
综上,点M的坐标为或
【解析】【分析】(1)用待定系数法即可求解;
(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;
(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。
2.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路
线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.
(1)此时两人相距多少米(DE的长)?
(2)张华追赶王刚的速度是多少?
【答案】(1)解:在Rt△ABC中:
∵AB=40,BC=30,
∴AC=50 m.
由题意可得DE∥AC,
∴Rt△BDE∽Rt△BAC,
∴ = ,
即 = .
解得DE= m.
答:此时两人相距 m.
(2)解:在Rt△BDE中:
∵DB=2,DE=,
∴BE=2 m.
∴王刚走的总路程为AB+BE=42 m.
∴王刚走这段路程用的时间为 =14(s).
∴张华用的时间为14-4=10(s),
∵张华走的总路程为AD=AB-BD=40-2=37(m),
∴张华追赶王刚的速度是37÷10≈3.7(m/s).
答:张华追赶王刚的速度约是3.7m/s.
【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长.
(2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间,
再根据速度=路程÷时间解之即可得出答案.
3.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为________时,四边形AOCE是菱形;
②若AE=6,BE=8,则EF的长为________.
【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.
∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.
∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)
(2)60;
【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;
理由是:连接AO、OC.
∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.
∵∠ABC=60,∴∠AEC=120°=∠AOC.
∵OA=OC,∴∠OAC=∠OCA=30°.
∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.
∵∠ACB=∠CAD+∠D.
∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.
∵OA=OC,∴▱AOCE是菱形;
②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.
∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .
∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= = .
故答案为:①60°;② .
【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;
(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;
②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.
4.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C 与点E是对应顶点)的点E的坐标.
【答案】(1)解:
(2)解:存在,
理由:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y轴时,设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形上一点,∴MM'=(1-x2)-3(3x2-3)=4-4x2,由抛物线的对称性知,若有内接正方形,则2x=4-
4x2,即2x2+x-2=0,x= 或(舍),
∵0< ,∴存在内接正方形,此时其边长为
(3)解:解:在Rt△AOD中,OA=1,OD=3,∴AD= ,同理CD= .在Rt△BOC中,OB=OC=1,∴BC= .
①如图(1)
当△DBC~△DAE时,因∠CDB=∠ADO,∴在y轴上存在一点E,由得
,得DE= ,因D(0,-3),∴E();
由对称性知在直线DA右侧还存在一点E'使得△DBC~△DAE',连接EE'交DA于F点,作E'M⊥OD,垂足为M,连接E'D,
∵E、E'关于DA对称,∴DF垂直平分EE',∴△DEF~△DAO,
∴,有,∴, .
因,∴,
又,在Rt△DE'M中,DM= ,
∴OM=1,得
∴,使得△DBC~△DAE的点E的坐标为(0, ,)或;
如图(2)
当△DBC~△ADE时,有∠BDC=∠DAE,,
即,得AE= .
当E在直线DA左侧时,设AE交y轴于P点,作EQ⊥AC,垂足为Q.
由∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=x,则PO=3-x,PA=x,
在Rt△AOP中,由得,解得,则有PA= ,PO= ,
因AE= ,∴PE= ,
在△AEQ中,OP∥EQ,
∴,得,又,
∴QE=2,∴E(),
当E'在直线DA右侧时,
因∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE',
则AE'∥OD,∴E'(1,),
则使得△DBC~△ADE的点E的坐标为或 .
综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标有4个,
即(0, ,)或或或
【解析】【解答】(1)∵二次函数经过点A(1,0),B(0,1)代入得
解得∴二次函数;
∵二次函数经过点A(1,0),D(0,-3)代入得
解得∴二次函数 .
【分析】(1)由A(1,0),B(0,1)代入二次函数解出k,m的值可得二次函数y1的表达式;由A(1,0),D(0,-3)代入二次函数解出k,m的值可得二次函数y1的表达式;(2)判断是否存在,可以列举出一种特殊情况:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y 轴时,则可设点M(x,-x2+1)在y1图象上,则该正方形存在另一点M'(x,3x2-3)在y2图象上,由邻边相等构造方程解答即可;(3)对于△BDC与△ADE相似,且C于D对应,那么就存在两种情况:①当点B对应点A,即△DBC~△DAE,此时点E的位置有两处,一处在y轴上,另一处在线段AD的右侧;②当点B对应点DA时,即△DBC~△ADE,些时点E 有两处,分别处于线段AD的左右两侧;结果两种情况所有的条件解出答案即可.
5.如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(﹣1,2),(3,2),点B 在x轴上,点B的坐标为(3,0),抛物线y=﹣x2+bx+c经过A、C两点.
(1)求该抛物线所对应的函数关系式;
(2)点P是抛物线上的一点,当S△PAB= S△ABC时,求点P的坐标;
(3)若点N由点B出发,以每秒个单位的速度沿边BC、CA向点A移动,秒后,点M 也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.
【答案】(1)解:将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,
得,解得
∴抛物线y=﹣x2+2x+5.
(2)解:∵点A(-1,2),B(3,0),C(3,2),
∴BC⊥x轴,AC=4,BC=2,
∴,
∴
设直线AB为y=mx+n,
将点A(-1,2),B(3,0),代入可得,解得,∴直线AB为y=
,
设点P(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),
∴PM= ,
∴
即,
∴或,
解得,
则点P .
(3)解:当时,如图1,点N在BC的线段上,BN= ,BM= ,
∵MN⊥AB,∴,
又∵A(-1,2),B(3,0),C(3,2),
∴AC∥x轴,BC∥y轴,
∴∠ACB=90°,
∴,
∴
又∵∠MBN=∠ACB=90°,
∴△BNM~△CAB,
∴,则,
解得t= .
当时,点N在线段AC上,如图2,MN与AB交于点D,BM= ,
由A(-1,2),B(3,0),得AB= ,设AD=a,则BD= ,
∵∠ADN=∠ACB=90°, ∠DAN=∠CAB,
∴△ADN~△ACB,
∴;
则 = ,则a=
∵∠BDM=∠ACB=90°, ∠DBM=∠CAB,
∴△BDM~△ACB,
∴ =
,
则
解得 .
综上, .
【解析】【分析】(1)将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,联立方程组解答即可求出b和c的值;(2)由A(-1,2),B(3,0),C(3,2)可求出直线AB 的解析式和,从而求出 .设PP(x,),过点P作PN⊥x
轴,交直线AB于点M,则M(x,),可得
代入求出P的横坐标x的值,再代入抛物线的解析式求出点P的纵坐标;(3)首先要明确时间t表示点N运动的时间,由点M,N的速度可求出它们当到达终点时的时间t,取其中的较小值为t所能取到的最大值;由点M只在线段OB上运动,点N在线段BC和线段AC上运动,则要分成两部分进行讨论,当点N在线段BC上时和当点N在线段AC上时,并分别求出相应时间t的取值范围;结合相似三角形的判定和性质得到相应边成比例,列方程解答即可.
6.如图,抛物线y=ax2+bx+c过原点O、点A (2,﹣4)、点B (3,﹣3),与x轴交于点C,直线AB交x轴于点D,交y轴于点E.
(1)求抛物线的函数表达式和顶点坐标;
(2)直线AF⊥x轴,垂足为点F,AF上取一点G,使△GBA∽△AOD,求此时点G的坐标;
(3)过直线AF左侧的抛物线上点M作直线AB的垂线,垂足为点N,若∠BMN=∠OAF,求直线BM的函数表达式.
【答案】(1)解:将原点O(0,0)、点 A (2,﹣4)、点 B (3,﹣3),分别代入y=ax2+bx+c,
得,解得,
∴y=x2-4x= ,
∴顶点为(2,-4).
(2)解:设直线AB为y=kx+b,
由点A(2,-4),B(3,-3),得解得,
∴直线AB为y=x-6.
当y=0时,x=6,∴点D(6,0).
∵点A(2,-4),D(6,0),B(3,-3),
∴OA= ,OD=6,AD= ,AF=4,OF=2,DF=4,AB= ,
∴DF=AF,又∵AF⊥x轴,
∴∠AD0=∠DAF=45°,
∵△GBA∽△AOD,
∴,
∴,
解得,
∴FG=AF-AG=4- ,
∴点G(2,).
(3)解:如图1,
∵∠BMN=∠OAF,,
∴∠MBN=∠AOF,
设直线BM与AF交于点H,
∵∠ABH=∠AOD,∠HAB=∠ADO,
∴
∴,
则,解得AH= ,
∴H(2,).
设直线BM为y=kx+b,∵将点B、G的坐标代入得,解得.
∴直线BM的解析式为y= ;
如图2,
BD=AD-AB= .
∵∠BMN=∠OAF,∠GDB=∠ODA,
∴△HBD∽△AOD.
∴,即,解得DH=4.
∴点H的坐标为(2,0).
设直线BM的解析式为y=kx+b.
∵将点B和点G的坐标代入得:,解得k=-3,b=6.
∴直线BM的解析式为y=-3x+6.
综上所述,直线MB的解析式为y= 或y=-3x+6.
【解析】【分析】(1)将原点O(0,0)、点A (2,﹣4)、点B (3,﹣3),分别代入y=ax2+bx+c,联立方程组解答即可a,b,c的值,得到二次函数解析式;将解析式配成顶点
式,可得顶点;(2)由△GBA∽△AOD,可得,分别求出AD,AB,OD的长即可求出AG,由点A的坐标,即可求出点G;(3)点M在直线AF的左侧,可发出垂足N可以在线段AB上,也可以在AB的延长线上,故有如图1和如图2两种可能;设直线BM与直线AF的交点为H,由(2)可知,参加(2)的方法可求出点H的坐标,从而求出直线BM的解析式.
7.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。
动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒。
连接MN。
(1)求直线BC的解析式;
(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;
(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式。
【答案】(1)解:设直线BC解析式为:y=kx+b,
∵B(0,4),C(-3,0),
∴,
解得:
∴直线BC解析式为:y= x+4.
(2)解:依题可得:AM=AN=t,
∵△AMN沿直线MN翻折,点A与点点D重合,
∴四边形AMDN为菱形,
作NF⊥x轴,连接AD交MN于O′,
∵A(3,0),B(0,4),
∴OA=3,OB=4,
∴AB=5,
∴M(3-t,0),
又∵△ANF∽△ABO,
∴ = = ,
∴ = = ,
∴AF= t,NF= t,
∴N(3- t, t),
∴O′(3- t, t),
设D(x,y),
∴ =3- t, = t,
∴x=3- t,y= t,
∴D(3- t, t),
又∵D在直线BC上,
∴ ×(3- t)+4= t,
∴t= ,
∴D(- ,).
(3)①当0<t≤5时(如图2),
△ABC在直线MN右侧部分为△AMN,
∴S= = ·AM·DF= ×t× t= t ,
②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,如图3
∵AM=AN=t,AB=BC=5,
∴BN=t-5,CN=-5-(t-5)=10-t,
又∵△CNF∽△CBO,
∴ = ,
∴ = ,
∴NF= (10-t),
∴S= - = ·AC·OB- ·CM·NF,
= ×6×4- ×(6-t)× (10-t),
=- t + t-12.
【解析】【分析】(1)设直线BC解析式为:y=kx+b,将B、C两点坐标代入即可得出二元一次方程组,解之即可得出直线BC解析式.(2)依题可得:AM=AN=t,根据翻折性质得四边形AMDN为菱形,作NF⊥x轴,连接AD交MN于O′,结合已知条件得M(3-t,0),
又△ANF∽△ABO,根据相似三角形性质得 = = ,
代入数值即可得AF= t,NF= t,从而得N(3- t, t),根据中点坐标公式得O′(3- t,
t),
设D(x,y),再由中点坐标公式得D(3- t, t),又由D在直线BC上,代入即可得D点坐标.(3)①当0<t≤5时(如图2),△ABC在直线MN右侧部分为△AMN,根据三角形面积公式即可得出S表达式.
②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,由△CNF∽△CBO,根据相似三角形性质得 = ,代入数值得NF= (10-t),最后由S= - = ·AC·OB- ·CM·NF,代入数值即可得表达式.
8.如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.
(1)设点P的纵坐标为p,写出p随k变化的函数关系式.
(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;
(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由.
【答案】(1)解:∵y轴和直线l都是⊙C的切线,∴OA⊥AD,BD⊥AD;又∵OA⊥OB,∴∠AOB=∠OAD=∠ADB=90°,∴四边形OADB是矩形;∵⊙C的半径为2,∴AD=OB =4;
∵点P在直线l上,∴点P的坐标为(4,p);又∵点P也在直线AP上,∴p=4k+3
(2)解:连接DN.∵AD是⊙C的直径,∴∠AND=90°,
∵∠ADN=90°﹣∠DAN,∠ABD=90°﹣∠DAN,∴∠ADN=∠ABD,又∵∠ADN=∠AMN,∴∠ABD=∠AMN,∵∠MAN=∠BAP,∴△AMN∽△ABP
(3)解:存在.理由:把x=0代入y=kx+3得:y=3,即OA=BD=3,AB=
,
∵S△ABD=AB•DN=AD•DB∴DN==,∴AN2=AD2﹣DN2=,
∵△AMN∽△ABP,∴,即
当点P在B点上方时,∵AP2=AD2+PD2=AD2+(PB﹣BD)2=42+(4k+3﹣3)2=16(k2+1),
或AP2=AD2+PD2=AD2+(BD﹣PB)2=42+(3﹣4k﹣3)2=16(k2+1),
S△ABP=PB•AD=(4k+3)×4=2(4k+3),
∴,
整理得:k2﹣4k﹣2=0,解得k1=2+ ,k2=2﹣
当点P在B点下方时,
∵AP2=AD2+PD2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=PB•AD= [﹣(4k+3)]×4=﹣2(4k+3)
∴
化简得:k2+1=﹣(4k+3),解得:k=﹣2,
综合以上所得,当k=2± 或k=﹣2时,△AMN的面积等于
【解析】【分析】(1)由切线的性质知∠AOB=∠OAD=∠ADB=90°,所以可以判定四边形OADB是矩形;根据⊙O的半径是2求得直径AD=4,从而求得点P的坐标,将其代入直线方程y=kx+3即可知p变化的函数关系式;(2)连接DN.∵直径所对的圆周角是直角,∴∠AND=90°,根据图示易证∠AND=∠ABD;然后根据同弧所对的圆周角相等推知∠ADN=∠AMN,再由等量代换可知∠ABD=∠AMN;最后利用相似三角形的判定定理AA 证明△AMN∽△ABP;(3)存在.把x=0代入y=kx+3得y=3,即OA=BD=3,然后由勾股定理求得AB=5;又由相似三角形的相似比推知相似三角形的面积比.分两种情况进行讨论:①当点P在B点上方时,由相似三角形的面积比得到k2−4k−2=0,解关于k的一元二次方程;②当点P在B点下方时,由相似三角形的面积比得到k2+1=−(4k+3),解关于k的一元二次方程.
9.在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N 在射线MB上,且AE是AM和AN的比例中项.
(1)如图1,求证:∠ANE=∠DCE;
(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长. 【答案】(1)解:∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE
(2)解:∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=
(3)解:∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图3,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=3x,则HE=3x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+3x=8,
解得x=1,
∴DE=3x=3,
综上所述,DE的长分别为或3
【解析】【分析】(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得
∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据
此知,求得AM=,由求得 MN=;(3)分∠ENM=∠EAC和∠ENM =∠ECA两种情况分别求解可得.
10.已知锐角△ABC中,边BC长为12,高AD长为8
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF 交AD于点K
①求的值
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2)若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.
【答案】(1)解:①、∵EF∥BC ∴△AEF∽△ABC ∵AD⊥BC ∴AK⊥EF
∴ = .
②∵① ② ①+②得:
又∵EH=x,AD=8,BC=12 ∴EF=12- x
∴S=EH·EF=- +12x=- +24 ∴S的最大值为24
(2)解:或.
【解析】【分析】根据EF∥BC得出△AEF∽△ABC,从而得到,求出答案;根据
题意得出和,将两式相加得到,根据EH=x,得出EF=12-
x,根据S=EH·EF得出函数关系式,求出最大值;根据三角形相似,然后分两种情况得出答案
11.如图1,在△ABC中,在BC边上取一点P,在AC边上取一点D,连AP、PD,如果△APD是等腰三角形且△ABP与△CDP相似,我们称△APD是AC边上的“等腰邻相似三角形”.
(1)如图2,在△ABC中AB=AC,∠B=50°,△APD是AB边上的“等腰邻相似三角形”,且AD=DP,∠PAC=∠BPD,则∠PAC的度数是________;
(2)如图3,在△ABC中,∠A=2∠C,在AC边上至少存在一个“等腰邻相似△APD”,请画出一个AC边上的“等腰邻相似△APD”,并说明理由;
(3)如图4,在Rt△ABC中AB=AC=2,△APD是AB边上的“等腰邻相似三角形”,请写出AD长度的所有可能值.
【答案】(1)30°
(2)解:如图3中,△APD是AC边上的“等腰邻相似三角形”,
理由:作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,
∴∠BAP=∠PAD=∠DPA,∠CPD=∠B,
∴DP=DA,
∵∠CAB=2∠C,
∴∠BAP =∠C,
∴△APD是等腰三角形且△APB与△CDP相似,
∴△APD是AC边上的“等腰邻相似三角形”
(3)解:如图3′中,当DA=DP时,设∠APD=∠DAP=x,
①若∠BPD=∠CAP=90°-x,∠BDP=∠CPA=2x,
∴90°-x+2x+x=180°,
∴x=45°,
∴三角形都是等腰直角三角形,易知AD=1;
②若∠PDB=∠CAP时,设∠APD=∠DAP=x,
得到∠PDB=∠CAP=2x,易知x=30°,
设AD=a,则AP=
∵△BPD∽△CPA,
∴,即,
解得,
如图4中,当PA=PD时,易知∠PDB是钝角,∠CAP是锐角,
∴∠PDB=∠CPA,则△BPD≌△CPA,
设AD=a,则BD=2-a,,AC=2,
,
解得a= ,
如图5中,当AP=AD时,设∠APD=∠ADP=x,则∠DAP=180°-2x,易知∠PDB为钝角,∠CAP为锐角,
∴∠PDB=∠CPA=180°-x,∠CAP=90°-∠DAP=90°-(180°-2x)=2x-90°,
在△APC中,2x-90°+180°-x+45°=180°,
解得x=45°,不可能成立.
综上所述.AD的长为1或或
【解析】【解答】(1)解:如图2中,
∵AB=AC,DA=DP,
∴∠B=∠C,∠DAP=∠DPA,
∵∠PAC=∠BPD,
∴∠APC=∠BDP=∠DAP+∠DPA,
∵∠APC=∠B+∠BAP,
∴∠B=∠PAB=50°,
∵∠BAC=180°−50°−50°=80°,
∴∠PAC=30°
故答案为30°
【分析】(1)根据等边对等角和三角形外角的性质证明∠B=∠PAB即可解决问题.(2)如图3中,作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,根据平行线的性质和角平分线定义可得∠BAP=∠PAD=∠DPA,∠CPD=∠B,结合∠A=2∠C可证△APD是等腰三角形且△APB与△CDP相似,即可解决问题.(3)分三种情形讨论:如图3′中,当DA=
DP时;如图4中,当PA=PD时;如图5中,当AP=AD时;分别求解即可解决问题.
12.如图,半径为4且以坐标原点为圆心的圆O交x轴,y轴于点B、D、A、C,过圆上的动点不与A重合作,且在AP右侧.
(1)当P与C重合时,求出E点坐标;
(2)连接PC,当时,求点P的坐标;
(3)连接OE,直接写出线段OE的取值范围.
【答案】(1)解:当P与C重合时,
,的半径为4,且在AP右侧,
,
点坐标为;
(2)解:如图,作于点F,
为的直径,
,
,
∽,
,
,
,,
,
点P的坐标为或;
(3)解:如图,连结OP,OE,AB,BE,AE,
,都为等腰直角三角形,
,,
,
∽,
,
,
,
【解析】【分析】当P与C重合时,因为,的半径为4,且在AP右侧,所以,所以E点坐标为;作
于点F,证明∽,可求得CF长,在中求得PF的长,进而得出点P的坐标;连结OP,OE,AB,BE,AE,证明∽,可得,根据,即可得出OE的取值范围.。