八年级(下)学期 第一次月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )
A .4或14
B .10或14
C .14
D .10 2.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是
( )
A .等腰三角形
B .直角三角形
C .钝角三角形
D .等腰直角三角形
3.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( ) A .10 B .410 C .13 D .213 4.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++
B .2d S d --
C .22d S d ++
D .()
22d S d ++ 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )
A .0
B .1
C .3
D .2
6.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )
A .3
B .3.3
C .4
D .4.5
7.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵
地处离竹子底部6尺远,则折断处离地面的高度是( )
A .5.3尺
B .6.8尺
C .4.7尺
D .3.2尺
8.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )
A .9
B .210
C .326+
D .12 9.如图,∠ACB =90°,AC =BC ,AD ⊥C
E ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,
则BC 的长是( )
A .32
B .2
C .22
D .10
10.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .111,4,5222 C .3,4,5 D .114,7,822
二、填空题
11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.
12.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)
13.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.
14.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.
15.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.
16.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.
17.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直
线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.
18.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.
19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.
20.如图,直线423
y x =
+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.
三、解答题
21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.
(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;
(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;
(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.
22.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .
(1)求证:AE =BD ;
(2)试探究线段AD 、BD 与CD 之间的数量关系;
(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.
23.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .
(1)如图1,当,D E 两点重合时,求证:BD DF =;
(2)延长BD 与EF 交于点G .
①如图2,求证:60BGE ∠=︒;
②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为
______________.
24.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京
召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:
(1)叙述勾股定理(用文字及符号语言叙述);
(2)证明勾股定理;
(3)若大正方形的面积是13,小正方形的面积是1,求()2
a b +的值.
25.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .
(1)直接写出BC =__________,AC =__________;
(2)求证:ABD ∆是等边三角形;
(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;
(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 26.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 满足6m -+(n ﹣12)2=0.
(1)求直线AB 的解析式及C 点坐标;
(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;
(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.
27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .
(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.
28.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一
动点(不包括两个端点),连接BE .
(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .
①求证:BE EF =;
②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.
29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,
①则线段BC ,DC ,EC 之间满足的等量关系式为 ;
②求证:BD 2+CD 2=2AD 2;
(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.
30.(知识背景)
据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾
三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.
(应用举例)
观察3,4,5;5,12,13;7,24,25;…
可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
勾为3时,股14(91)2=-,弦15(91)2
=+; 勾为5时,股112(251)2=
-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:
(1)如果勾为7,则股24= 弦25=
(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .
(解决问题)
观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:
(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.
【详解】
∵AC =13,AD =12,CD =5,
∴222AD CD AC +=,
∴△ABD 是直角三角形,AD ⊥BC ,
由于点D 在直线BC 上,分两种情况讨论:
当点D 在线段BC 上时,如图所示,
在Rt △ADB 中,229BD AB AD =-=,
则14BC BD CD =+=;
②当点D 在BC 延长线上时,如图所示,
在Rt △ADB 中,229BD AB AD =
-=, 则4BC BD CD =-=.
故答案为:A.
【点睛】 本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.
2.B
解析:B
【解析】
【分析】
根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.
【详解】
∵a+b=10,ab=18,
∴22a b +=(a+b )2-2ab=100-36=64,
∵,c=8,
∴2c =64,
∴22a b +=2c ,
∴该三角形是直角三角形,
故选:B.
【点睛】
此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.
3.D
解析:D
【分析】
根据已知设AC =x ,BC =y ,在Rt △ACD 和Rt △BCE 中,根据勾股定理分别列等式,从而求得AC ,BC 的长,最后根据勾股定理即可求得AB 的长.
【详解】
如图,在△ABC 中,∠C =90°,AD 、BE 为△ABC 的两条中线,且AD =10,BE =5,求AB 的长.
设AC =x ,BC =y ,
根据勾股定理得:
在Rt △ACD 中,x 2+(12y )2=(10)2,
在Rt △BCE 中,(12x )2+y 2=52, 解之得,x =6,y =4, ∴在Rt △ABC 中,2264213AB =+= , 故选:D .
【点睛】
此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.
4.D
解析:D
【解析】 【分析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
【详解】
解:设直角三角形的两条直角边分别为x 、y ,
∵斜边上的中线为d ,
∴斜边长为2d ,由勾股定理得,x 2+y 2=4d 2,
∵直角三角形的面积为S ,
∴12
S xy =,则2xy=4S ,即(x+y )2=4d 2+4S , ∴22x y d S +=+
∴这个三角形周长为:)
22
d S d + ,故选:D. 【点睛】
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 5.D
解析:D
【分析】
先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离.
【详解】
根据题意可知黑甲壳虫爬行一圈的路线是AA1→A1D1→D1C1→C1C→CB→BA,回到起点.
乙甲壳虫爬行一圈的路线是AB→BB1→B1C1→C1D1→D1A1→A1A.
因此可以判断两个甲壳虫爬行一圈都是6条棱,
因为2017÷6=336…1,
所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A1,B.
,
故选D.
【点睛】
此题考查了立体图形的有关知识.注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键.
6.A
解析:A
【分析】
根据线段垂直平分线的性质得到DA=DB,根据勾股定理求出BD,得到CD的长,根据三角形的面积公式计算,得到答案.
【详解】
解:∵点D在线段AB的垂直平分线上,
∴DA=DB,
在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,
解得,BD=5,
∴CD=8﹣5=3,
∴△BCD的面积=1
2
×CD×BC=
1
2
×3×4=6,
∵P是BD的中点,
∴S△PBC=1
2
S△BCD=3,
故选:A.
【点睛】
本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
7.D
解析:D
【分析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:设折断处离地面的高度OA是x尺,根据题意可得:
x2+62=(10-x)2,
解得:x=3.2,
答:折断处离地面的高度OA是3.2尺.
故选D.
【点睛】
此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.
8.B
解析:B
【分析】
将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.
【详解】
解:如图,AB=22
++=.
(24)2210
故选:B.
【点睛】
此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.
9.D
解析:D
【分析】
根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出AD=CE,再利用勾股定理就可以求出BC的值.
【详解】
解:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△CEB ≌△ADC (AAS ),
∴CE =AD =3,
在Rt △BEC
中,,
故选D .
【点睛】
本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.
10.B
解析:B
【分析】
根据勾股定理的逆定理分别计算各个选项,选出正确的答案.
【详解】
A 、22272425+=,能组成直角三角形,故正确;
B 、222
11145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、22
21147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭
,能组成直角三角形,故正确; 故选:B .
【点睛】 本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.
二、填空题
11.9625
【分析】
将△B´
CF 的面积转化为求△BCF 的面积,由折叠的性质可得CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´
CF ,CE ⊥AB ,可证得△ECF 是等腰直角三角形,EF =CE ,∠EFC =45°,由等面积法可求CE 的长,由勾股定理可求AE 的长,进而求得BF 的长,即可求解.
【详解】
根据折叠的性质可知,CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´
CF ,CE ⊥AB , ∴∠DCE +∠B´
CF =∠ACE +∠BCF , ∵∠ACB =90°,
∴∠ECF =45°,且CE ⊥AB ,
∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,
∵S△ABC=1
2
AC•BC=
1
2
AB•CE,
∴AC•BC=AB•CE,
∵根据勾股定理求得AB=10,
∴CE=24
5
,
∴EF=24
5
,
∵AE=22
AC CE
-=
2
2
2418
6-=
55
⎛⎫
⎪
⎝⎭
,
∴BF=AB−AE−EF=10-18
5
-
24
5
=
8
5
,
∴S△CBF=1
2
×BF×CE=
1
2
×
8
5
×
24
5
=
96
25
,
∴S△CB´F=96 25
,
故填:96 25
.
【点睛】
此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.
12.【分析】
这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.
【详解】
解:如图,一条直角边(即木棍的高)长20尺,
另一条直角边长7×3=21(尺),
22
2021
+=29(尺).
答:葛藤长29尺.
故答案为:29.
【点睛】
本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图
形后为直角三角形按照勾股定理可求出解.
13.71-
【分析】
分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差
【详解】
如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,
∴AP 的最大值为A P 1=AB=3
如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,
由折叠的性质有PC=BC=4,
在Rt △PCD 中,2222PD=PC CD =43=7--, ∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71--
71
【点睛】
本题考查勾股定理的折叠问题,可以动手实际操作进行探索. 14.
258
【分析】 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.
【详解】
∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴2222AB +BC =3+4=5;
∵DE 垂直平分AC ,垂足为F ,
∴FA=12AC=52
,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,
∴△AFD∽△CBA,
∴AD
AC
=
FA
BC
,即
AD
5
=
2.5
4
,解得AD=
25
8
;故答案为
25
8
.
【点睛】
本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
15.4
【分析】
根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可
【详解】
∵AC的垂直平分线FG,
∴AE=EC,∠AEG=∠AEF=90°,
∵∠BAC=120°,
∴∠G=∠BAC-∠AEG=120°-90°=30°,
∵∠BAC=120°,AB=AC,
∴∠B=∠C=1
2
(180°-∠BAC)=30°,
∴∠B=∠G,
∴BF=FG,
∵在Rt△AEG中,∠G=30°,EG=3,
∴AG=2AE,
即(2AE)2=AE2+32,
∴
即
同理在Rt△CEF中,∠C=30°,CF=2EF,
(2EF)2=EF2+2,
∴EF=1(负值舍去),
∴BF=GF=EF+CE=1+3=4,
故答案为4.
【点睛】
本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
16
【分析】
作点B关于AD的对称点B′,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,B′N的长度即为BM+MN的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.
【详解】
如图,作点B关于AD的对称点B′,
由垂线段最短,过点B′作B′N⊥AB于N交AD于M,B′N最短,由轴对称性质,BM=B′M,
∴BM+MN=B′M+MN=B′N,
由轴对称的性质,AD垂直平分BB′,
∴AB=AB′,
∵∠BAC=60°,
∴△ABB′是等边三角形,
∵AB=2,
∴B′N=2×3
=3,
即BM+MN的最小值是3.
故答案为3.
【点睛】
本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M、N的位置是解题的关键,作出图形更形象直观.
17.222
【分析】
连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
【详解】
如图,
连接CE,交AD于M,
∵沿AD折叠C和E重合,
∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,
∴AD垂直平分CE,即C和E关于AD对称,BD=2,
∴,
∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是
BE+PE+PB=BE+CD+DB=BC+BE,
∵∠DEA=90°,
∴∠DEB=90°,
∵∠ABC=45°,
∴∠B=45°,
∵,
∴
即,
∴△PEB的周长的最小值是.
故答案为
【点睛】
本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.
18.7 8
【解析】
试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4-x,AE=4-x,然后在Rt△ABE中利用勾股定理可计算出BE的长即可.
试题解析:∵四边形ABCD为矩形,
∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,
∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
∴∠DAC=∠D′AC,
∵AD∥BC,∴∠DAC=∠ACB,
∴∠D′AC=∠ACB,∴AE=EC,
设BE=x,则EC=4﹣x,AE=4﹣x,
在Rt△ABE中,∵AB2+BE2=AE2,
∴32+x2=(4﹣x)2,解得x=7
8
,
即BE的长为7
8
.
19.2
【分析】
根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.
【详解】
解:如图所示,在AB 上取AM=AC=2,
∵90ACB ∠=,2AC BC ==,
∴∠CAB=45°,
又∵45EAD ∠=,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB ,
∴在△EAC 与△DAB 中
AE=AD ,∠EAF =∠DAB ,AC =AM ,
∴△EAC ≌△DAM (SAS )
∴CE=MD ,
∴当MD ⊥BC 时,CE 的值最小,
∵AC=BC=2, 由勾股定理可得2222AB AC BC =
+=,
∴222=-BM ,
∵∠B=45°,
∴△BDM 为等腰直角三角形,
∴DM=BD ,
由勾股定理可得222+BD DM =BM
∴DM=BD=22-
∴CE=DM=22-
故答案为:22-
【点睛】
本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.
20.(0,
34). 【分析】
由423
y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122
OA '=
-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423
y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32
-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=
32,
∴52AB =
==, ∴53122
OA '=-=, 设点C 的坐标为(0,m )
由翻折得ABC A BC '≌,
∴2A C AC m '==-,
在Rt A OC '中, 222A C OC A O ''=+,
∴222(2)1m m -=+,解得m=
34, ∴点C 的坐标为(0,
34). 故答案为:(0,
34
). 【点睛】
此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题
21.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.
【分析】
(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;
(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;
(3)先利用勾股定理求出10
2AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.
【详解】
(1)AE BD =,AE BD ⊥,理由如下:
如图1,延长AE 交BD 于H ,
由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,
∴()ACE BCD SAS ≅,
∴AE BD =,EAC DBC ∠=∠,
∵90DBC BDC ∠+∠=︒,
∴90EAC BDC ∠+∠=︒,
∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,
即AE BD ⊥,
故答案为:AE BD =,AE BD ⊥;
(2)成立,理由如下:
如图2,延长AE 交BD 于H ,交BC 于O ,
∵90ACB ECD ∠=∠=︒,
∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,
在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩
,
∴()ACE BCD SAS ≅,
∴AE BD =,EAC DBC ∠=∠,
∵90ACB ∠=︒,
∴90EAC AOC ∠+∠=︒,
∵AOC BOH ∠=∠,
∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,
∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,
即AE BD ⊥;
(3)设AD x =,
10,90AC BC ACB ==∠=︒, 2102AB AC ∴==,
由题意,分以下两种情况:
①如图3-1,点,,A E D 在直线上,且点E 位于中间,
同理可证:AE BD =,AE BD ⊥,
12DE =,
12BD AE AD DE x ∴==-=-,
在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,
解得14x =或2x =-(不符题意,舍去),
即14AD =,
②如图3-2,点,,A E D 在直线上,且点D 位于中间,
同理可证:AE BD =,AE BD ⊥,
12DE =,
12BD AE AD DE x ∴==+=+,
在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,
解得2x =或14x =-(不符题意,舍去),
即2AD =,
综上,AD 的长为14或2.
【点睛】
本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种
情况讨论,并画出图形是解题关键.
22.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =22+4.
【分析】
(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;
(2)利用全等三角形的性质及勾股定理即可证得结论;
(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.
【详解】
(1)证明:∵△ACB 和△ECD 都是等腰直角三角形
∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°
∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD
∴∠ACE =∠BCD , ∴△ACE ≌△BCD (SAS ),
∴AE =BD .
(2)解:由(1)得△ACE ≌△BCD ,
∴∠CAE =∠CBD ,
又∵△ABC 是等腰直角三角形,
∴∠CAB =∠CBA =∠CAE =45°,
∴∠EAD =90°,
在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,
∴BD 2+AD 2=ED 2,
∵ED =2CD ,
∴BD 2+AD 2=2CD 2,
(3)解:连接EF ,设BD =x ,
∵BD :AF =1:2AF =2x ,
∵△ECD 都是等腰直角三角形,CF ⊥DE ,
∴DF =EF ,
由 (1)、(2)可得,在Rt △FAE 中,
EF 22AF AE +22(22)x x +3x ,
∵AE 2+AD 2=2CD 2,
∴222(223)2(36)x x x ++=,
解得x =1,
∴AB=+4.
【点睛】
此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.
23.(1)见解析;(2)①见解析;②2.
【分析】
(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;
(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有
∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;
②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积
=1
2
BC CG
⋅,而BC和CG可得,问题即得解决.
【详解】
解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,
当D、E两点重合时,则AD=CD,∴
1
30
2
DBC ABC
∠=∠=︒,
∵CF CD
=,∴∠F=∠CDF,
∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,
∴∠CBD=∠F,∴BD DF
=;
(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,
过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,
∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,
∵AE CD
=,CD=CF,∴EH=CF,
又∵∠BHE=∠ECF=120°,∴△BHE≌△ECF(SAS),
∴∠EBH=∠FEC,EB=EF,
∵BA=BC,∠A=∠ACB=60°,AE=CD,
∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,
∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;
②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,
∵EB=EF ,∴∠F =∠EBF =45°,
∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,
过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,
∴6BM ME MF ===,
∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=
-, ∴()26231CN FN ==⨯-=-,
∴()
2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,
∴62CG CF ==-,
∴△BCG 的面积=
()()
116262222BC CG ⋅=+-=. 故答案为:2.
【点睛】
本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.
24.(1)见解析;(2)证明见解析;(3)25.
【分析】
(1)直接叙述勾股定理的内容,并用字母表明三边关系;
(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;
(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.
【详解】
解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.
在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.
(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×
12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,
即 a 2+b 2= c 2.
(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,
∴ 2ab=12.
∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.
【点睛】
本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.
25.(1)2,2)证明见解析(3(4【分析】
(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;
(3)由(1)(2)可知,AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;
(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.
【详解】
(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,
∴122
BC AB =
=,∴AC = (2)∵ED 为AB 垂直平分线,∴ADB=DA ,
在Rt △BDE 中,
∵122BE AE AB ===,DE =
∴BD =,
∴BD=2BE ,∴∠BDE 为60°,
∴ABD ∆为等边三角形;
(3))由(1)(2)可知,=23AC ,AD=4, ∴22=27CD AC AD =+,
∵BCD ACD ACBD S S
S =+四边形, ∴111()222
BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =
; (4)分点P 在线段AC 上和AC 的延长线上两种情况,
如图,过点E 作AC 的垂线交AC 于点Q ,
∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,
①若点P 在线段AC 上, 则23=333PQ CQ CP =-=, ∴22233
PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则253333PQ CQ CP =+=, ∴22221=3
PE PQ EQ =+; 综上,PE 的长为
33
221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.
26.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,
0);(3)点P的坐标(
14
3
-,
64
3
)
【分析】
(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;
(2)画出图象,由CD⊥AB知1
AB CD
k k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;
(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.
【详解】
解:(1)∵6
m-+(n﹣12)2=0,
∴m=6,n=12,
∴A(6,0),B(0,12),
设直线AB解析式为y=kx+b,
则有
12
60
b
k b
=
⎧
⎨
+=
⎩
,解得
2
12
k
b
=-
⎧
⎨
=
⎩
,
∴直线AB解析式为y=-2x+12,
∵直线AB过点C(a,a),
∴a=-2a+12,∴a=4,
∴点C坐标(4,4).
(2)过点C作CD⊥AB交x轴于点D,如图1所示,
设直线CD解析式为y=1
2
x+b′,把点C(4,4)代入得到b′=2,
∴直线CD解析式为y=1
2
x+2,
∴点D坐标(-4,0).
(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,
图2
∵直线EC 解析式为y =
32x -2,直线CF 解析式为y =-23x +203, ∵32×(-23
)=-1, ∴直线CE ⊥CF ,
∵EC =13CF =13
∴EC =CF ,
∴△FCE 是等腰直角三角形,
∴∠FEC =45°,
∵直线FE 解析式为y =-5x -2,
由21252y x y x =-+⎧⎨=--⎩解得143643x y ⎧=-⎪⎪⎨⎪=⎪⎩
, ∴点P 的坐标为(1464,33-
). 【点睛】
本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.
27.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333.理由见解析.
【分析】
(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.
(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理。