高考数学一轮复习立体几何多选题测试试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习立体几何多选题测试试题及答案
一、立体几何多选题
1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、
CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )
A .AEF 是正三角形
B .平面AEF ⊥平面CGH
C .直线CG 与平面AEF 2
D .当2AB =时,多面体ABCD EFGH -的体积为83
【答案】AC 【分析】
取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点
O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求
出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】
取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,
A 、
B 、
C 、
D 是正方形EFGH 各边的中点,则
11
22
CH GH EH DH ===,
O 为CD 的中点,OH CD ∴⊥,
平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,
OH ∴⊥平面ABCD ,
在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,
O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,
所以,四边形OCBM 为矩形,所以,OM CD ⊥,
以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,
则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、
(),,G a a a 、()0,0,H a .
对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,
所以,
AEF 是正三角形,A 选项正确;
对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,
()0,,AF a a =,
由11110
m AE ax az m AF ay az ⎧⋅=-+=⎪⎨
⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,
设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200
n CG ax az n CH ay az ⎧⋅=+=⎪

⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,
()2
2111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;
对于C 选项,6
cos ,23
CG m CG m a CG m
⋅<>=
=
=⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,
所以,sin tan 2cos θ
θθ
=
=,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体
1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,
因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,
11211111
113326
A A EF A EF V S AA -=⋅=⨯⨯⨯=△,
因此,多面体ABCD EFGH -的体积为1110
44463
ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】
方法点睛:计算线面角,一般有如下几种方法:
(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;
(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h
l
θ=
(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.
2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S S
S ⋅=; B .3
3
3
3
A B C D S S S S <++;
C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222
111sin sin sin 1αβγ++=;
D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则
22cos α+2222cos cos 1βγ+=.
【答案】ACD 【分析】
由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】
由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,
则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.
对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯
又1
2
A S BC O D '=
⋅,1
2
BCO
S BC O O '=
⋅, 2
22211
24
D
S BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭
所以2
A BCO
D S S
S ⋅=,故A 正确.
对B :当1a b c ===时,333
18
B C D S S S ===
,则333
38B C D S S S ++=,
而3
3
2333322288A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭
,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =
++,
(),0,0AB a =,()0,,0AC b =,()0,0,AD c =
所以2
2
2
222
222cos cos cos AM AB AM AC AM AD AM AB
AM AC
AM AD
αβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪

⎪⋅⋅⋅⎝
⎭⎝⎭⎝⎭
2222
2
2
1x y z AM
AM
AM
=
+
+
=,所以D 正确.
对C :当M 与O 重合时,AO ⊥面BCD ,
由D 有222
222cos cos cos 1αβγ++=,
由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.
【点睛】
关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空
间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.
3.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2
D .若12
A P =且1//A P 平面11
B D
C ,则平面11A PC 截正方体外接球所得截面的面积为23
π
【答案】ABD 【分析】
选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出6
r =,进而求出面积. 【详解】
对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C
满足,故A 正确;
对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =
-=的小圆圆弧上,在
底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;
对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面
11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD
上,则1A P 长的最大值为12A B =,则
C 不正确; 对选项
D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333
A B r r S r π
π=
=∴=∴==
︒.故D 正确.
故选:ABD 【点睛】
(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,
d 为球心到小圆距离);
(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.
4.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PAC
B .当P 为11A
C 的中点时,四棱锥P ABC
D -外接球半径为7
2
C .三棱锥A PC
D -体积为定值
D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】
利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求
出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】
对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,
1BD AA ∴⊥,
1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;
对于B 选项,当点P 为11A C 的中点时,PA ===
同理可得PB PC PD ===
因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN
上,
设该四棱锥的外接球半径为R ,由几何关系可得2
22PN R AN R -+=, 即2
288R R -+=,解得9
2
R =,B 选项错误; 对于C 选项,211
4822
ACD
S
AD CD =
⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,1164
33
A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;
对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则11
42EN DD =
=,122
MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,
MN ⊂
平面ABCD ,EN MN ∴⊥,EM ∴==
过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为
d ,
直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2
π
θ=
时,等号成立,
长方体1111ABCD A B C D -的外接球半径为R '==,
所以,截面圆的半径2r =

=,
因此,截面圆面积的最小值为4π,D 选项正确.
故选:ACD. 【点睛】
方法点睛:求空间多面体的外接球半径的常用方法:
①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;
②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.
5.在三棱锥M ABC -中,下列命题正确的是( )
A .若12
33
AD AB AC =
+,则3BC BD = B .若G 为ABC 的重心,则111
333
MG MA MB MC =++
C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=
D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】
作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】
对于A ,由已知12
322233
AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则
3
2
BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,
MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即
111
333
MG MA MB MC =++,故B 正确;
对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即
()00
MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()
00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()
000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;
对于D ,111
()()222
PQ MQ MP MB MC MA MB MC MA ∴=-=
+-=+- ()
2
11
22
PQ MB MC MA MB MC MA ∴=+-=
+-,又
()
2
2
2
2
222MB MC MA MB MC MA MB MC MB MA MC MA
+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1
822
PQ ∴==,故
D 错误. 故选:BC 【点睛】
关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.
(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于
由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.
6.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )
A .侧面11CDD C 上存在点F ,使得11
B F CD ⊥ B .直线1B F 与直线B
C 所成角可能为30︒
C .平面1A BE 与平面11CD
D C 所成锐二面角的正切值为2
D .设正方体棱长为1,则过点
E ,
F ,A 5 【答案】AC 【分析】
取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;
【详解】
取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,
1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .
取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;
设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=
1tan 3023
︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11
B F
C ∠
即为平面1B MN 与平面11CDD C 所成的锐二面角,11
111tan B C B FC C F ∠==22
,所以C 正确;
因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为
6
2
,故D 错误. 故选:AC.
【点睛】
本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.
7.如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )
A .存在某个位置,使1DE A C ⊥
B .存在点M ,使得BM ⊥平面1A D
C 成立 C .存在点M ,使得//MB 平面1A DE 成立
D .四棱锥1A BCD
E -体积最大值为24
【答案】CD 【分析】
利用反证法可得A 、B 错误,取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,可证明//MB 平面1A DE ,当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,利用公式可求得此时体积为2. 【详解】
如图(1),取DE 的中点为F ,连接1,A F CF , 则45CDF ∠=︒,22DF =
,故212254222222
CF =+-⨯⨯=, 故222DC DF CF ≠+即2
CFD π
∠≠

若1CA DE ⊥,因为11,A D A E DF FE ==,故1A F DE ⊥,而111A F A C A ⋂=, 故DE ⊥平面1A FC ,因为CF ⊂平面1A FC ,故DE CF ⊥,矛盾,故A 错. 若BM ⊥平面1A DC ,因为DC ⊂平面1A DC ,故BM DC ⊥, 因为DC CB ⊥,BM CB B ⋂=,故CD ⊥平面1A CB ,
因为1
AC ⊂平面1A CB ,故1CD A C ⊥,但1A D CD <,矛盾,故B 错. 当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值, 由前述证明可知1A F DE ⊥,而平面1A DE
平面BCDE DE =,
1A F ⊂平面1A DE ,故1A F ⊥平面BCDE ,
因为1A DE △为等腰直角三角形,111A D A E ==,故12
2
A F =

又四边形BCDE 的面积为13211122
⨯-⨯⨯=, 故此时体积为1322
3224

⨯=
,故D 正确. 对于C ,如图(2),取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,
则1//,2IM CD IM CD =
,而1
//,2
BE CD BE CD =, 故//,IM BE IM BE =即四边形IEBM 为平行四边形,
故//IE BM ,因为IE ⊂平面1A DE ,BM ⊄平面1A DE ,故//MB 平面1A DE , 故C 正确. 故选:CD.
【点睛】
本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.
8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )
A .平面1D MN 与11
B
C 的交点是11B C 的中点 B .平面1
D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】
取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于
,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出
,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.
【详解】
如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,
则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.
111111
////,22
NE CC DD NE CC DD ==,
NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,
则12//,,23
BP FB MS BP MS BC MS FS =
∴==, 22111
,33236
BP MS BC BC PE BC ∴=
=⨯=∴=, E 为DF 中点,11
//,233
PE DQ DQ PE BC AD ∴===
N 分别是正方形11BCC B 的中心,1111
3
C H BP C B ∴==
所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,
连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=,
所以111113
QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.
【点睛】
本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.
9.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )
A .0MN EF ⋅=
B .ME NE =
C .四边形MENF 的面积最小值与最大值之比为2:3
D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】
证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积1
2
S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】
对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,
BD BB B '⋂=,
所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,
因此0MN EF ⋅=,故A 正确.
对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,
平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以
//MF EN ,
同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.
对于C 选项,由B 易得四边形MENF 的面积1
2
S MN EF =
⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,
此时MN EF ==,即面积S 的最小值为1;
当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最
大,
此时MN =,即面积S
所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积
1111336
M AEF N AEF AEF V V V DB S --=+=
⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,
则它们的体积也是相同的,因此多面体ABCD EMFN -的体积
21122
ABCD A B C D V V ''''-==正方体,
所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .
【点睛】
本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体
ABCD EMFN -的体积转化为正方体的体积的一半求解.
10.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱
1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )
A .四边形1BFD E 有可能是梯形
B .四边形1BFD E 在底面ABCD 内的投影一定是正方形
C .四边形1BF
D
E 有可能垂直于平面11BB D D D .四边形1BFD E 6【答案】BCD 【分析】
四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD
内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面
11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62
.
【详解】
过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.
平面1BFD E
平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,
故四边形1BFD E 为平行四边形,因此A 错误;
对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面
1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;
对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16
2322
⨯⨯=
,因此D 正确. 故选:BCD
【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.。

相关文档
最新文档