【精选】人教版七年级数学上册 有理数综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)
1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作
“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.
(1)(【初步探究】
直接写出计算结果:2③=________,(- )⑤=________;
(2)【深入思考】
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(﹣3)④=________;5⑥=________;(- ) ⑩=________.
Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;
Ⅲ.算一算:
12²÷(- )④×(-2)⑤-(- )⑥÷3³.________
【答案】(1);-8
(2);;;;解:
【解析】【解答】解:(1)【初步探究】
,
故答案为:,-8;
( 2 )【深入思考】
Ⅰ.
;
;
故答案为:;;;
Ⅱ.
【分析】
(1)①按除方法则进行计算即可;②按除方法则进行计算即可;
(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;
②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;
③将第二问的规律代入计算,注意运算顺序.
2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:
(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.
(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.
(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.
(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.
【答案】(1)1
(2)1或-5
(3)6
(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,
∴当3≤a≤6时,|a-3|+|a-6|= =3,
当a>6或a<3时,|a-3|+|a﹣6|>3,
∴|a-3|+|a﹣6|有最小值,最小值为3.
【解析】【解答】(1)AB= =1,
故答案为:1
( 2 )∵数轴上表示数a的点与﹣2的距离是3,
∴ =3,
∴-2-a=3或-2-a=-3,
解得:a=1或a=-5,
故答案为:1或-5
( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,
∴|a+4|+|a﹣2|= =6,
故答案为:6
【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;
(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;
(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.
3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
请根据绝对值的意义并结合数轴解答下列问题:
(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点
(2)数轴上表示1和3的两点之间的距离是________;
(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)
(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合
【答案】(1)解:如图所示,
(2)2
(3)
(4)4
【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,
故答案为2;
(3)由题意得,C到A的距离与C到B的距离之和可表示为:,
故答案为:;
(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:
, ∴x-2=±2,解得x=0或4,
∴则原点与表示数4的点重合,
故答案为:4.
【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;
(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;
(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;
(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.
4.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.
(1)请写出线段AB的中点C对应的数.
(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?
(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?
【答案】(1)解:AB=120-(-20)=140,则BC=70
C点对应的数是50.
(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t
当点P、Q重合时,则BP+AQ=140
即:3t+2t=140,解得:t=28
所以AP=56
点P、Q重合时对应的数为56-20=36
(3)解:分两种情况,①当P、Q相遇之前,BP+AQ=140-50,
即3t+2t=140-50,解得:t=18
②当P、Q相遇之后,BP+AQ=140+50,
即3t+2t=140+50,解得:t=38
当P、Q两点运动18秒或38秒时,P、Q相距50个单位长度.
【解析】【分析】(1)先求出AB的长度,即可求出线段BC,再确定C在数轴上表示的数即可;(2)设P、Q运动时间为t,则BP=3t,AQ=2t,根据题意可知BP+AQ=140,即3t+2t=140,进而求得t的值,即可表示P、Q重合点的对应数.(3)分两种情况,①当P、Q相遇之前,BP+AQ=140-50;②当P、Q相遇之后,BP+AQ=140+50,
分别求出t的值,即可解决问题.
5.平移和翻折是初中数学两种重要的图形变化.
(1)平移运动
①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)
A. B.
C. D.
②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.
(2)翻折变换
①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;
②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且
A、B两点经折叠后重合,则A点表示________B点表示________.
③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)
【答案】(1)D;-1010
(2)-2017;-1008.5;1010.5;
【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向
正方向移动2个单位长度,
∴(-3)+(+2)=-1
故答案为:D.
②∵一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位…
∴-1+2-3+4-…+2018-2019
=(-1+2)+(-3+4)+…+(-2017+2018)-2019
=1+1+…-2019
=1009-2019
=-1010
故答案为:D,-1010.
(2)①∵折叠纸条,表示-1的点与表示3的点重合
∴对称中心为:,
∴2019-1=2018,
∴与表示2019的点重合的点在1的左边,
∴1-2018=-2017.
②∵数轴上A、B两点之间的距离为2019,折痕与①折痕相同
∴点B和1,点A和1之间的距离相等,
∴点A和1之间的距离为2019÷2=1009.5
∵A在B的左侧,
∴点A表示的数为1-1009.5=-1008.5
点B表示的数为:1009.5+1=1010.5;
③根据以上规律可知数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为
.
故答案为:-2017、-1008.5、1010.5、.
【分析】(1)点在数轴上平移的规律为:左减右加,列式计算。
(2)①根据点在数轴上平移的规律为:左减右加,由题意可知奇数次向左,偶数次向右,再列式可求出结果;②由题意可知点B和1,点A和1之间的距离相等,先求出它们之间的距离,再根据点A在点B的左侧,可得到点A和点B表示的数;③根据前两题的规律,利用中心对称的性质,可得到数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数。
6.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.
例如:对于数列因为
所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.
(1)数列的“关联数值”为________;
(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________ (3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.
【答案】(1)-4
(2)7;-3、4、2
(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,
∴-9-a<-9<-3,
∴数列3、-6、a的“关联数值”为-3,
∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,
∴-3<-3+a<a+3,
∴数列3、a、-6的“关联数值”为a+3,
∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,
∴a+6>6,a+6>a+3,
∴数列-6、a、3的“关联数值”为a+6,
∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,
∴9>9-a,9>6,
∴数列-6、3、a的“关联数值”为9,
∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,
∴-a-9<-a-6<-a,
∴数列a、-6、3的“关联数值”为-a,
∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,
∴-a<3-a<9-a,
∴数列a、3、-6的“关联数值”为9-a,
∵a>0,这些数列的“关联数值”的最大值为10,
∴-3、9、-a、9-a不符合题意,
∵a+6>a+3,
∴a+6=10,
解得:a=4.
取得“关联数值”最大值的数列为-6,4、3.
【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,
∴数列的“关联数值”为-4.
故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,
由(1)得数列的“关联数值”为-4.
∵-4=-4,-4+2=-2,-4+2-(-3)=1,
∴数列4,2,-3的“关联数值”为1,
∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,
∴数列-3、4、2的“关联数值”为7,
∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,
∴数列-3、2、4的“关联数值”为5,
∵-2=-2,-2+4=2,-2+4-(-3)=5,
∴数列2、4、-3的“关联数值”为5,
∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,
∴数列2、-3、4的“关联数值”为-2,
∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2
故答案为7;-3、4、2
【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.
7.如图所示
(1)A在数轴上所对应的数为﹣2.点B在点A右边距A点4个单位长度,求点B所对应的数;
(2)在A、B两点位于第(1)题所在的位置开始,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.
(3)当A、B两点位于第(2)题结束所在的位置,如果A点静止不动,B点以每秒2个单位长度沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.
【答案】(1)解:−2+4=2. 故点B所对应的数为2;
(2)解:(−2+6)÷2=2(秒),这时A对应的数为:-6,B对应的数为:2+2×2=6,
故A,B两点间距离为是6-(-6)=12个单位长度;
(3)解:分两种情况讨论:
1)运动后的B点在A点右边4个单位长度,设经过x秒时间A,B两点相距4个单位长度,依题意有2x=12−4,解得x=4;
2)运动后的B点在A点左边4个单位长度,设经过x秒时间A,B两点相距4个单位长
度,依题意有 2x=12+4,解得x=8;
故经过4秒或8秒长时间A,B两点相距4个单位长度。
【解析】【分析】(1)根据左减右加可求点B所对应的数;
(2)先根据时间=路程÷速度,求出运动时间,分别求出A、B此时的位置,再求两点之间距离即可;
(3)分两种情况:运动后的B点在A点右边4个单位长度;运动后的B点在A点左边4个单位长度;分别列出方程求解即可.
8.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.
⑴发现问题:代数式的最小值是多少?
⑵探究问题:如图,点分别表示的是,.
∵的几何意义是线段与的长度之和
∴当点在线段上时, ;当点点在点的左侧或点的右侧时
∴的最小值是3.
⑶解决问题:
①. 的最小值是 ________ ;
②.利用上述思想方法解不等式:
________
③.当为何值时,代数式的最小值是2________.
【答案】6;设A表示-3,B表示1,P表示x,∴线段AB的长度为4,则,的几何意义表示为PA+PB,∴不等式的几何意义是PA+PB>AB,∴P 不能在线段AB上,应该在A的左侧或者B的右侧,即不等式的解集为或.故答案为:或.;设A表示-a,B表示3,P表示x,则线段AB 的长度为,的几何意义表示为PA+PB,当P在线段AB上时PA+PB取得最小值,∴∴或,即
或;故答案为:或 .
【解析】【解答】解:(3)①设A表示的数为4,B表示的数为-2,P表示的数为x ,
∴表示数轴上的点P到4的距离,用线段PA表示,
表示数轴上的点P到-2的距离,用线段PB表示,
∴的几何意义表示为PA+PB,当P在线段AB上时取得最小值为AB,且线段AB的长度为6,
∴的最小值为6.
故答案为:6.
【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;②根据题意画出相应的图形,确定出所求不等式的解集即可;③根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.
9.阅读材料:
如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.
回答问题:
(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.
①若A是线段DB的中点,则点D表示的数是________;
②若E是线段AC的中点,求点E表示的数________.
(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);
(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2
②直接用含m、n的代数式表示点P表示的数________.
【答案】(1)﹣4;;
(2)(i)(ii)(iii); .
【解析】【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB 的中点,
∴点D表示的数是﹣4,
故答案为﹣4;
②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,
∴点E表示的数为.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,
∴1=,即m+n=2,
∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为(i)(ii)(iii);
②点P表示的数为.
【分析】(1)①依据点A所表示的数是-2,点B所表示的数是0,A是线段DB的中点,即可得到点D表示的数;②依据点A所表示的数是-2,点C所表示的数是3,E是线段AC 的中点,即可得到点E表示的数;(2)①依据点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,即可得到m、n可能的值;②依据中点公式即可得到结果.
10.
阅读下面材料:
点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.
当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,
①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;
③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;
综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.
回答下列问题:
①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;
②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;
③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.
④解方程|x+1|+|x﹣2|=5.
【答案】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;
数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;
数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4
②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.
③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;
④解方程|x+1|+|x﹣2|=5.
当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3
当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2
当x+1与x-2异号,则等式不成立.
所以答案为:3或-2.
【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运
用绝对值即可求任意两点间的距离.
③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.
④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.
11.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,
(1)动点Q运动3秒时,求此时Q在数轴上表示的数?
(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;
(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.
【答案】(1)解:由题意得:0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为−1,
∴3秒时动点Q所在的位置为2,即此时Q在数轴上表示的数是2
(2)解:设每改变一次方向为一次运动,
分析动点Q的移动规律可知,第一次到达数轴上表示数1的位置,第3次到达数轴上表示数2的位置,第5次到达数轴上表示数3的位置,…,
所以第2n-1次到达数n的位置,
所以第19次到达数轴上表示数10的位置,
此时运动的总路程为:
,
∴Q运动的时间t=190÷2=95秒
(3)解:∵3秒时,动点Q所在的位置为2,
∴5秒时,动点Q所在位置为−2,
①若P点向左运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,
Q在数轴3位置向左运动时,PQ=5+ ×0.1=,
设点P激活后第一次与继续运动的点Q相遇时用的时间为t1,则(2−0.1)t1=,
解得:t1=,
∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:−(2+ ×0.1+ ×0.1)
=;
②若P点向右运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,
Q在数轴3位置向左运动时,PQ=5− ×0.1=,
设点P激活后第一次与继续运动的点Q相遇时用的时间为t2,则(2+0.1)t2=,
解得:t2=,
∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:−(2− ×0.1− ×0.1)=;
综上所述,点P激活后第一次与继续运动的点Q相遇时所在的位置是或 .
【解析】【分析】(1)根据动点Q的移动规律,分析得出0.5秒和3秒时所在位置,即可求出答案;(2)分析动点Q的移动规律,求出到达数轴上表示数10的位置时所走的总路程,然后根据时间=路程÷速度进行计算即可;(3)首先求出5秒时,动点Q所在位置为−2,然后分情况讨论:①P点向左运动,②P点向右运动,分别列出方程求出相遇时用的时间,然后再计算点Q相遇时所在的位置即可.
12.已知有理数a,b,c在数轴上的位置如图所示:
解答下列式子:
(1)比较a,,c的大小(用“<”连接);
(2)若,试化简等式的右边;
(3)在(2)的条件下,求的值.
【答案】(1)解:根据数轴上点的位置得:;
(2)解:根据题意得:a+b<0,b-1<0,a-c<0,
则;
(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,
∴原式 .
【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,
a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.。