Proe钣金展平技巧

合集下载

Pro/Engineer 钣金件展开的应用.doc

Pro/Engineer 钣金件展开的应用.doc

1 引言人造卫星和航天飞船上使用大量的钣金成形零件,如有效载荷铝合金支架、飞船蒙皮桁条等。

这些金属板制作的钣金件具有重量轻、组装简单、成本低等优点,成为航天飞行器的重要组成部分。

钣金件的制造,最主要的是正确确定钣金件的展开图,即以1:1的比例放样。

传统手工计算和图解法直观、方便,在航天制造工程中得到了广泛的应用,但是手工计算和图解法展开图精度低、误差大,存在着工艺路线复杂、效率低、浪费材料及加工质量不易保证等缺点。

随着数控激光切割机、数控折弯机等精密钣金设备的广泛应用,钣金加工工艺方法也有了很大变化。

从传统粗放低效成型后修准尺寸的工艺方法,到精确展开、直接成型的先进工艺方法是制造技术发展的必然趋势。

Pro/Engineer Wildfire 2.0是美国参数技术公司推出的一套功能强大的CAD/CAM参数化软件系统,提供了零件设计、产品装配、NC加工、钣金件设计、模具开发、铸造件设计、自动测量、机构仿真和应力分析等多种功能,已经被广泛地应用于机械、汽车、航天、家电等行业。

本文介绍了航天领域中基于Pro/Engineer Wildfire 2.0实现钣金零件的建立和展开的应用研究。

2钣金件Pro/E加工特点传统钣金件加工先以近似展开尺寸放样落料,预留后续加工余量后进行折弯,折弯后再修准尺寸,最后加工工艺孔和槽。

这种工艺方法加工效率低、浪费材料,并且加工质量不易保证,但不需要精确的展开图尺寸。

而Pro/E钣金件加工工艺以精确展开加工为特点,先按展开图全部切割出外形及孔和槽,然后折弯成型,其加工流程如图1所示。

这种工艺具有效率高、加工质量好、工艺路线简化等优点,但对钣金展开图的精度要求高。

因此,Pro/E钣金设计模块成为钣金件加工中精确展开图的重要工具。

同传统展开方法进行比较,Pro/E具有明显的优势,主要有以下几点:a.Pro/E加工实现了参数化,提高了展开效率;b.工艺路线简化、加工效率高、加工质量好;c.展开精度高,展开尺寸便于验证;d.能够自动生成折弯顺序表,表示出制造过程中的折弯顺序、折弯半径和折弯角;e.Pro/E展开可以进行圆管件、圆锥管构件以及它们之间任何方向的相贯件等复杂曲面零件的展开;f.从展开的立体模型可以直接生成数控切割设备需要的二维图形格式,与数控折弯机进行数据连接,从而能够实现钣金件的无纸加工。

Proe钣金展平技巧

Proe钣金展平技巧

Pro/ENGINEER 钣金件展平得技巧总结关于展平展平特征展平钣金件上得任何弯曲曲面, 无论它就是折弯特征还就是弯曲得壁。

•有三种展平类型可用:•规则 (Regular) - 展平零件中得大多数折弯。

选取要展平得现有折弯或壁特征。

如果选取所有折弯, 则创建零件得平整形态。

过渡 (Transition) - 展平不可展开得曲面, 如混合壁。

选取固定曲面并指定横截面曲线来决定展平特征得形状。

剖截面驱动 (Xsec Driven) - 展平不可展开得曲面, 如折边及法兰。

选取固定曲面并指定横截面曲线来决定展平特征得形状。

创建展平时, 要求指定要保持固定得曲面或边。

您得选择会改变模型得缺省视图。

尝试并拾取要保持在同一位置得主要曲面。

如果可能, 在创建几个展平特征时, 要保持一致, 并使用同一曲面。

设置自动固定得几何元素(“设置”(Set Up)>“固定几何”(Fixed Geom)), 可节省设计时间与保持一致性。

在展平后所创建得特征都就是该展平得子项/从属于该展平。

如果只就是临时展平零件, 并不需要该展平来保持设计意图, 则应删除该展平。

如果保持该展平, 只会在模型树中挤满多余特征, 这将延长零件再生时间。

切记, 如果删除得展平中含有在其后创建得特征, 这些附加特征也将被删除。

要草绘那些由于几何复杂与不规则而不能展平得壁得平整状态, 可使用 Metamorph 选项。

利用“变形控制”(DEFORM CONTROL) 菜单, 可加亮与草绘相应变形区域得轮廓。

展平特征创建后, 壁得成形状态隐含, 而平整状态处于活动状态。

当选取“展平全部”(Unbend All) 时, 就可使用展平对话框中得“变形控制”(DEFORM CONTROL) 菜单。

展平不可展开得曲面未展开(变形得)得曲面, 如具有复杂弯曲曲面得壁特征, 通常必须展平后才能制造。

要展平变形得材料, 该展平必须要简单。

定义得规则为所有要被展平得曲面必须具有外侧边或与一个有外侧边得区域相邻。

proe钣金技巧

proe钣金技巧

proe钣金技巧第一篇:proe钣金技巧1.平整壁特征平整壁的草绘图元必须是封闭的; 2.拉伸特征1)当使用拉伸特征创建第一壁时,需要使用开放截面;在“选项”中可定义折弯半径,也可在草绘时,将半径画出;2)使用拉伸进行切除时,除普通切割外,还可以进行薄壳切割;3)拉伸切除“移除与曲面垂直的材料”形式有三种,不同的形式切除的材料不一样;当不选取“移除与曲面垂直的材料”时,则直接切除;(切除形式,只有在拉伸切除的草绘平面与被切除曲面成角度时,才有影响)3.壁厚的更改一是通过右击特征,选取编辑或者编辑定义更改;二是通过“工具”—“参数”更改;4.内部草绘只能用于当前特征,而外部草绘则可应用于多个特征,根据不同需求,选取不同草绘形式;5.在proe5.0的草绘环境下,对图元进行约束时(比如相等、垂直、相切),可先选取需要约束的图元,再右击,选取约束类型;6.使用拉伸创建第一壁时,壁厚可在草绘中“右击”,选取“壁厚”进行设定,也可在外部定义;右击可切换壁厚的方向;草绘中定义壁厚的优势时,有利于尺寸的标注,比如钣金件整体尺寸等;内部定义“壁厚”时,两直线之间需要倒圆角才能加厚;7.当创建的不是第一壁时,在“选项”里可以勾选“将驱动曲面设置为与草绘平面相对”,从而更改其驱动曲面;主要应用于合并壁,合并壁时,需要驱动曲面一致; 8.旋转壁特征1)“属性”中的“单侧”表示往一侧旋转;“双侧”表示往两侧一起旋转; 9.偏移壁特征1)当不能使用平整,旋转等特征进行创建,需要借助曲面时,先创建曲面,再使用偏移壁特征进行构建;2)偏移壁需要设定两个数值,一个是偏移数值,一个是壁厚,偏移数值一般设为0;3)当有两个连在一起的面进行偏移时,可以在“排除”中,排除不需要偏移的面;4)当不能按照“垂直于曲面”的偏移类型进行偏移时,可更改其偏移类型;当使用“自动拟合”可能壁厚不一致,这时需要使用“控制拟合”,需要选取一个坐标系,定义其X,Y,Z方向的偏移;10.混合壁特征(类似于零件中混合壁的创建)1)选取列表中的“方向”可定义深度的方向;2)当使用“投影截面”时,是用两个曲面来限定距离,只能有两个草绘截面,且投影截面必须是钣金壁面,而不能是曲面;(该特征创建出来有问题,一般不使用)3)进行旋转混合,草绘时需要放置坐标系;4)进行一般混合时,一般先草绘好截面,再使用选取截面的方式;11.平整辅助壁特征1)只能在单条边界进行创建;2)如果采用系统提供的标准形状(矩形、梯形、L型、T型),则可以在图形区域直接拖动白色框来改变其尺寸;3)对于常用的形状,可将其定义为标准形状,方法如下:首先,进入平整辅助壁特征,在“形状”中草绘出其该常用形状,并且在“形状”中将该形状保存在一个文件夹下;然后,将“选项”中的flat_shape_sketches_directory的路径指向上一步的文件夹;4)“形状”下可选取高度尺寸是否包含厚度;同时会改变折弯方向;5)“偏移”中可定义折弯边相对于边界的距离;6)当对边界进行部分折弯时,可以选择止裂槽的类型(撕裂、矩形、长圆形、拉伸);无止裂槽需要角度为零或者偏移类型为“向壁偏移添加附加折弯”;而拉伸、矩形、长圆形则需要内侧半径不为零;12.法兰壁的创建1)可以使用一条链(多条边界)进行折弯;2)对于常用的形状,可以如平整壁一样创建新的形状,将“选项”中flange_shape_sketches_directory指向对应的路径;3)斜切口(miter cut):对于相切链连接处转角切口的设置;当沿着某曲线创建法兰壁失效时,可以考虑添加斜切口;4)止裂槽有折弯止裂槽和拐角止裂槽,折弯止裂槽相当于平整壁的止裂槽;拐角止裂槽则是指当对一条链折弯时,两条边界连接处的止裂槽形状;5)边处理:对于链折弯时,两条边界折弯后边的处理; 13.平整壁与法兰壁的区别1)平整壁就是画正面,法兰壁就是画侧面;2)平整壁的附着边只可以是一条边界,法兰壁的附着边可以是一条链;3)钣金说来不就是一张比较厚的铁纸么,可以分为面和厚度方向,平整面就是从面正向看过去,是正方的还是梯形的,而法兰壁就是从厚度方向,是折成L形了还是Z形的。

proe变形区域

proe变形区域

Proe钣金变形区域展开的两种方法时间: 2010-12-21 / 分类: 钣金 / 0个评论发表评论变形区域(Deformarea) 是镀金壁中不规则的区域,它通常是一个曲面,如圆角面。

在钣金展开后,变形区域可产生完全变形,以便其他的区域保持原来大小,如图1中的钣金展开中, Sufl 和Suf2是变形区域,这两个区域在展开后产生了变形,从而使其相邻的区域在展开后保持原来大小。

下面列出了钣金变形区域展开的两个特点:1)变形区域至少有一个与其具有共同边界线的相邻曲面,并且该相邻曲面能延伸至钣金件的边缘(即该相邻曲面中至少有一条边线就是钣金件-户外边界线)。

2)钣金展开后,各区域间不会有重叠。

根据以上列出的变形区域的两个特点,可采用两种方式对变形区域钣金进行展开:第一种变形区域Proe钣金展开方式:如果变形区与同时符合上面列出的两个特点,则系统将变形区域和相邻曲面进行合并后即可展平变形区域。

例如:在图1a 所示的饭金件中, Suf1曲面是一个变形区域,该变形区域有一个相邻曲面Suf2与变形区域Suf1具有共同的边界线,并且Suf2曲面有一条边线就是该钣金件的外边界线(如图1a 所示);展开时,系统将变形区域Suf1和相邻曲面Suf2进行合并,展开后各区域间也不会有重叠(如图1b 所示)。

图1第二种变形区域Proe钣金展开方式:如果变形区今不同时符合上面列出的两个特点,则须创建额外的变形区域才可展平变形区域。

例如:在图2a 所示的钣金件中, Suf1曲面是一个变形区域,虽然变形区域有一个相邻曲面Suf4与变形区域Suf1具有共同的边界线,并且Suf4曲面有一条边线就是该钣金件的外边界线(如图2a所示),但是在则与Suf4合并后,展开饭金件时区域间会出现部分区域重叠(如图3a 所示);另外一个相邻曲面Suf5 与Suf1合并后,展开时也会出现重叠现象(如图3b 所示),所以该变形区域不能用第一种方法展开。

PROE钣金工程图插入展开图的方法

PROE钣金工程图插入展开图的方法

PROE Wildfire 4.0钣金工程图里插入展开图的方法
1、打开钣金零件图
2、在菜单栏-编辑里面找到设置(设定)
3、点击设置(设定)后选择平整状态
4、选择创建
5、这个时候系统自动生成一个后缀待FLAT1的文件名,选择打钩
6、选择全部成形(不是选完全平坦)
7、选择要固定的面——在用鼠标选择钣金零件的某一个面,然后点击确定
8、点击完成/返回
9、保存之后,点击打开就可以看到工作目录下面已经生成了一个展开(PLAT)的文件了。

10、进入创建的工程图,先插入一般视图建立好钣金的三视图图形,再点菜单栏——文件(档案)——属性——工程图模型——新增模型——弹出对话框选定相对应的钣金的展平图模型——选择打开——点完成。

11、再插入展平模型视图。

完成。

Proe钣金展平技巧

Proe钣金展平技巧

Proe钣金展平技巧Proe是一种CAD软件,常用于进行钣金展平的设计和制作。

钣金展平包括通过将3D模型展平为2D模型来制作钣金零件。

在这个过程中,有一些技巧可以帮助您更好地完成设计。

1. 理解材料的物理特性在钣金加工中,了解材料的物理特性是非常重要的。

钣金在强度、塑性和可加工性方面与其他材料不同。

因此,在设计钣金零件时,需要理解材料的物理特性以确保正确的展平和精确定位。

在Proe中,可以使用材料属性对钣金进行定义。

可以设置材料的弹性模量、泊松比、屈服应力和断裂应变等参数。

这些参数可以帮助您更好地理解材料的物理特性,从而更好地完成钣金展平设计。

2. 正确定义展平轴钣金展平时,需要选择一个轴来展平模型。

选择正确的展平轴可以帮助您更好地完成钣金展平设计,并确保零件的精度和鲁棒性。

要选择正确的展平轴,需要分析模型的形状和几何特性。

在Proe中,可以通过选择x、y或z轴来展平模型。

如果模型具有对称性,则可以选择对称轴来展平模型。

如果模型具有复杂的曲面,则可能需要选择曲面上的切线作为展平轴。

3. 理解展平类型Proe中有两种展平类型:内展平和外展平。

内展平用于具有弯曲角度的平面部分,而外展平用于具有突出部分的平面部分。

在内展平中,需要定义曲率半径和圆心位置。

这可以通过在Proe中选择起点和终点来完成。

在外展平中,需要定义突出部分和其相对位置。

这种展平类型在设计带有凸起部分的零件时非常有用。

4. 使用图纸创建环境在Proe中,可以使用图纸来创建绘图环境。

这可以帮助您更好地展示钣金展平后的零件。

图纸中包含了展平零件的视图以及其他详细的信息,如尺寸、比例和注释。

使用图纸、图层和不同的视图设置,可以帮助您更好地完成钣金展平设计,并提供更好的可读性和精度。

这些技巧是一个专业的CAD设计师必须要掌握的。

在Proe中进行钣金展平设计时,需要理解材料的物理特性、正确定义展平轴、掌握不同的展平类型和使用图纸创建环境。

这些技巧可以帮助您更好地完成钣金展平设计,并确保零件的精度和鲁棒性。

ProE钣金设计教程—精

ProE钣金设计教程—精

ProE钣金设计教程—精Pro/Engineer自动展开操作手册目录1. Sheet Metal自动展开的特色 (4)1.1钣金设计和修改 (4)1.2模型检查和辅助展开 (4)1.3展开图 (4)2. 展开原理 (5)2.1展开原理 (5)2.2展开计算方法………………………………………………………….5-93. 功能介绍 (10)4. 指令使用说明 (11)4.1模型检查 (11)驱动补偿量检查 (11)Bend特征检查 (12)Sweep特征检查 (13)Wall Copy特征检查 (14)Unbend特征检查 (15)Solid Cut特征检查 (16)压平H≦0.5特征检查 (17)T≦0.3&R=0特征检查 (18)4.2辅助展开 (19)材质和料厚设定 (19)Z折设定 (20)N折设定 (21)Bend设定 (22)删除Notes (23)5. 展开流程及说明 (24)5.1展开流程图 (24)5.2展开流程说明 (25)5.2.1Sheet Metal图档处理 (25)5.2.2 模型检查.....................................................................25-26 5.2.3设定Bend Table表 (26)5.2.4手工修改.....................................................................26-27 5.2.5展开.. (27)5.2.6工艺性修改 (27)5.2.7转成.dxf图档 (27)6. 常见问题及解决……………………………………………..28-31 1. S heet Metal自动展开的特色Sheet Metal自动展开是以Pro/Engineer为工作平台,并用Pro/Sheet Matel 中的相关指令,结合本公司开发的功能菜单,将用Pro/Sheet Matel建构的产品方便快捷地展开.Sheet Metal自动展开与传统的手工展开相比,更趋于智能化,大大减少了许多人为的错误和无效的工作,提高了效率;和其它的展开软件相比, Sheet Metal自动展开可以直接捕捉设计时的资料和信息,更趋于合理化.1. 1 钣金设计和修改Pro/Sheet Matel具有强大的钣金设计和修改功能,能帮助工程师很容易的实现他们的设计意图,并有益于设变展开时的工艺修改.1.2 模型检查和辅助展开展开流程只要选择相关的功能菜单.程序将检查钣金件的结构及相关特征,或高亮度显示,或在窗口中用Notes加以指示,给出展开补偿量(例如选择功能菜单中的Model_Check/Bend_Feat,窗口中高亮度显示所有的Bend特征;选择Aid_Unbend/Bend, 窗口中会给所有的Bend 特征加一Notes.).这样将会减少错误次数,节省了时间和金钱.1.3 展开图工程师可按自己的展开标准,经过简单的编程,做成Bend T able表,通过材质设定的功能菜单,对产品的补偿量统一作设定,也可做个别修改;展开后的展开图为三维的,展开前后,产品的特征数据不会失去,并有Pro/Engineer强大的建模及修改功能做后盾,方便对其进行修改和处理;展开可以分步进行,也可一次展开,并可回折;展开图可以做为产品的一个状态,并和产品相互关联.2. 展开原理Sheet Metal自动展开时,只计算补偿量,用L表示,料厚用T表示,角度用Angle表示,R表示折弯内半径.2.1 展开原理板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过度层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近钣料厚度的中心处;当弯曲半径变小,变形角度增大时,变形程随之增大,中性层位置逐渐向弯曲中心的内侧移动.2.2 展开计算方法一般折弯1 (R=0, θ=90°):1. 当02. 对于铁材(如GI﹑SGCC﹑SECC﹑CRS﹑SPTE﹑SUS等):(1) 当0.3<t</t(2) 当1.5≦T<2.5时, L =0.35T(3) 当T≧2.5时, L =0.3T3. 对于其它有色金属材料(如Al﹑Cu等):当T>0.3时, L =0.4T AB一般折弯2 (R≠0, θ=90°):当用折刀加工时:1. 当R≦2.0时, 按R=0处理.L’= L+2R (L为R=0时L值) 2. 当R>2.0时, 按原值处理.(1) 当T<1.5时, L = PI*(R+0.5*T)/2(2) 当1.5≦T时, L = PI*(R+0.4*T)/2 AB中性層一般折弯3 (R=0, θ≠90°): 1. 当T≤0.3 时, L’=02. 当T?0.3时, L’= (υ / 90) * L注: L为θ=90°时的补偿量.A Bθ一般折弯4 (R≠0 , θ≠90°):当用折刀加工时:1. 当R<2.0时, 按R=0处理.L’=θ/90* L +2*R*TAN(θ/2)注: L为θ=90°时的补偿量.2 当R>2.0时, 按原值处理.(1). 当T'1.5 时, L’=θ*PI*(R+0.5*T)/180(2). 当T/1.5时, L’=θ*PI*(R+0.4T)/180BυRλAZ折1 (直边段差):样品方式制作展开方法:1. 当H/5T时, 分两次成型时, 按两个90°折弯计算.2.当H'5T时, 一次成型,(1). 若R=0,则L’=L;(2). 若R≠0,且只有一内角不为零,则L’=L+2R;(3). 若R≠0,且两内角都不为零,则L’=L+4R.注: L值依附件一中参数取值. A BHZ折2 (非平行直边段差):展开方法与平行直边Z折方法相同(如上栏), 高度H取值见图示.注:对于非直角折弯,若R≠0,补偿量应加上的是2*R*TAN(θ/2)AHBθZ 折3 (斜边段差): 1. 当H '2T 时当θ≦70°时,按Z 折1(直边段差)的方式计算, (此时L=0.2).当θ>70°时完全按Z 折1(直边段差)的方式计算2. 当H /2T 时, 按两段折弯展开(R=0 θ≠90°).λλθZ 折4(过渡段为两圆弧相切):1. H ≦2T 段差过渡处为非直线段为两圆弧相切展开时,则取两圆弧相切点处作垂线,以保证固定边尺寸偏移以一个料厚处理,然后按Z 折1(直边段差)方式展开2. H>2T,请示后再行处理BAH圓弧相切線反折压平:L=1.6T1. 压平的时候, 可视实际的情况考虑是否在折弯前压线, 压线位置为折弯变形区中部.2. 反折压平一般分两步进行:先V 折30°, 再反折压平.故在作展开图折弯线时, 须按30°折弯线画, 如图所示: BA -B-K A -T5/3K AT30°N 折:1. 当N 折加工方式为垫片反折压平,L 值依附件一中参数取值.2. 当N 折以其它方式加工时, 展开算法参见“一般折弯4 (R ≠0, θ≠90°)”.3. 如果折弯处为直边 (H 段), 则按两次折弯成形计算: L’= 2L (L 值取90°折弯变形区宽度).T AHB抽孔抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;一般抽孔,按下列公式计算, 式中参数见右图(设预冲孔为X, 并加上修正系数–0.1):∵[S(H2S20.1)+πS2/4]π(D+d)/2=π×(D22X2)T/4∴X2=D22[4S( H2S20.1)+πS2](D+d)/(2T)∴X= D22[4S(H2S20.1)+πS2](D+d)/(2T)1. 若抽孔为抽牙孔(抽孔后攻牙), 则S按下列原则取值:T≦0.5时取S=100%T0.5<t< bdsfid="210" p=""></t<>T≧0.8时取S=65%T一般常见抽牙预冲孔按附件一取值2. 若抽孔用来铆合, 则取S=50%T, H=T+T’+0.4(注: T’是与之相铆合的板厚, 抽孔与色拉孔之间隙为单边0.10~0.15)3. 若原图中抽孔未作任何标识与标注, 则保证抽孔后内外径尺寸;4. 当预冲孔径计算值小于1.0时, 一律取1.0DDA BCE FTdSXR=SH附件一: 常见Pro/E展开标准数据1. 直边段差展开系数一览表H T 0.5 0.8 1.0 1.2 1.5 1.6 2.0 3.20.5 0.60.8 0.4 0.9 1.31.0 0.5 0.8 1.2 1.62.2 2.41.5 0.5 0.8 1.0 1.2 1.82.0 2.8 5.12.0 0.5 0.8 1.0 1.2 1.5 1.6 2.4 4.72.5 0.5 0.8 1.0 1.2 1.5 1.6 2.0 4.33.0 0.5 0.8 1.0 1.2 1.5 1.6 2.0 3.93.5 0.8 1.0 1.2 1.5 1.6 2.0 3.54.0 0.8 1.0 1.2 1.5 1.6 2.0 3.24.5 0.8 1.0 1.2 1.5 1.6 2.0 3.25.0 1.0 1.2 1.5 1.6 2.0 3.2注意:表中所列的L值为断差的两个补偿量之和,手工修改补偿量时需将该值除2. 2. 常见抽牙预冲孔孔径一览表规格M3 M3.5 M4 M5 #4-40 #6-32 #8-32 料厚T=0.6 1.4 1.6 1.8 2.0 1.2 1.6 1.8T=0.8 1.5 1.8 2.0 2.2 1.4 1.8 2.0T=1.0 1.6 2.0 2.0 2.4 1.5 1.8 2.2T=1.2 1.6 2.0 2.2 2.6 1.6 2.0 2.4T=1.5 2.4 2.4 3.0 1.8 2.4 2.8抽牙高度 1.5 1.8 2.1 2.4 1.9 2.4 2.4 说明: 1.以上攻牙形式均为无屑式.2.表面不可有毛刺.牙规检测合格.3. N折展开系数T R=H/2 0.25 0.4 0.5 0.6 0.750.5 1.50 1.92 2.20 2.41 2.720.6 1.66 2.08 2.37 2.57 2.880.7 1.82 2.24 2.54 2.73 3.040.8 1.98 2.4 2.71 2.89 3.210.9 2.14 2.56 2.88 3.05 3.371.02.30 2.723.05 3.21 3.531.22.633.0 3.31 3.53 3.811.5 3.12 3.48 3.70 3.90 4.223. 功能介绍启动Pro/Engineer进入Sheet Metal后,Pro/E会加载两个主功能菜单,模型检查和辅助展开菜单,即Model_Check和Aid_Unbend.模型检查包括八项下拉功能菜单,他们是驱动补偿量检查?Bend特征检查?Sweep特征检查?Copy特征检查?Unbend特征检查?Solid Cut特征检查?压平H≦0.5检查?T≦0.3&R=0检查.辅助展开菜单包括材质和Bend Table设定?Z折设定?N折设定?Bend 设定菜单及Delete_Notes下拉菜单的功能流程中的顺序排列,使用时自上而下进行,若没有某项特征,相应的特征检查变灰.模型检查和辅助展开下拉菜单如下图所示:4. 指令使用说明以下的章节会详述新开发的每个指令的使用方法,有关Pro/Sheet Metal中的指令查找Sheet Metal Design的帮助信息.4.1模型检查(Model_Check)驱动补偿量检查(DEV.L)目的:妨止补偿量不是驱动补偿量,是设计者改动过的.步骤:从模型检查下拉菜单中,选择DEV.L程序自动检查钣金件中所有的补偿量,看是否有非驱动量,若有,程序会自动使之变为驱动量.注意:一定要进行此检查,因为K_Factor?Y_Factor及Bend Table的设定只改变驱动量的值,而不能改变非驱动量的值,因此要先把所有的非驱动量改为驱动量.Bend特征检查(Bend_Feat)目的:能够Bend特征的补偿量进行单独设定,使之不受Bend Table设定的影响.步骤: 从模型检查下拉菜单中,选择Bend_Feat.窗口中所有Bend特征红色高亮度显示,如下图(图一)所示.程序会自动抓取该Part檔的Y_Factor值,生成Feat_Bend_Tbl.bnd档案.Redefine Bend 特征,进入重新定义对话框,选择BendTable/Define/Feat Bend Tbl/Done,再从Names下选择Feat_Bend_Tbl,最后选择OK结束重新定义.注意:在进行Bend特征检查之前,不要改变K_Factor或Y_Factor的值.Bend特征检查(图一)Sweep特征检查(Sweep_Feat)用K_Factor或Y_Factor来控制Sweep特征的补偿量.步骤:从模型检查下拉菜单中,选择Sweep_Feat.窗口中所有Sweep特征红色高亮度显示,如下图(图二)所示.检查Sweep特征,手工设定适当的K_Factor或Y_Factor(SetUp/Sheet Metal/Bend Allow)注意:若同时存在90度和180度两种Sweep特征,则只能保证一种特征展开的补偿量是正确的.Sweep特征检查(图二)Wall Copy特征检查(Wall_Copy_Feat)目的:防止Wall Copy特征展开错误,并使属于Z折的相互关联的Wall Copy特征改为非关联.步骤:从模型检查下拉菜单中,选择Wall_Copy_Feat.窗口中所有Wall Copy特征红色高亮度显示,如下图(图三)所示.程序会将属于Z折的相互关联的Wall Copy特征改为非关联.Wall Copy特征最好分步展开.Wall Copy特征检查(图三)Unbend特征检查(Unbend_Feat)目的:防止产品变形,展开尺寸不对.步骤:从模型检查下拉菜单中,选择Unbend_Feat.窗口中所有Unbend 特征红色高亮度显示,如下图(图四)所示.对Unbend特征进行重新定义,在选择Unbend Geom时,只选择面,而不要选择边界.Unbend特征检查(图四)Solid Cut特征检查(Solid_Cut_Feat)目的:预估以后操作是否会出现错误.步骤:从模型检查下拉菜单中,选择Solid_Cut_Feat.窗口中所有Solid Cut 特征红色高亮度显示,如下图(图五)所示.察看Solid Cut特征所在位置,便于查找不能展开的原因.查找不能展开的原因.Solid Cut特征检查(图五)压平H≦0.5特征检查(Flat_H)目的:防止展开尺寸不准.步骤:从模型检查下拉菜单中,选择Flat_H.窗口中所有压平H≦0.5的特征红色高亮度显示,如下图(图六)所示.对于压平H≦0.5的特征,若中间有直段,要增大R值,使直段消失.否者程序将其当两个90度展开,致使展开尺寸不准.压平H≦0.5特征检查(图六)T≦0.3&R=0特征检查(T03_R0)目的:防止补偿量为零,产品不可展开.步骤:从模型检查下拉菜单中,选择T03_R0.窗口中所有T≦0.3&R=0的特征红色高亮度显示,如下图(图七)所示.对T≦0.3&R=0的特征的补偿量设定一很小的值.因为设定Bend Table后,该种特征的补偿量将变为零,从尔使产品不能展开.T≦0.3&R=0特征检查(图七)4.2辅助展开(Aid_Unbend)材质和料厚设定(Unit_Mat_T)目的:材质和Bend Table设定,输入厚度.步骤:从辅助展开下拉菜单中,选择Unit_Mat_T.会出现下列对话框:(图八)在可选材质中,有一确省的材质,选择下拉菜单按钮,里面有常见的材质,你可以选择你需要的材质,也可以输入新的材质.若是选择材质,则对应展开表中会自动正确对应一Bend Table表;若是输入新材质,你需要在库存展开表中双击选择一Bend Table表.含有材质表中显示先前已选中的材质.英制显示的是产品实际料厚的Inch值,公制显示的是产品实际料厚的Millimeter值,这两项匀以灰色显示,表示这两项不能改动.料厚中允许你输入你想要的料厚,在输入之前为公制确省值.(此值只用于展开计算,而不能改变产品的实际料厚.)完成对话后, 产品会重新生成,Bend T able自动设定成功.。

PROE钣金展平特征介绍

PROE钣金展平特征介绍

PERO钣金展平特征介绍及操作说明:·规则展平特征——变形:如果折弯区域有变形区未连接到边缘时,系统会出现红色高亮提示,则设计必须要别外选取一个变形区域与边缘连接。

·过度展平:用于展平不能用规则展平的不可展几何,不可展开的几何在多个方向上有折弯。

·剖截面驱动展平:用于展平不规则外形的薄壁,通过指定一条剖面线来决定曲面展平的形状。

·模具成形特征:模具就是采用模具的凸模冲压或凹模吸引薄板形成的特征。

同是要求参考零件必须要有边界面以限定冲压成形曲面。

边界面可以与钣金件绿色或白色面重合。

(模具成形的参考零件必须带有边界面,参考零件可以是凸的,也可以是凹的,而冲孔成形不需要边界面,参考零件只能是凸。

)·平整成形:对于成形特征形成的凸起或凹腔,必须要先用平整成形特征进行展平后,才能应用钣金展平特征。

因此,平整成形特征一般创建于设计结束阶段。

·钣金折弯长度L=(0.5π×R+y因子×T)×(θ×90)L:钣金展开长度R:折弯处的内侧半径T:材料厚度θ:折弯角度y因子:由折弯中线的位置所决定的一个常数,默认值为0.5(proe中y因子改变方法:编辑→设置:钣金件→折弯许可→y因子)改变y因子的系统默认值:工具→选项(在选项下输入initial_bend_y_factor,回车后输入相应的值,按“添加”,然后按保存。

)K因子:在钣金展平计算式是以K因子为主要依据的,用来代表材料在折弯时的拉伸抵抗程度。

此因子的范围在0至1之间。

K=2y/π·折弯表——current:设置找折弯表到当前的钣金件中。

(从零件:设置的折弯表为当前钣金件本书的折弯表,并且定义好的折弯表会存在此钣金中;自文件:设置折弯表由.bnd折弯表文件导入。

)·“自文件”下table1:适用于软黄铜,及铜,y因子=0.5,k因子=0.35table2:适用于硬黄铜,及铜,铝,y因子=0.64,k因子=0.42table3:适用于青铜,硬钢,及弹簧钢,y因子=0.71,k因子=0.45·导入折弯表:工具→选项“输入pro_sheet_met_dir”,值选择折弯表的位置,按“添加/更改”后保存。

PROE使用技巧(重点介绍对于不能编辑的钣金模型如何展开)

PROE使用技巧(重点介绍对于不能编辑的钣金模型如何展开)

一些钣金件无法展开,我们可以先把需要展开的表面进行导出几何处理然后新建复制刚才的几何再进行展开工作,最后导入CAD进行修正即可具体步骤1 插入=》共享数据=》发面几何然后按做ctrl 选择你需要展开的所有表面按滚轮结束,选择你刚才的几何,右击,点击:组,2 新建钣金件插入=》共享数据=》复制几何然后在点击选项上面上文件图标,打开,选择刚你发布过的文件,打开自动回到刚才窗口弹出在放置菜单属性在默认选项点击确定3 点击刚才选项旁边,属性上边那个立方体(带有三个箭头)这时弹出刚才的特征,滚轮确认4 创建偏移壁在弹出输入偏移距离,里面不要输入,默认为0.0000,点击勾号确认确认你将要偏移的方向,正向或反向确认再在弹出的输入厚度框中,输入你的材料厚度(根据你刚才的钣金件输入厚度)1.2好啦,现在预览一下确认Ok了,就点击确定,现在新的钣金件创建出来啦5 现在可以用FE命令展开刚才创建的钣金件了6 现在把模型树里面的外部复制几何隐藏7新建绘图文件现在放置好后,导出到CAD再进行编辑就行啦一定要注意,在发布几何的时候,不要选择模板的曲面1.如何使用trail.txt文件用写字板打开trail.txt,将里面你要恢复到的地方之后的操作删除掉后存盘用PROE打开即可。

2.如何清除TRAIL文件?另外,如何在Pro/E中从Old version的pat文件中恢复以前的Model?在DOS状态下进入要清理的目录下,键入PURGE即可。

这样做不仅可以清除TRAIL文件,同时也清除了除最新版本外的所有其它文件。

如你做的零件为A,存了10次,那么就有10个同名文件分别为A1。

A10,PURGE后只留下A10也就是最新版本了。

如果您想要以前的零件比如做到第5次保存时的零件的话最好当时就换名存盘。

3.公英制互换,但零件尺寸的数值还是保持原设计值在3D图中修改选择Set Up-Units-选择想要修改的单位-Set-选择Same Size或Same Dims4.草绘图中合理运用意图管理器.在绘图过程中要将重要尺寸或是叫需求尺寸进行锁定,待修改截面尺寸后再生模型时,这样才不会变的不是想要的尺寸. 5.Config文件在Pro/E里的作用及如何编辑.Config文件是Pro/E的系统配置文件,它几乎可以满足你对Pro/E的所有要求。

proe中把搅拌车料斗曲面展平步骤

proe中把搅拌车料斗曲面展平步骤

用PROE把曲面钣金件展平
建好曲面(不要加厚)——建点原点(很重要)——插入——高级——展平面组——选择源面和原点——确认(其他都默认)。

测量曲线长度,误差在接受范围内,精度足够。

发现原点只其中一个顶点上可以选择:过该原点的与曲面相切的平面为曲面展平放置的平面。

也可选择。

可以多创建几个原点,进行尝试,不同展平面之间的尺寸相差很小。

来自定义展平放置面。

需要选择一个坐标系,这个坐标系的X-Y平面即为展开
放置面。

在曲面上选择一个原点,一个方向点,曲面会按原点到方向点的方向进行展开,展开面旋转放置,参照方向与坐标轴X对齐。

ProE钣金展开的特点与注意事项探讨

ProE钣金展开的特点与注意事项探讨

Pro/E钣金展开的特点与注意事项探讨摘要:文章主要结合Pro/E钣金,对其在钣金件加工作业中所使用的Pro/E 展开方法以及特点进行探讨与分析,并对Pro/E钣金所使用展开方法的经济性以及实用性还有优越性进行介绍,同时总结和归纳出Pro/E钣金在展开后所应该注意的重点事项,从而为钣金件加工作业提供一种实用、高效、先进的展开工具。

【关键词】Pro/E 加工作业钣金件钣金件展开近些年,随着我国科学技术以及市场经济的不断发展,各种生产加工工艺层出不穷,不仅有效的弥补和完善了我国现有的生产加工工艺,同时还极大提高了加工效率。

而Pro/E钣金展开就是其中的典型代表。

本文主要结合Pro/E钣金展开的定义,对Pro/E钣金展开特点以及注意事项进行详细讨论与研究。

1.概论现阶段,随着数控折弯机以及数控激光切割机等先进精确钣金加工工具与加工方法的应用,从一定程度上完善和丰富了钣金的加工工艺,并由传统粗放且低效的工艺方法转变成为直接成型、展开精确的先进工艺方法。

其特点主要为:可以实现部分零件机械的整体切削;简化相应的工艺路线;进行单元封闭加工;加工质量相对较高;能够轻易完成套料加工。

但其缺点是对钣金展开后的精确度相对较高,所以钣金件加工作业过程中,绘制钣金件展开图就成为了人们所需要的解决的首要问题。

2.钣金件展开方法在以往操作过程中,钣金件所采用的展开方法均为公式近似计算法。

而钣金件展开时的钣尺寸往往钣金件厚度还有折弯角、材料伸缩率、折弯半径等因素有关。

由于材料伸缩率对于展开之后的钣金件尺寸影响相对较小,所以在实际展开过程中,可以将其忽略不计。

3.钣金件的Pro/E展开方法从某种角度讲,钣金件Pro/E展开方法是一种基于智能化以及参数化的三维CAD过程。

它一般都是在程序模拟钣金件折弯加工过程的基础之上所进行折弯而展开的。

通常,在其实际展开过程中,往往都会考虑到折弯半径以及钣金件厚度、材料属性(即内部K因子或者Y因子)、折弯角度等因素,并且利用既定的折弯来代表其实际展开长度。

proe、creo创建钣金工程图

proe、creo创建钣金工程图

中的 按钮。
图 10.2.4 “族项目”对话框
图 10.2.5 “选取特征”菜单
Step3. 增加族表的行。在“族表 SM”对话框中,选择下拉菜单
命令,系统立即添加新的一行,如图 10.2.6 所示,单击*号栏,将*号改成 N,这样在 SM_INST
实例中就不显示展平特征。
Step4. 单击“族表 SM”对话框中的
(5)设置视图显示。选取 区域中的
选项,在
下拉列表中选取
选项,在
下拉列表中选取
选项。
(6)单击对话框中的 按钮,完成主视图的创建。
Step5. 创建三维钣金件的左视图并添加箭头,如图 10.2.19 所示。
(1)选取图 10.2.19 中的主视图,然后右击,在弹出的图 8.2.20 所示的快捷菜单中选择
菜单中选择
命令,
再在
菜单中选择
模型,此时系统在新窗口中显示如图 10.2.27 所示的
平整状态钣金件。
Step8. 选择下拉菜单
固定面
命令,关闭新窗口。
图 10.2.26 选取固定面
Stage3.创建钣金工程图
图 10.2.27 平整状态钣金件
Step1. 新建一个工程图文件。
(1)单击“新建文件”按钮 ,在弹出的文件“新建”对话框中,选中 区域的
按钮。
(4)设置比例。在对话框的 区域选取 选项,则此时“绘图视图”对话框如图
10.2.13 所示,选中
选项,然后输入比例值 1。
(5)设置视图显示。选取 区域中的
选项,在
下拉列表中选取
选项,在
下拉列表中选取
选项。
(6)单击对话框中的 按钮,完成展开图的创建。
图 10.2.12 “绘图视图”对话框(一)

creo6.0钣金展开因子设置

creo6.0钣金展开因子设置

在Creo Parametric 6.0 中,要设置钣金展开因子,您可以按照以下步骤进行操作:
1. 打开零件:打开您的钣金零件。

2. 选择钣金功能:进入钣金设计环境。

3. 选择展开:在钣金环境中,找到展开功能。

4. 设置展开因子:通常,您可以在展开的设置中找到"展开因子"(Unbend Factor)或类似的选项。

这个因子用于确定展开后的平铺图与实际零件之间的比例关系。

您可以设置这个因子以满足特定的制造需求。

5. 完成展开:设置好展开因子后,应用设置并完成展开操作。

请注意,具体的步骤和选项可能会根据Creo 的版本和具体的工作流程而有所不同。

上述步骤是一般性的指导,具体的操作可能需要根据您的实际情况进行微调。

如果您找不到相关选项或需要更详细的信息,建议参考Creo Parametric 6.0 的用户手册或在线文档,或者向PTC(Creo 的开发公司)的支持团队咨询。

proe钣金模块和钣金技术详解-(滴血奉献)个人整理 Word 文档 (2)

proe钣金模块和钣金技术详解-(滴血奉献)个人整理 Word 文档 (2)

3.3 利用Pro/E软件进行钣金造型钣金加工就是冲压加工技术。

冲压加工技术开始于18世纪末19世纪初,因为为产业革命促成了动力制造技术的发展,以机械化方式来制造金属板就逐渐成为主流。

用钣金加工方法制造的精巧成品出现于19世纪末20世纪初,随着金属板的制造方和和成型技术的改进以及大量生产的需要,冲压加工及所需要的机械已发展到高速且大型化的阶段。

今天冲压加工技术仍然在不断地改进,其成长进步的速度更加惊人,尤其在自动化产业的推动下,钣金技术已经广泛应用于汽车、家电、计算机、家庭用品、装饰材料等各个相关的领域中,钣金加工已经成为工业生产中不可或缺的一种机械加工手段。

3.3.1 钣金设计概述1. 钣金设计要点钣金只是产品的一部分,因此在加工设计中有以下几个方面需要注意:(1)造型设计与机械设计两者应该相互平衡,好的造型不一定可以顺利制造,要考虑到加工制造是否容易,是否会增加制造的成本,是否会降低中产效率等问题,这都是一个优秀的设计者应该考虑的问题,应尽量避免设计出一些现有的加工设备无法制造的钣金件造型。

(2)钣金相互连接和固定方式、钣金和塑料件的连接固定方式以及钣金和其他零件的固定和连接方式都是设计考虑的重点,设计不良的连接方式,将直接影响组合装配的效率并增加人工操作的难度。

(3)钣金件的机构设计与强度设计,都是钣金设计的重点,强度的设计将直接影响产占的寿命和耐用性。

(4)钣金组装优先顺序和安装空间,需要从组装合理化和组装便利化的力面来考虑。

(5)钣金的重量及工艺性。

钣金是金属材料,当然是轻而强度高最好,但是考虑到成本问题和加工难易程度问题,需要尽量满足产品的功能性能和钣金强度要求的情况下,力求设计简单,减少制造的成本。

(6)维修拆装的难易程度和配合的公差问题是最基本也是比较和重要的设计问题。

2. 钣金成型设备钣金的成型设备,一般为冲压机械以及专用的工具,即冲压模具,能够对薄钣金属进行冲裁、成型、弯曲、拉伸和压缩等加工,并能制造各种工业用及家庭用的零部件与金属制品。

creo钣金过渡展平功能用法

creo钣金过渡展平功能用法

creo钣金过渡展平功能用法
Creo钣金过渡展平功能用法是Creo软件中的一项重要功能,它能够帮助用户在进行钣金设计过程中实现零件的平整展开。

以下是关于Creo钣金过渡展平功能的用法描述:
1. 钣金过渡展平功能的作用:
钣金设计中,零件通常需要进行折弯、压力加工等工艺操作,这些操作使得零件产生了复杂的形状,难以进行加工和制造。

钣金过渡展平功能能够将复杂形状的零件展平成二维平面,使得后续的切割、折弯等工艺操作更加便捷和准确。

2. 运行钣金过渡展平功能的步骤:
a. 首先,在Creo软件中打开需要展平的钣金零件模型。

b. 在模型的设计界面,选择“工具”-“钣金”-“过渡展平”。

c. 在过渡展平功能界面,选择需要展平的零件面或轮廓,并设置其他参数和条件,例如展平方案、展平比例、折弯线的位置等。

d. 点击“确定”按钮,Creo软件会根据用户设置的参数进行钣金展平操作,并生成展平后的二维平面零件模型。

3. 钣金过渡展平功能的注意事项:
a. 在设置过渡展平参数时,需要根据具体的设计需求和加工工艺要求确定展平方案和折弯线位置,以确保展平后的零件满足要求。

b. 需要注意的是,钣金过渡展平功能仅适用于展平面和折弯线相互平行或垂直的情况,对于形状复杂、曲线多样的零件,可能需要通过其他方法进行展平。

通过运用Creo钣金过渡展平功能,设计人员可以快速、准确地展平复杂形状的钣金零件,为后续的工艺制造提供便利。

该功能的使用使得钣金设计和制造过程更加高效和精确,有助于提升产品质量和生产效率。

PROE钣金展开计算

PROE钣金展开计算

PROE/钣金展开计算(钣金教程)PROE, 教程, 钣金声明:本计算方法为本人经验算法,只在本人现工作之处适用,照搬可能会有偏差。

先说一个名词:折弯余量折弯余量这个名词我在论坛别的贴子已经说过,这里再重复一下:一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为L1、L2,厚度尺寸为T,我们都已知道,L1 L2是要大于展开长度L的,它们的差值就是折弯余量,我定义为K,那么一个弯的展开尺寸L=L1 L2-K。

一般冷轧钢板的K值(条件:90度弯,标准折弯刀具)T=1.0 K=1.8T=1.2 K=2.1T=1.5 K=2.5T=2.0 K=3.5T=2.5K=4.3T=3.0 K=5.0 实例一:实例二:实例三:不规则折弯按K因子=0.5,直接用AUTOCAD画中性层测量。

如有偏差再根据具体情况调整。

一般也差不了多少。

折弯时调整下模槽宽也可将偏差的展开尺寸调整成合格的折弯外形(当然在一定的范围内)。

还有一外钣金件总有一些壁外形偏差允许大一些,可将偏差累积到那些壁去。

死边按L1 L2-0.5t在模型中直接修改dev.l值为1.5*t就可以了!这种东西要根据实际情况来,不搞工艺谈这些没意思,搞工艺你一进去自然有人给你讲这个,所以大家没必要在这个问题上浪费时间和精力。

PROE钣金展开经验公式揭秘PROE, 钣金, 公式, 揭秘, 经验先来看图经验公式(车间老师傅的算法,在实际中略有不同,需要调整)前提条件:内r<2 壁厚<2.5 折弯角度90%展开长度L=L1 L2-2T 0.5T (1)L1 L2为外径 T为板厚也即L=L1' L2' 0.5T (2)L1' L2'为内径T为板厚还即L=L1" L2" 2r 0.5T (3)L1" L2"为直段长度r为折弯内径我这里是用的0.5T,大多数人有用0.3T的如果内r/T>2,就直接用中性层K=0.5计算好了再看PROE中的展开PROE中的展开长度就是:L=L1" L2" DL L1" L2"为直段长DL为弧段展开长请记住这个DL,这个DL就是我们要制作的折弯表内的值!再回过来看看上贴的第三个公式L=L1" L2" 2r 0.5T很容易导出:DL=2r 0.5TDL为弧段展开长r为折弯内径现在要制作折弯表了按图操作最后一步,定义选自文件也可,结果都是打开一个折弯表或者不按上面的方法,直接用记事本打开一个*.bnd 格式的折弯表文件也可以然后,进行下一步修改打开的折弯表1、修改单元格中值删除大部分不用的壁厚和内径,只留下常用的或者自己添加壁厚限于2.5以内内径限于2.0以内2、修改计算公式当 r >2.0时,表中就查不到值了,这时系统就要用到公式了来计算DL值了。

PROE钣金自动展开(一)

PROE钣金自动展开(一)
2.若抽孔用来铆合,则取S=50%T,H=T T’0.4(注:T’是与之相铆合的板厚,抽孔与色拉孔之间隙为单边0.10~0.15)
3.若原图中抽孔未作任何标识与标注,则保证抽孔后内外径尺寸;
4.当预冲孔径计算值小于1.0时,一律取1.0
附件一:常见Pro/E展开标准数据
1.直边段差展开系数一览表
HT
1.1钣金设计和修改
Pro/SheetMatel具有强大的钣金设计和修改功能,能帮助工程师很容易的实现他们的设计意图,并有益于设变展开时的工艺修改.
1.2模型检查和辅助展开
展开流程只要选择相关的功能菜单.程序将检查钣金件的结构及相关特征,或高亮度显示,或在窗口中用Notes加以指示,给出展开补偿量(例如选择功能菜单中的Model_Check/Bend_Feat,窗口中高亮度显示所有的Bend特征;选择Aid_Unbend/Bend,窗口中会给所有的Bend特征加一Notes.).这样将会减少错误次数,节省了时间和金钱.
样品方式制作展开方法:
1.当H/5T时,分两次成型时,按两个90°折弯计算.
2.当H¢5T时,一次成型,
(1).若R=0,则L’=L;
(2).若R≠0,且只有一内角不为零,则L’=L 2R;
(3).若R≠0,且两内角都不为零,则L’=L 4R.
注:L值依附件一中参数取值.
Z折2(非平行直边段差):
展开方法与平行直边Z折方法相同(如上栏),高度H取值见图示.
2.展开原理
SheetMetal自动展开时,只计算补偿量,用L表示,料厚用T表示,角度用Angle表示,R表示折弯内半径.
2.1展开原理
板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过度层称为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pro/ENGINEER 钣金件展平的技巧总结关于展平展平特征展平钣金件上的任何弯曲曲面,无论它是折弯特征还是弯曲的壁。

有三种展平类型可用:∙规则 (Regular) - 展平零件中的大多数折弯。

选取要展平的现有折弯或壁特征。

如果选取所有折弯,则创建零件的平整形态。

∙过渡 (Transition) - 展平不可展开的曲面,如混合壁。

选取固定曲面并指定横截面曲线来决定展平特征的形状。

∙剖截面驱动 (Xsec Driven) - 展平不可展开的曲面,如折边及法兰。

选取固定曲面并指定横截面曲线来决定展平特征的形状。

创建展平时,要求指定要保持固定的曲面或边。

您的选择会改变模型的缺省视图。

尝试并拾取要保持在同一位置的主要曲面。

如果可能,在创建几个展平特征时,要保持一致,并使用同一曲面。

设置自动固定的几何元素(“设置”(Set Up)>“固定几何”(Fixed Geom)),可节省设计时间和保持一致性。

在展平后所创建的特征都是该展平的子项/从属于该展平。

如果只是临时展平零件,并不需要该展平来保持设计意图,则应删除该展平。

如果保持该展平,只会在模型树中挤满多余特征,这将延长零件再生时间。

切记,如果删除的展平中含有在其后创建的特征,这些附加特征也将被删除。

要草绘那些由于几何复杂和不规则而不能展平的壁的平整状态,可使用 Metamorph 选项。

利用“变形控制”(DEFORM CONTROL) 菜单,可加亮和草绘相应变形区域的轮廓。

展平特征创建后,壁的成形状态隐含,而平整状态处于活动状态。

当选取“展平全部”(Unbend All) 时,就可使用展平对话框中的“变形控制”(DEFORM CONTROL) 菜单。

展平不可展开的曲面未展开(变形的)的曲面,如具有复杂弯曲曲面的壁特征,通常必须展平后才能制造。

要展平变形的材料,该展平必须要简单。

定义的规则为所有要被展平的曲面必须具有外侧边或与一个有外侧边的区域相邻。

外侧边或相邻区域用作避免变形和拉伸材料的方法。

不对展平的变形区域计算展开长度。

注意:如果展平失败,会出现出错消息,列出未展开区域,请尝试以下方法:∙有曲面缝的规则展平 - 在未展开区域与外侧边之间移除现有的曲面。

∙有边缝的规则展平 - 沿曲面边形成撕裂,从未展开区域延伸到外侧。

把边缝看成是在封闭的未展开区域与外侧之间的接触。

∙有变形区域的规则展平 - 将现有的曲面分成许多较小的相邻曲面。

一个或多个较小的曲面与封闭的未展开曲面相接触。

同样,一个或多个较小的曲面与外侧边相连接。

∙草绘有变形区域的展平 - 利用 Metamorph 选项草绘变形区域的平整状态。

展平不可展开的曲面1.单击或单击“插入”(Insert)>“折弯操作”(Bend Operation)>“展平”(Unbend)。

出现“展平选项”(UNBEND OPT) 菜单。

2.单击“规则”(Regular)。

单击“完成”(Done)。

3.选取在展平过程中保持固定的平面或边。

4.定义要展平的部分:∙展平选取 (UnbendSelect) - 选取要展平的特定折弯曲面。

拾取全部所需折弯后,单击“完成选取”(Done Sel)>“完成参考”(Done Refs)。

∙展平全部 (Unbend All) - 展平全部折弯和弯曲曲面。

5.选取要变形的曲面。

它们需要在零件外侧上具有一条边。

6.单击“完成选取”(Done Sel)。

出现“特征参照”(FEATURE REFS) 菜单。

7.拾取全部所需的变形区域后,单击“完成参考”(Done Refs)。

8.在“展平”(Unbend) 对话框中,单击“确定”(OK)。

展平即创建完毕。

关于冲孔轴点冲孔轴点是在展平和折弯返回操作中,移动特征时的参照点。

必须将 punch_axis_points 配置选项设置为启用这样的点。

1. 冲孔轴点在“草绘器”中的放置。

2. 带有生成的冲孔轴点和基准点的切口。

3. 展平零件,显示冲孔轴点和基准点的实际位置。

1 点2 冲孔轴点3 基准点4 冲孔轴点5 基准点∙与常规基准点类似之处是,冲孔轴点显示在零件内,有标准的点符号和指定的名称(例如,PNT0)。

∙与常规基准点的不同之处是,冲孔轴点不是单独的特征。

在展示和折弯返回操作期间,该点随其父项特征的放置平面移动。

它类似于零件模式中旋转切口内的特征轴。

∙可以在详细绘图中标注冲孔轴点的尺寸。

创建冲孔轴点1.确保已将 punch_axis_points 配置选项设置为 yes。

2.单击“草绘”(Sketch)>“点”(Point) 或“草绘”(Sketch)>“轴点”(Axis Point)。

注意:1.通过“草绘”(Sketch)>“点”(Point) 和“草绘”(Sketch)>“轴点”(Axi s Point) 可创建冲压轴点。

而“轴点”(Axis Point) 也创建一个轴。

2.在展示和折弯返回操作期间,冲压轴点随其父项特征的放置平面移动。

3.单击草绘器窗口中的任何位置放置点或轴点。

继续定义切口、冲孔或凹槽特征。

注意:∙使用冲压轴点创建钣金件 SMT 切割后,Pro/ENGINEER 将不检查 punch_axis_points 配置选项。

∙将 punch_axis_points 配置选项设置为 no 将无法移除冲压轴点。

最佳做法:展平和折弯回去谨记,正确使用展平和折弯回去特征,对于稳妥设计是至关重要的。

在利用展平和折弯回去特征时,应考虑这些最佳做法:∙不要添加不必要的展平/折弯回去特征对,它们会加大零件的尺寸,并可能在再生时造成问题。

∙如果添加展平特征(或折弯回去)仅为查看模型平整状态(展平)之用,在继续设计前应删除该示例展平特征。

∙如果特别想在平整状态中创建特征,则应添加展平特征。

在平整状态中创建所需的特征,然后添加折弯回去特征。

不要删除此例中的展平特征,否则参照该展平特征的特征可能再生失败。

∙如果想要已投影的基准曲线跟随钣金件折弯,在创建展平特征后投影曲线。

这样,将钣金件壁折回时,曲线将跟随钣金件的曲面。

关于规则展平规则展平是普通展平,它几乎适用于所有钣金件展平。

可将壁和折弯展平,材料必须可延展,并能展平。

不能用规则展平特征展平不规则曲面。

可选择展平所有曲面和折弯,或选取特定区域:∙展平选取 (UnbendSelect) - 选取要展平的特定折弯曲面。

∙展平全部 (Unbend All) - 展平全部折弯和弯曲曲面。

成型的零件展平选取展平全部展平某个区域后,可继续添加特征,如切口和裂缝。

切记,在展平之后所添加的特征为展平的子项/从属于该展平。

如果删除展平,这些特征也随之删除。

如果是在临时查看展平模型,确保在添加特征之前删除展平特征。

不必要的特征可延长零件再生和开发时间。

如果添加的壁在展平时相交,Pro/E 将以红色加亮相交的边,并出现警告提示。

创建规则展平1.单击或单击“插入”(Insert)>“折弯操作”(Bend Operation)>“展平”(Unbend)。

出现“展平选项”(UNBENT OPT) 菜单。

2.单击“规则”(Regular)。

单击“完成”(Done)。

3.选取在展平过程中保持固定的平面或边。

4.定义要展平的部分:∙展平选取 (UnbendSelect) - 选取要展平的特定折弯曲面。

拾取全部所需折弯后,单击“完成选取”(Done Sel)>“完成参考”(Done Refs)。

∙展平全部 (Unbend All) - 展平全部折弯和弯曲曲面。

5.在“展平”(Unbend) 对话框中,单击“确定”(OK)。

展平即创建完毕。

关于过渡展平过渡展平用于展平不能用规则展平来展平的不可展几何。

不可展开的几何在多个方向上有折弯。

过渡几何临时从模型中移除,因此必须定义该几何以利用该特征。

然后即可展平可展开的曲面。

过渡几何回到平整形态。

展平某个区域后,可继续添加特征,如切口和裂缝。

切记,在展平之后所添加的特征为展平的子项/从属于该展平。

如果删除展平,这些特征也随之删除。

如果是在临时查看展平模型,确保在添加特征之前删除展平特征。

不必要的特征可延长零件再生和开发时间。

创建过渡展平1.单击或单击“插入”(Insert)>“折弯操作”(Bend Operation)>“展平”(Unbend)。

出现“展平选项”(UNBEND OPT) 菜单。

2.单击“过渡”(Transition)。

单击“完成”(Done)。

3.定义在展平过程中保持固定的任何平面或边。

选取的图元加亮。

切记,为了使所做的选择有效,曲面的驱动及偏移侧必须都要选中。

4.拾取全部所需平面和边之后,单击“完成选取”(Done Sel)>“完成参考”(Done Refs)。

5.定义要变形的任意曲面并完成转接展平特征。

关于剖截面驱动的展平剖截面驱动(剖面)的展平。

可展平无法加工的钣金件几何,如在多个方向有卷曲的壁。

展平由沿曲线的一系列截面组成,它们被投影到平面上。

术语截面是指用来影响展平壁形状的曲线。

可选取现有曲线或草绘新曲线。

无论是选取还是草绘曲线,它必须与所定义的固定边共面。

如果草绘曲线,要确保对曲线进行标注/对齐。

选取或草绘的曲线将影响零件的展平状态。

切记,该曲线可为直线。

钣金件剖截面驱动的展平展平某个区域后,可继续添加特征,如切口和裂缝。

切记,在展平之后所添加的特征为展平的子项/从属于该展平。

如果删除展平,这些特征也随之删除。

如果是在临时查看展平模型,确保在添加特征之前删除展平特征。

不必要的特征可延长零件再生和开发时间。

不能将截面展平折弯回去。

注意:创建的截面一定不要在展平的几何内相交。

创建剖截面驱动的展平1.单击或单击“插入”(Insert)>“折弯操作”(Bend Operation)>“展平”(Unbend)。

出现“展平选项”(UNBENT OPT) 菜单。

2.单击“截面驱动”(Xsec Driven)。

单击“完成”(Done)。

3.在“链”菜单中选取所需附加链和选项。

4.选取所需边后单击“完成”(Done)。

5.定义曲线以在展平剖面时控制它们:∙选取曲线 (Select Curve) - 在与固定边共面的平面上选取曲线。

∙草绘曲线 (Sketch Curve) - 草绘剖面曲线。

该曲线可为直线。

6.定义保持固定的折弯侧:确定 (Okay) 或反向 (Flip) - 改变方向。

7.在“截面驱动类型”(Xsec Driven Type) 对话框中单击“确定”(OK)。

展平即创建完毕。

关于折弯回去可用折弯回去特征将展平曲面返回到它们的成形位置。

作为一条规则,应该只折弯回去完全展平的区域。

折弯的零件折弯回去全部折弯回去选取注意:∙如果部分地折弯回去包含变形区域的规则展平,就可能达不到原始折弯条件。

相关文档
最新文档