静定结构内力计算总结
建筑力学第三章静定结构内力计算
01
02
03
04
排架是由两个单层刚架组成的 结构,其内力可以通过整体法
和分离法进行计算。
整体法是将两个单层刚架作为 一个整体进行分析,从而求得
整个排架的内力。
分离法是将排架拆分成两个单 层刚架进行分析,然后分别求
得每个单层刚架的内力。
在计算过程中,需要考虑到排 架的自重、外力以及支座反力
的影响。
组合结构的内力计算实例
03 静定结构的内力计算方法
截面法
总结词
通过在指定截面上截取隔离体,然后对隔离体进行受力分析,计算出内力的方法。
详细描述
截面法是静定结构内力计算的基本方法之一。在截面法中,我们首先在结构中选择一个或多个截面, 然后将这些截面处的杆件暂时断开,并分析这些杆件的内力。通过这种方法,我们可以确定每个杆件 的内力大小和方向。
组合结构是由两种或多种结构组成的 结构,其内力可以通过叠加法进行计 算。
在计算过程中,需要考虑到组合结构 是将每种结构的内力分别计算 出来,然后根据结构的特点进行叠加, 从而求得整个组合结构的内力。
05 静定结构内力计算的注意 事项
材料强度的考虑
材料强度
在计算静定结构内力时,必须考虑材 料的强度。不同的材料有不同的抗拉 、抗压、抗剪强度,应确保结构中的 应力不超过材料的容许应力。
节点法
总结词
通过分析节点处的平衡状态,计算出节点所受内力的方法。
详细描述
节点法是一种基于力的平衡原理的计算方法。在节点法中,我们首先确定节点 的位置和数量,然后分析每个节点处的平衡状态。通过这种方法,我们可以计 算出每个节点所受的内力大小和方向。
弯矩图法
总结词
通过绘制弯矩图,直观地表示出结构的弯矩 分布情况,进而计算出结构的内力。
第三章 静定结构的内力计算
FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC
第三章 静定结构的内力计算(组合结构)
A A A A 0 0 0 0
0 0 0 0
8 8 8 8
HC
3、求梁式杆内力 处理结点A处力
结构力学
第3章静定结构的内力计算
静定结构特性
结构力学
第3章静定结构的内力计算
静定结构特性 静定结构特性 一、结构基本部分和附属部分受力影响
A
F1
B
C
F2
D
E
F3
F
如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; Ⅰ Ⅱ Ⅲ 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 特性一、静定结构基本部分承受荷载作用,只在基本部分上产 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 生反力和内力;附属部分上承受荷载作用,在附属部分和基本 部分上均产生反力和内力。
第3章静定结构的内力计算
q = 1 kN/m A FR Ax FR Ay FNDA F C FNFD VC
8 8 8 8
M M图 图 ( m M图 (kN· kN· m) ) M 图 (kN· m) (kN· m) F 图 FQ 图 Q ( ) FkN 图 ( kN Q ) FkN 图 ( Q ) (kN) F 图 FN N图 ( ) FkN ( kN ) N图 FkN N图 ( ) (kN)
结构力学
第3章静定结构的内力计算
二、平衡荷载的影响
F C B D
A B q C
建筑力学之 静定结构的内力分析知识详解
第二个脚标表示该截面所属杆件的另一端。例如 则表M示BA AB杆B端截面的弯矩。
表M示AB AB杆A端截面的弯矩,
❖ (3)内力图绘制
❖ 静定刚架内力图有弯矩图、剪力图、轴力图。刚架的内力图由各杆的内力图组合 而成,而各杆的内力图,只需求出杆端截面的内力后,即可按照梁内力图的绘制 方法画出。
❖ 6.平面刚架计算步骤
第十一章 静定结构的内力分析
❖ 第一节 楼梯斜梁和多跨静定梁 ❖ 1. 楼梯斜梁 ❖ 楼梯斜梁承受的荷载主要有两种,一种是沿
斜梁水平投影长度分布的荷载,如楼梯上人群 的重量等;另一种是沿倾斜的梁轴方向分布的 竖向荷载,如梁的自重等。 ❖ 一般在计算时,为计算简便可将沿梁轴方 向分布的竖向荷载按等值转换为沿水平方向分 布的竖向荷载,如图11-1 (a),沿梁轴线方向分 布 则的 由荷 于载 是等′值转转换换为,沿所水q 以平有方:向分布的荷q 载 ,
❖ (2)杆端内力的表示:如:FNAB 、 、 、 FNBA FQAB FQBA 、M AB 、M BA 等。 ❖ 注意:刚结点处不同方向有不同的杆端内力。
❖ 为了明确表示刚架上不同截面的内力,特别是为了区别汇交于同一结点的不同杆
端截面的内力,在内力符号右下角采用两个脚标;第一个脚标表示内力所属截面,
❖ 详解见教材
图11-21
❖ (6)结点法与截面法的联合应用 ❖ 欲求图11-23所示a杆的内力,如果只用结点法计算,不论取哪个结
点为隔离体,都有三个以上的未知力无法直接求解;如果只用截面法 计算,也需要解联立方程。 ❖ 为简化计算,可以先作Ⅰ-Ⅰ截面,如图所示,取右半部分为隔离 体,由于被截的四杆中,有三杆平行,故可先求1B杆的内力,然后以 B结点为隔离体,可较方便地求出3B杆的内力,再以3结点为隔离体, 即可求得a杆的内力。
静定结构的内力分析
静定结构的内力分析-建筑结构
一级注册建筑师
静定结构按其受力特性,可以分为静定梁、静定刚架、三铰拱、静定桁架和静定组合结构。
一、静定梁
1 .截面内力分量及正负号规定
平面杆件的任一截面上一般有三个内力分量:轴力N ,剪力Q 和弯矩M 。
内力的正负号一般规定为:
(1 )轴力以受拉为正;
(2 )剪力以绕隔离体顺时针方向为正;
( 3 )弯矩一般不规定正负号(对水平梁通常以使梁的下侧受拉为正)。
内力图一般以杆轴为基线绘制。
弯矩图规定画在杆件的受拉侧,无需标明正负号;剪力图和轴力图则可画在杆件的任一侧(对水平杆件通常将正的剪力和轴力绘于杆件上侧),但需标明正负号。
2 .截面法
截面法是结构内力分析的基本方法。
截面法计算结构内力的基本步骤为:
(1)将结构沿拟求内力的截面切开。
(2)取截面任一侧的部分为隔离体,作出隔离体的受力图;受力图中的力包括两部分:外荷载和截断约束处的约束力(截面内力或支座反力),未知截面内力一般假设为正号方向。
(3)利用静力平衡条件计算所求内力。
对于平面结构,一般情况下隔离体上的各力组成一平面任意力系,故有三个独立的平衡方程(投影方程或力矩方程):
或
特殊情况下,例如截取的是一个铰节点,则各丸组成一平面汇交力系,故有两个独立的投影平衡方程:
本篇文章来源于《中国注册建筑师考试网》。
第六章--静定结构的内力计算-建筑力学
120kN
40kN/m
C
A
120kN D
B
C
40kN/m
D
60kN
A B
60kN
145kN
145
FS图 +
(kN )
M图 (kN m)
320
235kN
60
-
+
-
60
175
120
180
§6-6 三铰拱
q
C
FAx = FH A
FA y
l 2
l 4
l
q
A
C
FA0y
F
f
B
l
FB x
4 FB y
F
B
FB0y
dx l l y2 = 3m
FA y
81.5m =12m
FB y
100kN
A
20kN/m
C
B
M 2 = M 20 - FH y2 = 67.5kN m
FSL2 = FSL20 c os - FH sin
= 41.6kN
FSR2 = FSR20 c os - FH sin
FA0y tg2 = 0.667
0.5m
FA = 19kN
D
1.5m
8kN
A
FNAC
FxAD
19kN
FyAD
FNAD
FyAD = 11kN FxAD = 33kN
FNAD = 34.8kN FNAC = -33kN
P
P+P'
无外载时的内力: P
有外载时的内力: P+P'
ΔP=P+P'-P=P' —(附加)内力 研究的是外力所产生的附加内力, 简称内力
【土木建筑】第16章:静定结构的内力计算
单跨静定梁小结
要求: 1)理解内力、内力图的概念; 2)了解梁的主要受力、变形特点; 3)理解并掌握截面法计算内力的方法; 4)熟练掌握用叠加法做直杆段的弯矩图。
本节难点及重点: 1)内力正、负号的判断; 2)叠加法做弯矩图。
§16-2 多跨静定梁
多跨静定梁由相互在端部铰接、水平放置的若干直 杆件与大地一起构成的结构。
绕曲线杆端切线
q
XA A
B XB
C
E
D B
A
• 一、静定刚架支座反力的计算:平衡方 程
二、绘制内力图:用截面法求解刚架任意 指定截面的内力,应用与梁相同的内力符 号正负规定原则即相同的绘制规律与绘图 方法作内力图(M图、Q图、N图)
40kN
(+) (-)
40kN
q=20kN/m
B
C
P=40kN D
例16-2-2 分析图示多跨静定梁可分解成单跨梁分 别计算的条件,并作梁的FQ、M图。
分析:(1)图示梁的荷载以及约束的方向,是竖 向平行力系。一个平面平行力系只能列两个独立的 平衡方程,解两个未知数。 (2)杆CE有两个与大地相连的竖向支座链杆, 当仅在竖向荷载作用下时,可维持这个平行力系的 平衡。所以,杆CE在仅有竖向荷载的作用下,可 视为与杆AB同等的基本部分。
2)求C截面的内力 切开过C点的横截面,将梁分成两部分。取左侧
部分考虑,其暴露的截面上按规定的内力的正方向 将内力示出,建立静力平衡方程。
说明:计算内力要点: 1)所取的隔离体(包括结构的整体、截面法截取 的局部),其隔离体周围的所有约束必须全部切断 并代以约束力、内力。 2)对未知外力(如支座反力),可先假定其方向, 由计算后所得结果的正负判断所求力的实际方向, 并要求在计算结果后的圆括号内用箭线表示实际方 向。 3)计算截面的内力时,截面两侧的隔离体可任取 其一,一般按其上外力最简原则选择。截面内力均 按规定的正方向画出。
静定结构内力计算全解[详细]
从组成的观点,静定结构的型式: ✓悬臂式、简支式(两刚片法则) ✓三铰式(三刚片法则) ✓组合式(两种方式的结合)
悬臂式 三铰式
简支式 组合式
组合式结构中:
✓基本部分:结构中先组成的部分,能独立承载; ✓附属部分:后组成的以基本部分为支承的部分,不能独立 承载。
三铰拱作业:
y
100kN
1
A O
2m
20kN/m
4m 8m
2
B x
Hale Waihona Puke 2m求图示抛物线拱的1、2截面的内力。
三、三铰拱的合理拱轴线
使拱在给定荷载下只
M M 0 FH y 0 产生轴力的拱轴线,被
y M0
称为与该荷载对应的合 理拱轴
FH
三铰拱的合理拱轴线 的纵坐标与相应简支梁弯 矩图的竖标成正比。
Mik
i
FQik
Mik
i
Fiy
q Mki
k
FQki q
Mki
k
Fky
叠加法作弯矩图: 叠加法作弯矩图:
+
要点:先求出杆两端 截面弯矩值,然后在 两端弯矩纵距连线的 基础上叠加以同跨度、 同荷载简支梁的弯矩 图。
§3 静定多跨梁与静定平面刚架
一、静定多跨梁 多根梁用铰连接组成的静定体系。
AB、CD梁为基本部分 BC梁为附属部分。
2、求支座反力和内部约束力
根据组成和受力情况,取整个结构或部分结构为隔离 体,应用平衡方程求出。
B
B
F
F
FBy
A FC
FAx A FAy
静定结构的内力计算
⑴ 静定结构的内力计算,可不考虑变形条件。
( ○ )⑵ 力法只能用于线形变形体系。
( ○ ) 当计算自由度W >0 时,体系一定是可变的。
( ○ ) 2. 有多余约束的体系一定是几何不变体系。
(×) 1. 瞬变体系的计算自由度一定等零。
(×)三个刚片每两个刚片之间由一个铰相连接构成的体系一定是无多余约束的几何不变体系。
(×)用力法计算并绘图示结构的M 图解: 1)取基本结构,确定基本未知量3)绘和 p M 图1M 01111=∆+p x δ2) 列力法方程EI l l l l EI l l l EI 65)(21)31(1311=⨯⨯+⨯⨯⨯=δEIl M l l M EI P 2)(21201-=⨯⨯-=∆4) 求系数和自由项l M M 5) 把系数和自由项代入力法方程求未知量:lM l EI EI l M x p5356203201111=⋅=∆-=δ6) 作结构的M 图。
(将解得的基本未知量直接作用于B 支座处,利利用截面法计算即可)=∑CM1x 图M 二.力法解超静定结构的计算步骤 (以02级试题为例,25分)(03级试题) (15分)用力法求图示结构M 图, EI=常数 , M 0=45kN.m 。
M P基本结构M 1 往届试题举例:请思考:若此题若改为对称荷载,结构又应该如何简化?(15分)用力法计算并绘图示结构M 图。
EI=常数。
I /2基本结11=x M 14.求系数和自由项。
EIql l l ql EI p 8432311421-=⋅⋅⋅⋅-=∆EIl 311=δ5.求X 188321111ql l EI EI ql x P=⋅=∆-=δ6. 绘 M 图。
解; 1. 选取基本结构,确定基本未知量1x 01111=∆+P x δ2.列出力法方程3.绘 M 1 M P 图。
M P 图 828222ql ql l ql M AB-=-⋅=0=BA M M 图8ql =(03级试题) 二.位移法解题步骤 (以01级试题为例)用位移法作图示结构的M图。
力学与结构—静定结构内力计算
力学与结构—静定结构内力计算静定结构是指在静态平衡的情况下,具有确定的结构稳定的结构体系。
在静定结构内力计算中,我们主要关注结构中的受力情况,以及内力的计算和分析。
本文将介绍静定结构内力计算的基本原理和方法。
一、静定结构的受力情况静定结构中,每一点的受力都可以通过平衡方程来计算。
平衡方程包括力的平衡方程和力矩的平衡方程。
力的平衡方程:在静态平衡状态下,结构的受力合力为零,即ΣF=0力矩的平衡方程:在静态平衡状态下,结构的受力合力矩为零,即ΣM=0根据这两个平衡方程,我们可以计算出结构中各个节点的受力情况。
二、内力的计算和分析在静定结构中,内力是指结构中材料的内部受力情况。
在计算内力时,我们主要关注结构中的悬臂梁、简支梁、悬链线等情况。
1.悬臂梁悬臂梁是一种固定在一端的梁。
在计算悬臂梁的内力时,我们需要知道梁的长度、材料的性质、外力的作用点和大小等信息。
对于悬臂梁,内力可以通过以下公式计算:弯矩M=Px(P为力的大小,x为力的作用点到悬臂梁左端的距离)剪力V=P2.简支梁简支梁是一种两端都可以自由转动的梁。
在计算简支梁的内力时,我们同样需要知道梁的长度、材料的性质、外力的作用点和大小等信息。
对于简支梁,内力可以通过以下公式计算:弯矩M=Px(P为力的大小,x为力的作用点到简支梁左端的距离)剪力V=03.悬链线悬链线是一种线性受力的结构,常见于吊桥和高空绳索走廊等场景。
在计算悬链线的内力时,我们需要知道悬链线的长度、绳子的重力、外力的作用点和大小等信息。
对于悬链线,内力可以通过以下公式计算:水平力H=水平方向的外力的合力垂直力V=绳子的重力+垂直方向的外力的合力张力T = sqrt(H^2 + V^2)通过以上的方法,我们可以计算得到静定结构中各个节点的受力情况和内力。
三、静定结构内力计算的应用静定结构内力计算在结构工程中具有重要的应用价值。
通过计算内力,我们可以了解结构的受力情况,选择合适的材料和结构参数,保证结构的安全性和稳定性。
《结构力学》静定结构内力计算
只承受竖向荷载和弯矩
FP1 A
FP2
B
C
基本部分:能独立承受外载。 附属部分:不能独立承受外载。
FP
A
B
C
■作用在两部分交接处的集 中力,由基本部分来承担。
FP1
FP2
A B
■基本部分上的荷载不影响附 属部分受力。
■附属部分上的荷载影响基本 部分受力。
先算附属部分, 后算基本部分。
例 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图
ql ql/2
FQ图 ql
7ql/4 ql
5ql/4 ql/2
3ql/4
ql/2
练习
10kNm 20kN 10kN
10kN/m
1m 1m 1m 1m
1m 1m 10kN/m
10kNm
20kN 10kN 0
0
30kN
10kNm
20kN 10kNm
10kNm
10kNm
20kN 10kN 0
0
30kN
2m 2m
解 (1)求支反力
q=20kN/m FP=40kN
70kN
50kN
(2)取隔离体,求截面内力
MC C FQC
FP=40kN
B 50kN
(2)叠加法作弯矩图
120kNm
+
40kNm
40kNm
=
120kNm
40kNm
40kNm M图
例 试绘制梁的弯矩图。
40kNm
FP=40kN q=20kN/m
26
26
8 FQ图(kN)
6
12
M图(kNm)
24 12
例
解 (1)求支反力
静定结构的内力分析
40
第 三 章80 静定结构的内力计算
D
FNDE FNED
E
30
30
FNDC
FNEB
FQ
40 kN
FN 30 kN
80 kN
练习:
第三章
静定结构的内力计算
解: (1) 求支座反力。
F=qa
C
D
由 X 0
E
FxA q 2a 0
q
a B
得 FAx 2qa
a
由 M A 0
FxA
A
FyB
2qa a F a FyB 2a 0
首先进行定性分析。
由内力图的外观校核。杆上无分布荷载FS图为水 平直线;M图为斜直线。杆上有分布荷载FS图为斜直 线;M图为二次抛物线。 FS图为零的截面M为极值。 杆上集中荷载作用的截面, FS图上有突变;M图上有折 弯。根据这些特征来检查,本题的M图、FS图均无误。
第 三 章 静定结构的内力计算
6
FA=58 kN 26
10
18 FB=12 kN
q ME
FQE
MF
FS 图 ( kN )
FQF
第 三 章 静定结构的内力计算
二、 多跨静定梁 (multi-span statically determinate beam)
附属部分--依赖基本
基本部分--不依赖其它
部分的存在才维持几
部分而能独立地维持其
据
3.外力与杆轴关系(平行,垂直,重合) 4.特殊部分(悬臂部分,简支部分)
5.区段叠加法作弯矩图
第 三 章 静定结构的内力计算
结点平衡条件的应用:
一、铰结点: (集中力偶只能作用于杆端处)
M
第三章静定结构的内力计算(精)
第三章静定结构的内力计算学习目的和要求不少静定结构直接用于工程实际,另外,它还是静定结构位移计算及超静定结构的计算基础。
所以静定结构的内力计算是十分重要的,是结构力学的重点内容之一。
通过本章学习要求达到:1、练掌握截面内力计算和内力图的形状特征。
2、练掌握截绘制弯矩图的叠加法。
3、熟练掌握截面法求解静定梁、刚架及其内力图的绘制和多跨静定梁及刚架的几何组成特点和受力特点。
4、了解桁架的受力特点及按几何组成分类。
熟练运用结点法和截面法及其联合应用,会计算简单桁架、联合桁架既复杂桁架。
5、掌握对称条件的利用;掌握组合结构的计算。
6、熟练掌握截三铰拱的反力和内力计算。
了解三铰拱的内力图绘制的步骤。
掌握三铰拱合理拱轴的形状及其特征学习内容梁的反力计算和截面内力计算的截面法和直接内力算式法;内力图的形状特征;叠加法绘制内力图;多跨静定梁的几何组成特点和受力特点。
静定梁的弯矩图和剪力图绘制。
桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。
三铰拱的组成特点及其优缺点;三铰拱的反力和内力计算及内力图的绘制;三铰拱的合理拱轴线。
§3.1梁的内力计算回顾一、截面法1、平面杆件的截面内力分量及正负规定:轴力N (normal force) 截面上应力沿轴线切向的合力以拉力为正。
剪力Q (shearing force)截面上应力沿轴线法向的合力以绕隔离体顺时针转为正。
弯矩M (bending moment) 截面上应力对截面中性轴的力矩。
不规定正负,但弯矩图画在拉侧。
2、截面内力计算的基本方法:截面法:截开、代替、平衡。
内力的直接算式:直接由截面一边的外力求出内力。
1、轴力=截面一边的所有外力沿轴切向投影代数和。
2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。
3、弯矩=截面一边的所有外力对截面形心的外力矩之和。
弯矩及外力矩产生相同的受拉边。
《结构力学》第三章 静定结构内力计算(1)
技巧:“求谁不管谁”:不考虑待求未知力,而考虑其
它未知力有什么特点,具体分为下面两种情况:
(a)其余未知力平行,在其垂直方向投影。
(b)其余未知力汇交于一点,对该点取矩。
X 0,X A 0;
1
1
MB
0,YA
l ql
l 2
0,YA
ql 2
Y
0,YA
YB
ql
0,YB
1 2
ql
step2:求指定截面内力 (1)取脱离体:从指定c截面截开梁,取左半脱离体为 研究对象,受力如图所示:
轴力、剪力 符号规定
梁、拱的弯 矩符号通常 假定使下侧 受拉为正
2、杆件任一截面上内力的计算---截面法
沿计算截面用一假想截面将构件切开,任取一侧 脱离体为研究对象,利用脱离体的静力平衡条 件,可建立三个平衡方程:
X 0,Y 0,M 0
由此就可求得杆件任一截面上的内力。
注意:
• 脱离体要与周围的约束全部断开,并用相应的约束力 代替。例如,去掉辊轴支座、铰支座、固定支座时应 分别添加一个、二个以及三个支座反力,等等。
(二)简支结构
通过一铰、一链杆或三根链杆与基础相连的结构。
(三)三铰结构
若结构体系(不含基础)有两个刚片,其与基础 的连接满足三刚片法则,则称该体系为三铰结 构。
(四)组合结构
多次运用几何不变体系的简单组成规则构成的结 构。
2、静定结构内力分析(即绘制内力图) 方法
有三种常用的绘制内力图的方法。
(2)熟记几种常见单跨梁的弯矩图,如悬臂梁、简
支梁等。特别记住简支梁在均布荷载、集中力以及集 中力偶作用下的弯矩图。
(1)
(2) (3)
梁长均为L
建筑力学11静定结构内力分析
d
q=20KN/m 10KN
FNae= F = – 35KN
Nea
Fax
a
b
4m
FNec= FNce= – 35KN
FNcd=FNdc=0
FN图 KN
35
Fay
Fay
45
31
2m
e
2m
5.作FN图
c
d
6、验算
20
c
35
35
c c
45
20
20 50
10
45 FQ图
M图
c 20 35
KNm
20 35
q=20KN/m
c
d
10KN
Fby=45KN
2.分析各段杆的 内力图形。
F ax
a
b
4m Fay FBy
28
2m
Fay=35KN
e
2m
Fax= – 10KN
q=20KN/m
10KN
Mae=0
Mea=Mec=10×2=20KNM
Fax
a
b
4m
Mce=10×4 – 10×2=20KNM Mcd=10×4 – 10×2=20KNM Mdb=0 Mbd=0
38
11.3 静定平面桁架的内力分析 11.3.1 概述 三点假定: 1、桁架的节点都是光滑的理想饺。 2、各杆的轴线都是直线,且在同一平面内,并 通过饺的中心。 3、荷载和支座反力都作用于节点上,并位于桁 架的平面内。杆自重忽略不计。 特点——按理想桁架计算的各杆的内力只 有轴力
39
11.3.2 简单平面桁架内力求解 1、内力计算方法 (1)节点法—以节点为隔离体,从只有二个未 知力的节点开始,逐个节点进行。利用节点的 静力平衡方程计算节点上截断杆的内力。 (2)截面法—用以截面(平面或曲面)截取桁 架的某一部分为隔离体,利用该部分的静力 平衡方程计算截断杆的轴力。
《建筑力学》_第六章_静定结构的内力计算
(2) 用截面法求D截面的内力。
(3)应用静力学平衡方程求解 杆件内力的值。
F x0 , F A xF0
M A(F)0, F B yaFa 20
F y 0 , F A y F B y 0
解得:
FF FAxF,FAy2,FBy2
F x 0 ,F N F A x 0 ,F N F
F F y0, F sF A y0, F s2
3.内力图的符号规定: (1)正的轴力和剪力画在 x 上侧,负的轴力和剪力画在 x 下侧; 若不画坐标轴,则需:正的标注符号(+);负的标注符号(-)。 (2) 将弯矩图画在杆件的受拉侧(图不必标正或负)。
编辑课件
11
第二节 内力方程·内力图
作 AC 杆的内力图
轴力方程 剪力方程 弯矩方程
FN(x)F
CB 段 FsBFBa lF, MB0
b
a b
F sC 右 = F sC R F B = lF , M C R F B b编l辑F 课件
20
第二节 内力方程·内力图
[例题 6–5] 用简便法绘制梁的剪力图和弯矩图。
解:
(1)求支座反力。
FA
FB
Me l
C
(2) 将梁分为AC、CB 两段,
分析AC、CB 两段的内力图形状。
注意剪力图和弯矩图的特征:
1. 集中载荷作用处,剪力有突变,弯矩连续,但呈现一个尖点;
2. 集中力偶作用处,弯矩有突变,剪力连续;
3. 剪力图和弯矩图是封闭的图形。
4. 剪力为零处,有极值。 编辑课件
19
第二节 内力方程·内力图
[例题 6–4] 试用简便法绘制梁的剪力图和弯矩图。
解:
(1)求支座反力。 F B
第七章静定结构的内力计算
在檩条梁中,AB梁是基本部分,而BC梁、CD 梁则是附属部分。
为清晰起见,可将它们的支承关系分别用图表 示,这样的图形称为层次图。
7.1.2 多跨静定梁的内力计算
通过层次图可以看出力的传递过程。因为基本 部分直接与基础相联结,所以当荷载作用于基本部 分时,仅基本部分受力,附属部分不受力;当荷载 作用于附属部分时,由于附属部分与基本部分相联 结,故基本部分也受力。
系列简支梁 的弯矩图
多跨静定 梁的弯矩 图
7.2 静定平面刚架
7.2.1 概述 1. 刚架的特点
刚架是由直杆组成的具有刚性结点的结构。
在刚架中的刚结点处,刚结在一起的各杆不 能发生相对移动和转动,变形前后各杆的夹角保 持不变,故刚结点可以承受和传递弯矩。
由于存在刚结点,使刚架中的杆件较少,内 部空间较大,比较容易制作,所以在工程中得到 广泛应用。
【例7.1】绘制图(a)所示多跨静定梁的内力图。
【解】 1) 绘制层次图。
梁ABC固定在基础上,是基本部分;梁CDE固 定在梁ABC上,是第一级附属部分;梁EF固定在梁 CDE上,是第二级附属部分。
根据上述分析,多跨静定梁由三个层次构成。
2) 求约束反力。 在计算时,先计算EF梁,再计算CDE梁,最 后计算ABC梁。
FAx
MA
FAy
2) 绘制内力图。 由区段叠加法绘制弯矩图。在CD段,将控制 截面上的弯矩值竖标按比例标出并用虚线连接, 以此虚线为基线,叠加上相应简支梁在均布荷载 作用下的弯矩图。在AC段,以连接控制截面上的 弯矩值竖标的虚线为基线,叠加上相应简支梁在 跨中点受集中荷载作用下的弯矩图。
240
240
【解】 悬臂刚架可不计算支座反力,直接计算内力。 1) 求各控制截面上的内力。 取每个杆件的两端为控制截面,从自由端开始,根
第3章_静定结构的内力分析
静定结构受力分析
一、静定单跨梁的类型
(1)简支梁;
(2)悬臂梁; (3)伸臂梁
二、杆件截面内力及正负号规定 1、轴力:沿杆件轴线方向的截面内力,拉力为正、压力为负。 2、剪力:相切于横截面的内力,顺转为正,反之为负。
3、弯矩:截面内力对截面形心的力矩,下部受拉为正、反之 为负。 + + M M Q Q + N N - - M M Q Q - N N
C 60
B
叠加法绘制直杆弯矩图 一、简支梁弯矩图的叠加方法
MA
A
q L
MB
B
MA
MAB中 1 qL2 MB 8
若MA、MB在杆的两侧,怎么画?
MA MB q
A
MA
MAB中
B MB
+
A 1 qL2 8
B
MAB中= ( MA + MB)/2
MA A
P a b
MB B MA M Pab L MB
L
M怎么计算?
C A 3.75kN 2m
D
4m
B
2m 0.25kN
ND左 = -10kN
求截面C、D左、D右的内力。 解:1、求支座反力 2、C截面的内力 取C截面以左为对象:
QD左 = 3.75-2×2 =-0.25kN MD左 = 3.75×6-2×2×5
=2.5kNm
4、D右截面的内力 取D右截面以右为对象:
三、内力图的校核
除一般校核平衡条件和荷载、内力微分关系外,重点是校核 刚结点处的平衡条件,即∑X = 0 , ∑Y = 0,∑M = 0
例1:作图示刚架的弯矩图。 2kN/m C A B 5m 4m
16
4
C
B MCB = 0 MBC = 2×4×2 =16kNm(上拉) MBA = 2×4×2 = 16kNm(右拉) MAB =2×4×2 = 16kNm(右拉)
《结构力学》静定结构的内力分析(上)
解:(1)先计算支座反力 (2)求控制截面弯矩值
RA 17 kN
RB 7kN
M D 17 2 81 26 kN m
M F 7 2 16 30 kN m
取GB部分为隔离体, 可计算得:
MGr 71 7 kN m
M
l G
7 1 16
23kN m
M m
(3)积分关系 由d Q = – q·d x
q(x)
MA
MB
QB
QA
xBq(x) dx
xA
由d M = Q·d x
QA
QB
M B
MA
xBQ(x) dx
xA
几种典型弯矩图和剪力图
q
P
m
l /2
P 2
l /2
P 2
Pl 4
1、集中荷载作用点 M图有一夹角,荷载向 下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
主要任务 :要求灵活运用隔离体的平衡条件,熟练掌握静定 梁内力图的作法。 分析方法:按构造特点将结构拆成杆单元,把结构的受力分析 问题转化为杆件的受力分析问题。
一、截面上内力符号的规定
轴力:截面上应力沿杆轴切线方
向的合力,使杆产生伸长变形为
N
N 正,画轴力图要注明正负号;
剪力:截面上应力沿杆轴法线
结论:截面上内力求解简单方法
1、轴力等于该截面任一侧所有外力沿该截面轴线方向投影的 代数和。外力背离截面投影取正,指向该截面投影为负。
2、剪力等于该截面任一侧所有外力沿该截面切线方向投影的 代数和。如外力使隔离体对该截面有顺时针转动趋势,其投影取 正,反之为负。
3、弯矩等于该截面任一侧所有外力对该截面形心之矩代数和。 如外力矩产生的弯矩标在拉伸变形侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P/2
P/2
NAB
≠
相同
NAB
P/2
P/2
NAB
+
+
P/2
NAB
NAB
P/2Biblioteka P/2NABNAB
P/2
=
返回
Ⅱ
E
E 3d a C A Xa Na
b
A Ⅱ Ⅰ P 3d
C
P
B
B
Ⅰ
P
Ya
M A = P×2d +Ya ×3d = 0
Na = 5 5 =Ya P 2 3
2 Ya = - P 3
b)根据结构的内力分布规律来简化计算; ①在桁架计算中先找出零杆,常可使简化计 算; ②对称结构在对称荷载作用下,内力和反力 也是对称的; 对称结构在反对称荷载作用下,内力和反力 也是反对称的; c)分析几何组成,合理地选择截取单元的次序; ①主从结构,先算附属部分,后算基本部分; ②简单桁架,按去除二元体的次序截取结点; ③联合桁架,先用截面法求出连接杆的轴力, 再计算其它杆。 d)截面弯矩的几种计算方法
3、各种结构形式的力学特点比较如下图。
简支梁弯矩最大(使用于小跨度结构);伸 臂梁、多跨静定梁、 三铰刚架、组合结构 弯矩次之(使用于较大跨度结构);桁架、 具有合理轴线的三铰拱弯矩为零(使用于大 跨度结构)。
受力特点
1、基本特性: 静定结构是无多余约束的几何不变 体系;其全部内力和反力仅由平衡条件 就可唯一确定。超静定结构是有多余约 束的几何不变体系;其全部内力和反力 仅由平衡条件不能完全确定,而需要同 时考虑变形条件后才能得到唯一的解答。 静定结构的基本静力特性是:满足平衡 条件的内力解答是唯一的。
2、一般特性:由基本特性,可以推出静定 结构的一般特性如下。 (1)1、温度改变、支座移动和制造误差等 因素在静定结构中不引起内力。
(2)静定结构的局部平衡特性:在荷载作用下, 如果静定结构中的某一局部可以与荷载平衡,则 其余部分的内力必为零。
(3)静定结构的荷载等效特性:当静定结构的一 个几何不变部分上的荷载作等效变换时,其余 部分的内力不变。
例题 2
找出零杆, 简化计算
P
A
①对称结构在对称荷载作用 下,对称轴上的K 性结点无 外力作用,两斜杆轴力为零。 ②由T性结点受力特点,又 可找到四根零杆。 ③内接三角形的三顶点不受 力时,内接三角形不受力。 又找到六根零杆。
P
0 0 0
0
0 0 0 0
0 0
0
0
P
P
例题 3
利用对称性
Pa/2
2、单元平衡方程的数目 单元平衡方程的数目=单元的自 由度数,不一定等于单元上的未知 力的数目。因为单元有n个自由度 ,就由n 种独立的运动,如果单元 平衡,那么,沿这n 种独立运动方 向受力要平衡。
3、计算的简化
• a)选择恰当的平衡方程,尽量使一 个方程中只含一个未知量
例题 1
一个方程中只含一个未知量
静定结构内力计算总结
学习内容
静定结构受力分析的方法,静定结构的一般性 质,各种结构型式的受力特点。
学习目的和要求
1、了解静定结构受力分析的方法及简化计算方 法; 2、掌握静定结构的一般性质; 了解梁、拱、刚架和桁架的受力特点。
受力分析方法
• 对静定结构来说,所能建立的独立的 平衡方程的数目 =方程中所含的未知力 的数目。因此,静定结构的内力完全 由平衡条件确定。 • 为了避免解联立方程组应按一定的顺 序截取单元(分离体),尽量使一个 方程中只含一个未知量。
A
2P
B
=
P A B
P
P
2P B
P
+
由局部平衡特性知:仅AB 杆受力,其余杆内力为零
A
4)定结构的构造变换特性:当静定结构的一个 内部几何不变部分作构造变换时, 其余部分的内 力不变。
4、静定结构的构造变换特性
P
P
当静定结构的一个内部几何不变部分作构 造变换时,其余部分的内力不变。 P
=
=
P
NAB
5m
D 10
5 2kN/m 50kN.m B C
5m
7kN F
一般特性
1、结构类型:
• 静定结构几种典型结构:梁、刚架、 拱、桁架、组合结构。还可以从不同 的角度加以分类。
。
2、减小截面弯矩的措施 链杆只有轴力,无弯矩,截面上正应力均布, 充分利用了材料的强度。弯杆有弯矩,截面上 正应力不均布,没有充分利用材料强度。为达 到物尽其用,尽量减小杆件中的弯矩。减小截 面弯矩的几种措施。 ①在静定多跨梁中,利用杆端负弯矩可减小 跨中正弯矩; ②在推力结构中,利用水平推力可减小弯矩 峰值; ③在桁架中,利用杆件的铰结及荷载的结点 传递,使各杆处 于无弯矩状态;三铰拱采用合 理拱轴线可处于无弯矩状态。
3、静定结构的荷载等效特性:
当静定结构的一个几何不变 荷载分布不同,但合力相同 部分上的荷载作等效变换时, 其余部分的内力不变。
结论:桁架在非结点荷载 除AB杆内力不同,其 作用下的内力,等于桁架在等效 余部分的内力相同。 荷载作用下的内力,再叠加上在 局部平衡荷载作用下所产生的局 部内力(M、Q、N)。
2M ql l ql 2 MC = l - = l 2 3 12 ql l ql 2 M C = 2M - = 2 3 12
AC部分 M C = 0 YA =15kN
M E = 3 10 - 10 = 20
35
25 10
3 E
20 5m A 5m 15kN 20 D
C
5
5m
G 10kN
1、单元的形式及未知力 结点:桁架的结点法、刚架计算中已 知Q求N时取结点为单元。 杆件:多跨静定梁的计算、刚架计算 中已知M求Q时取杆件为单元。 杆件体系:桁架的截面法取杆件体系 为单元。 单元上的未知力的数目是由所截断的 约束的性质决定的。 截断链杆只有未知 轴力;在平面结构中,截断梁式杆,未知 力有轴力、剪力和弯矩;在铰处截断,有 水平和竖向未知力。
P
Pa/2
m
m
0 0
a a a a
例题 4
综合应用各种内力计算方法
d)截面弯矩的几种计算方法
M = ql 2 24
2M/l B C 2MEI ql 2 ql 2 =ll 6 12
q
M
A
2M/l
2M/l
q
EI
l 2
B
EI
l
C 2M
①求出支座反力,由 2M 3l ql l ql 2 ql 2 截面一边的外力计算。 M = - M - = 2M =C l 2 2 3 6 12 ②取杆件考虑,求出杆端剪力,由杆端剪力和杆端弯矩求另一杆端弯矩 ③先作出附属部分上的荷载产 生的弯矩图,再作基本部分上 的荷载产生的基本部分上的弯 矩图,然后叠加。