黑龙江省牡丹江市第一高级中学2017_2018学年高一数学下学期期中试题201805261462
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省牡丹江市第一高级中学 2017-2018学年高一数学下学期期中
试题
一、选择题(本大题共有 12个小题,每小题 5分,共 60分,在每小题给出的四选项中只有一 项是符合题目要求的。
)
1、对于任意实数 a ,b ,c ,d ,下列结论正确的是(
)
A .若 a b ,c 0 ,则 ac bc
B .若 a b ,则 ac 2 bc 2
C .若 ac 2 bc 2 ,则 a b
D .若 a b ,则
1
1
a b
2、在
ABC 中, a ,b ,c 分别是角 A , B ,C 的对边,a 3,b 7,c 2 ,那么 B 等于(
)
A .
30
B .
45
C .
60
D .
120
3、已知等比数列{a }的首项 n
a 1
5 ,公比 q
2,则 a
(
)
2018
A . 5 22017
B . 5 22018
C . 5 22019
D . 5 22020
4、已知{a } 为等比数列, a 4
a 7 2,a 5a 6
8,则
a a =( )
n
1
10
A . 7
B . 5
C . 5
D . 7
5、已知等差数列{a } 中,
7
9
16, 4 1
a
a
a ,则 a 等于
(
) n
12
A . 15
B . 30
C . 31
D . 64
6、在
ABC 中,已知角 A , B ,C 的对边分别为 a ,b ,c ,且 a 2,c 6, A 45
,则 b 的大
小是(
)
A . 3 1或 3 1
B . 3 1
C . 3-1
D .
3-2或 3+2
7、在 ABC 中, a ,b ,c 分别是角 A , B ,C 的对边,且
c os B
b
cos C 2a
c
, 则角 B 的大小是 ( )
A .
3
B .
6
C .
2
3
D .
5 6
A
8、在ABC中,已知sin B2,则ABC的形状是( )
sin C cos
2
- 1 -
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
9、已知S是等差数列{a}的前n项和,
若
n n
S S ,
则
a ,201420086 12014
20142008
S
2017
()
A.1
B.2017
C.2008
D.4034
10、甲船在岛B的正南方A处,AB 10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B出发以每小时6千米的速度向北偏东60的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是()
A.150
7
分钟B.
15
7
分钟C.21.5分钟D. 2.15分
钟
11、某小朋友按如下规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,7中指,8食指,9大拇指,10食指,,一直数到2018时,对应的指头是()
A.小指
B.中指
C.食指
D.无名指
12、下列结论正确的个数是()
①若正实数x,y满足19
1,则x y的最小值是16;
x y
②已知
5
x ,则函
数
4
y 4x
2
1
4x
5
的最大值为1;
- 2 -
③已知 x , y , z R ,且 x y z
1 ,则 1 4 9
的最小值是 36; x y z
④若对任意实数 x ,不等式 a 3 5x 3x 2 恒成立,则实数 a 的取值范围是
[4,
)。
A . 1个
B . 2个
C . 3个
D . 4个
二、填空题(本大题共有 4个小题,每小题 5分,共 20分) 13、不等式
x 2
4x 3
x 2
0 的解集为______
_.
14、 设
a 是 公 差 不 为 0 的 等 差 数 列 , n
a
且
1
1
a a a 成 等 比 数 列 , 则 2 , 4 , 8
1
1
a a
a a
1 2
9 10
15、已知关于 x 的不等式 x 2 x 1 a 恒成立,则实数 a 的取值范围是
16、已知三角形两边长分别为 1 和 3 ,第三边上的中线长为 1 ,则三角形的外接圆半径 为
.
三、解答题(本大题共有 6个小题,共 70分,解答应写出文字说明、证明过程或演算步骤)
1
17、(本小题满分 10分)解关于 x 的不等式(x 1)(x ) 0,a R 且a
a
18、(本题满分 12分)已知锐角三角形 ABC 的内角 A , B ,C 的对边分别为 a ,b ,c ,且
3a 2b sin A
(1)求 B 的大小; (2)若 a 2
c 2 7, 且三角形 ABC 的面积为 3 ,求 b 的值。
19、(本小题满分 12分)
- 3 -
已知数列
a的前n项
和
n S,且a
n n
S n
(n N*).
n
2
(Ⅰ
)若数列
a t是等比数列,求t的值;
n
(Ⅱ)求数列
a的通项公式。
n
20、(本小题满分12分)已知不等式2x 3x 42a
(1)若a 1,求不等式的解集;
(2)若已知不等式的解集不是空集,求实数a的取值范围。
21、(本题满分12分)在ABC中,a b 10,cos C是方程2x23x 2
0的一个根,
求ABC周长的最小值。
22、(本小题满分12
分)已知等比数列
a的公比q 1,且28
a a
,
1320a
.n
(Ⅰ)求数列
a的通项公式;
n
(Ⅱ)设
b
n n
,
a
S 是数列
b的前n项和,对任意正整数n,不等
n
S1(1)a
n
n 式
n n n n
2
恒成立,求实数a的取值范围。
- 4 -
答案
一、选择题,填空题:
序号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C C A D A A C A D A C C
序号13 14 15 16
答案(,3][1,2)9
10
三、解答题:
17、(本小题满分10分)
(,3)
1
1
当-1<a<0时,不等式的解集为{x| <x<-1};当a=-1时,不等式的解集为∅;
a
1 当
a>0或a<-1时,不等式的解集为{x|-1<x<}..
a
18、(本小题满分12分)
【解析】解:(1)由3a 2b sin A.根据正弦定理得3sin A 2s in B sin A,……(2
分)
又sin A
0所以sin3,
B
……(4分)
2
由ABC为锐角三角形得B
,………(6分)
3
(2)由ABC的面积为3,得1sin3
ac B
………(7分)
2
又
sin
3
B ac 4………(8
分)
2
由余弦定理得a2c22ac cos B b2………(10分)
又
cos
1
B ,b23………(11
分)
2
b 3………(12分)
S 1a 1
19、(本小题满分12分)(Ⅰ)当n 1时,由11a .
a
,得11
1
22
当 n 2 时, a
S
S
a n a
n ,
1 2
2 1 ( 1)
n
n
n
n
n
即
a
2a
1,
n
n 1
- 5 -。