最新苏科七年级数学第一学期期末考试试题word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新苏科七年级数学第一学期期末考试试题word 版
一、选择题
1.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .锐角三角形或直角三角形 2.下列计算中,正确的是( )
A .235235x x x +=
B .236236x x x =
C .322()2x x x ÷-=-
D .236(2)2x x -=- 3.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3
B .a=-2,b=-3
C .a=-2,b=3
D .a=2,b=-3 4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4
B .2
C .3
D .4 5.下列各式中,不能用平方差公式计算的是( ) A .(x -y )(-x +y )
B .(-x -y )(-x +y )
C .(x -y )(-x -y )
D .(x +y )(-x +y ) 6.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )
A .11
B .12
C .13
D .14
7.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )
A .12
B .15
C .10
D .12或15
8.一元一次不等式312x -->的解集在数轴上表示为( )
A .
B .
C .
D .
9.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1).
B .(﹣1,1)
C .(1,1)
D .(1,﹣1) 10.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点
M 的坐标是( )
A .(2,﹣5)
B .(﹣2,5)
C .(5,﹣2)
D .(﹣5,2) 11.下列说法中,正确的个数有( ) ①同位角相等
②三角形的高在三角形内部
③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,
④两个角的两边分别平行,则这两个角相等
A .1个
B .2个
C .3 个
D .4个
12.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )
A .∠A+∠2=180°
B .∠A=∠3
C .∠1=∠4
D .∠1=∠A
二、填空题
13.根据不等式有基本性质,将()23m x -<变形为32x m >
-,则m 的取值范围是__________.
14.若x +3y -4=0,则2x •8y =_________.
15.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.
16.如果9-mx +x 2是一个完全平方式,则m 的值为__________.
17.已知23x y +=,用含x 的代数式表示y =________.
18.已知代数式2x-3y 的值为5,则-4x+6y=______.
19.已知12
x y =⎧⎨=⎩ 是关于x 、y 的二元一次方程mx ﹣y =7的一个解,则m =_____. 20.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.
21.有两个正方形A 、B ,现将B 放在A 的内部得图甲,将A 、B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A ,B 的面积之和为_________.
22.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.
三、解答题
23.已知△ABC
中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.
(1)如图1,连接CE ,
①若CE ∥AB ,求∠BEC 的度数;
②若CE 平分∠ACD ,求∠BEC 的度数.
(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.
24.计算:
(1)()20
202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++-
25.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.
(1)补全'''A B C ∆,利用网格点和直尺画图;
(2)图中AC 与''A C 的位置关系是: ;
(3)画出ABC ∆中AB 边上的中线CE ;
(4)平移过程中,线段AC 扫过的面积是: .
26.已知有理数,x y 满足:1x y -=,且221x
y ,求22x xy y ++的值.
27.分解因式:
(1)3222x x y xy -+;
(2)2296(1)(1)x x y y -+++; (3)()214(1)m m m -+-.
28.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.
29.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.
(1)若140∠=︒,2∠=________.
(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.
②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.
30.因式分解:
(1)x 4﹣16;
(2)2ax 2﹣4axy +2ay 2.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
根据三角形内角和为180°,求出三个角的度数进行判断即可.
【详解】
解:∵三角形内角和为180°, ∴118030123
A ∠=⨯︒=︒++
218060123
B ∠=⨯︒=︒++ 318090123
C ∠=
⨯︒=︒++, ∴△ABC 为直角三角形,
故选:B .
【点睛】 此题考查三角形内角和,熟知三角形内角和为180°,根据各角占比求出各角度数即可判断.
2.C
解析:C
【解析】
试题解析:A.不是同类项,不能合并,故错误.
B.235236.x x x ⋅= 故错误.
C.()3222.x x
x ÷-=- 正确. D.()32
628.x x -=- 故错误.
故选C.
点睛:同底数幂相乘,底数不变,指数相加.
同底数幂相除,底数不变,指数相减. 3.B
解析:B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.
详解:(x+1)(x-3)
=x 2-3x+x-3
=x 2-2x-3
所以a=2,b=-3,
故选B .
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
4.D
解析:D
【分析】
先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.
【详解】
解:(4x-a )(x+1),
=4x 2+4x-ax-a ,
=4x2+(4-a)x-a,
∵积中不含x的一次项,
∴4-a=0,
解得a=4.
故选D.
【点睛】
本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.
5.A
解析:A
【分析】
根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.
【详解】
A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A符合题意;
B、两个括号中,含x项的符号相同,含y的项的符号相反,故能使用平方差公式,B不符合题意;
C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C不符合题意;
D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D不符合题意;
故选:A.
【点睛】
本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.
6.C
解析:C
【解析】
【分析】
根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.
【详解】
解:设第三边为a,
根据三角形的三边关系,得:4-3<a<4+3,
即1<a<7,
∵a为整数,
∴a的最大值为6,
则三角形的最大周长为3+4+6=13.
故选:C.
【点睛】
本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.7.B
解析:B
【分析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
由题意,分以下两种情况:
(1)当等腰三角形的腰为3时,三边为3,3,6
+=,不满足三角形的三边关系定理
此时336
(2)当等腰三角形的腰为6时,三边为3,6,6
+>,满足三角形的三边关系定理
此时366
++=
则其周长为36615
综上,该三角形的周长为15
故选:B.
【点睛】
本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.
8.B
解析:B
【解析】
【分析】
先求出不等式的解集,再在数轴上表示出不等式的解集即可.
【详解】
-3x-1>2,
-3x>2+1,
-3x>3,
x<-1,
在数轴上表示为:,
故选B.
【点睛】
本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.
9.C
解析:C
【分析】
直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.
解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,
∴2x﹣3=3﹣x,
解得:x=2,
故2x﹣3=1,3﹣x=1,
则M点的坐标为:(1,1).
故选:C.
【点睛】
此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.
10.A
解析:A
【分析】
先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.
【详解】
∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).
故选:A.
【点睛】
本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.
11.A
解析:A
【分析】
根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.
【详解】
解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;
②只有锐角三角形的三条高在三角形的内部,故此结论错误;
③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;
④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误.
故选A.
【点睛】
本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.
12.D
解析:D
【分析】
根据平行线的判定定理对各选项进行逐一判断即可.
A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;
B、∵∠A=∠3,∴AB∥DF,故本选项错误;
C、∵∠1=∠4,∴AB∥DF,故本选项错误;
D、∵∠1=∠A,∴AC∥DE,故本选项正确.
故选:D.
【点睛】
点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.二、填空题
13.m<2
【分析】
根据不等式的性质即可求解.
【详解】
依题意得m-2<0
解得m<2
故答案为:m<2.
【点睛】
此题主要考查不等式的求解,解题的关键是熟知不等式的性质.
解析:m<2
【分析】
根据不等式的性质即可求解.
【详解】
依题意得m-2<0
解得m<2
故答案为:m<2.
【点睛】
此题主要考查不等式的求解,解题的关键是熟知不等式的性质.
14.16
【分析】
根据幂的运算公式变形,再代入x+3y=4即可求解.
【详解】
∵x+3y-4=0
∴x+3y=4
∴2x•8y=2x•(23)y=2x+3y=24=16.
故答案为:16.
解析:16
【分析】
根据幂的运算公式变形,再代入x+3y=4即可求解.
【详解】
∵x+3y-4=0
∴x+3y=4
∴2x•8y=2x•(23)y=2x+3y=24=16.
故答案为:16.
【点睛】
此题主要考查幂的运算,解题的关键是熟知幂的运算公式.
15.24xy
【解析】
∵(3x+2y)2=(3x﹣2y)2+A,
∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,
即9x2+12xy+4y2=9x2-12xy+
解析:24xy
【解析】
∵(3x+2y)2=(3x﹣2y)2+A,
∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,
即9x2+12xy+4y2=9x2-12xy+4y2+A
∴A=24xy,
故答案为24xy.
【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.
完全平方公式:(a±b)2=a2±2ab+b2.
16.±6
【分析】
如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.
【详解】
解:∵9-mx+x2是一个完全平方式,
∴方程9-mx
解析:±6
【分析】
如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.
【详解】
解:∵9-mx+x2是一个完全平方式,
∴方程9-mx+x2=0对应的判别式△=0,
因此得到:m2-36=0,
解得:m=±6,
故答案为:±6.
【点睛】
本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.
17.y=3-2x
【解析】
移项得:y=3-2x.
故答案是:y=3-2x.
解析:y=3-2x
【解析】
+=
x y
23
移项得:y=3-2x.
故答案是:y=3-2x.
18.-10
【分析】
原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.
【详解】
解:∵2x-3y=5,
∴原式=-2(2x-3y)=-2×5=-10.
故答案为:-10.
【点睛】
本题
解析:-10
【分析】
原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.
【详解】
解:∵2x-3y=5,
∴原式=-2(2x-3y)=-2×5=-10.
故答案为:-10.
【点睛】
本题考查了代数式求值,熟练掌握运算法则是解题的关键.
19.9
【分析】
根据题意直接将代入方程mx﹣y=7得到关于m的方程,解之可得答案.【详解】
解:将代入方程mx﹣y=7,得:m﹣2=7,
解得m=9,
故答案为:9.
【点睛】
本题主要考查二元
解析:9
【分析】
根据题意直接将
1
2
x
y
=


=

代入方程mx﹣y=7得到关于m的方程,解之可得答案.
【详解】
解:将
1
2
x
y
=


=

代入方程mx﹣y=7,得:m﹣2=7,
解得m=9,
故答案为:9.
【点睛】
本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
20.【分析】
先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.
【详解】
解:
故答案为
【点睛】
此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.
解析:
1
. 3 -
【分析】
先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】
解:()20202019133⎛⎫-⋅- ⎪⎝⎭
()2019
201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣
⎦ 1.3
=- 故答案为1.3
-
【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 21.11
【分析】
设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.
【详解】
设A 的边长为a ,B 的边长为b ,
由图甲得,即,
由图乙得,得2ab=10,
解析:11
【分析】
设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.
【详解】
设A 的边长为a ,B 的边长为b ,
由图甲得22
2()1a b a b b ---=,即2221a ab b -+=,
由图乙得222()10a b a b +--=,得2ab=10,
∴2211a b +=,
故答案为:11.
【点睛】
此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键. 22.﹣
【分析】
先解方程4x ﹣1=3x+1,然后把x 的值代入2m+x =1,即可求出m 的值.
【详解】
解:4x ﹣1=3x+1
解得x=2,
把x=2代入2m+x=1,得2m+2=1,
解得m=﹣.
解析:﹣1 2
【分析】
先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】
解:4x﹣1=3x+1
解得x=2,
把x=2代入2m+x=1,得
2m+2=1,
解得m=﹣1
2

故答案为:﹣1
2

【点睛】
此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.
三、解答题
23.(1)①40°;②30°;(2)50°,130°,10°
【解析】
试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=1
2∠ABC=40°,根据平行线的性质即可得到结论;
②根据邻补角的定义得到∠ACD=180°-
∠ACB=140°,根据角平分线的定义得到∠CBE=1
2
∠ABC=40°,∠ECD=
1
2
∠ACD=70°,根据
三角形的外角的性质即可得到结论;
(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.
试题解析:(1)①∵∠A=60°,∠ACB=40°,
∴∠ABC=80°,
∵BM平分∠ABC,
∴∠ABE=1
2
∠ABC=40°,
∵CE∥AB,
∴∠BEC=∠ABE=40°;
②∵∠A =60°,∠ACB =40°,
∴∠ABC =80°,∠ACD =180°-∠ACB =140°,
∵BM 平分∠ABC ,CE 平分∠ACD ,
∴∠CBE =12∠ABC =40°,∠ECD =12
∠ACD =70°, ∴∠BEC=∠ECD-∠CBE =30°;
(2)①如图1,当CE ⊥BC 时,
∵∠CBE =40°,
∴∠BEC =50°;
②如图2,当CE ⊥AB 于F 时,
∵∠ABE =40°,
∴∠BEC =90°+40°=130°,
③如图3,当CE ⊥AC 时,
∵∠CBE =40°,∠ACB =40°,
∴∠BEC =180°-40°-40°-90°=10°.
【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.
24.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.
【分析】
(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;
(2)原式利用积的乘方运算法则计算,合并即可得到结果;
(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;
(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.
【详解】
解:(1)原式=-1+1+4=4;
(2)原式=464646242x y x y x y -=-;
(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;
(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.
【点睛】
此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.
25.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.
【分析】
(1)根据图形平移的性质画出△A B C '''即可;
(2)根据平移的性质可得出AC 与A C ''的关系;
(3)先取AB 的中点E ,再连接CE 即可;
(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.
【详解】
解:(1)如图所示,△A B C '''即为所求;
(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;
故答案为:平行且相等;
(3)如图所示,线段CE 即为所求;
(4)如图所示,连接AA ',CC ',则线段AC 扫过的面积为平行四边形AA C C ''的面积,
由图可得,线段AC 扫过的面积4728=⨯=.
故答案为:28.
【点睛】
本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 26.【分析】
利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】
∵221x y ,
∴化简得:241xy x y , ∵1x y -=,
∴241xy x y 可化为:241xy ,
即有:5xy =,
∴2222313516x xy y x y xy .
【点睛】
此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
27.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).
【分析】
(1)首先提公因式x ,然后利用完全平方公式即可分解;
(2)根据完全平方公式进行因式分解即可;
(3)首先提公因式(m-1)然后利用平方差公式即可分解.
【详解】
解:(1)原式=x (x 2-2xy+y 2)
=x (x-y )2;
(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2
=(3x-y-1)2;
(3)原式=(m-1)(m 2-4)
=(m-1)(m+2)(m-2).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.
28.()
2223a ab b ++平方米;40平方米. 【分析】
(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.
【详解】
解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).
则绿化的面积是()
2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).
故当a =3,b =2时,绿化面积为40平方米.
答:绿化的面积是()
2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】
此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.
29.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵70C ∠=︒,65B ∠=︒,
∴∠A ′=∠A=180°-(65°+70°)=45°,
∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;
(2)①122A ∠+∠=∠,理由如下
由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,
∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;
②221A ∠=∠+∠,理由如下:
∵2∠是ADF 的一个外角
∴2A AFD ∠=∠+∠.
∵AFD ∠是A EF '△的一个外角
∴1AFD A '∠=∠+∠
又∵A A '∠=∠
∴221A ∠=∠+∠
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-
(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内
角和为180°;四边形内角和等于360度.
30.(1)2(4)(2)(2)x x x ++- (2)22()a x y -
【分析】
(1)原式利用平方差公式分解即可;
(2)原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:(1)原式=(x 2+4)(x 2﹣4)
=(x 2+4)(x +2)(x ﹣2);
(2)原式=2a (x 2﹣2xy +y 2)
=2a (x ﹣y )2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.。

相关文档
最新文档