系统辨识法永磁同步电机无传感器控制

合集下载

考虑位置观测误差的永磁同步电机无传感器驱动系统MTPA控制策略

考虑位置观测误差的永磁同步电机无传感器驱动系统MTPA控制策略

电气传动2023年第53卷第12期ELECTRIC DRIVE 2023Vol.53No.12摘要:最大转矩电流比(MTPA )控制是提升永磁同步电机无传感器驱动系统效率的重要手段之一。

在无传感器驱动系统中,传统计算法根据公式推导最优电流矢量角解析解,无法计及位置观测误差变化的特性,而注入虚拟信号寻优方法受位置观测误差影响精度降低。

为解决该问题,提出一种考虑位置观测误差的MTPA 方法。

所提方法通过比较上述两种方法在无传感器驱动系统中对最优电流矢量角不同的追踪结果估计位置观测误差,利用估计的位置误差对电机数学模型进行校正以实现最优电流矢量角高精度追踪。

最后,在2.2kW 内置式永磁同步电机实验平台验证了所提方法的有效性。

关键词:内置式永磁同步电机;MTPA 控制;无传感器控制;虚拟信号注入中图分类号:TM28文献标识码:ADOI :10.19457/j.1001-2095.dqcd25113MTPA Control Strategy Considering Position Estimation Error for Sensorless Drive System ofPermanent Magnet Synchronous MotorZHANG Guoqiang ,NIU Ben ,YANG Hua ,WANG Gaolin ,XU Dianguo(School of Electrical Engineering and Automation ,Harbin Institute of Technology ,Harbin 150001,Heilongjiang ,China )Abstract:Maximum torque per ampere (MTPA )control is one of the important methods to improve the efficiency of sensorless drive system of permanent magnet synchronous motor (PMSM ).In the sensorless drive system ,the traditional calculation method deduces the analytical solution of the optimal current vector angle according to the formula ,which ignores the characteristics of the position error changes ,and the accuracy of the injection virtual signal optimization method is also reduced by the position error.In order to solve this problem ,an MTPA control method considering position estimation error was proposed.By comparing the optimal current vector angle tracking result of the above two methods in the sensorless drive system ,the position error was estimated.Then the estimated position error was applied to correct the motor mathematical model for the high-accuracy tracking of the optimal current vector angle.Finally ,the effectiveness of the proposed method was verified on the 2.2kW interior PMSM (IPMSM )experimental platform.Key words:interior permanent magnet synchronous motor (IPMSM );maximum torque per ampere (MTPA )control ;sensorless control ;virtual signal injection基金项目:国家自然科学基金(52177034)作者简介:张国强(1987—),男,博士,教授,主要研究方向为交流电机控制理论与应用技术,Email :************.cn考虑位置观测误差的永磁同步电机无传感器驱动系统MTPA 控制策略张国强,牛犇,杨华,王高林,徐殿国(哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001)永磁同步电机(PMSM )因其高效率、高功率密度和宽调速范围而被广泛应用于各工业领域[1-2]。

极低速区永磁同步电机无速度传感器控制方法比较

极低速区永磁同步电机无速度传感器控制方法比较

3P2ψ
2 m
I
c
2Jωc
sin(ωct)
(3)
其中, ε 为转子位置误差,P 为电机极对数,
J 为转动惯量,ψ m 为永磁磁链。
由(3)式可以看出,q 轴反电势脉动包含转
子位置误差信息。因此,采取与高频信号注入
法类似的方法,可构造如下误差信号:
{ } Fε = LPF ecq (t) sin(ωct)
θ% r
其中,BSF 表示带阻滤波,滤除 cos(2ωht) 。
由(2)式可以看出,若 iθ%r 为零,则意味着
θ%r 为零。因此,可以通过控制误差信号 iθ%r 为
零,使得转子位置误差为零,从而获得准确的
转子位置,并进而获得准确的估计转速。
图 (1) 为 基 于 上 述 高 频 信 号 注 入 法 的
极低速区永磁同步电机无速度传感器控制方法比较
Comparison of Speed Sensorless Control Methods of PMSM at Very Low Speeds 清华大学电机系 吴姗姗 李永东
Email: wuss03@、liyd@
为避免上述高频信号注入法存在的问 题,文献[8]提出了一种基于低频信号注入的 方法。该方法仅利用永磁同步电机的基波模 型,不依赖电磁凸极,所以不受电机结构影 响,具有普遍的适用性。但该方法动态响应性 能有待提高。
本文在表面贴论分析、仿真及实验验证,比较了高、低 频信号注入法在极低速区的 SMPM 无速度传感 器控制性能,并得出一定结论。
(b)
图 7 空载,转速突变 75rpm->-75rpm->75rpm
图 7 为 SMPM 极低速空载运行时转速突 变的实验波形。从图中可以看出,实际转速和 估计转速均能跟随参考转速变化,稳态误差较 小。高频信号注入法的动态响应速度比低频信 号注入法稍快,但由于注入信号幅值较大,使 得稳态转速高频脉动较大。

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》范文

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》范文

《永磁同步电机全速度范围无位置传感器控制技术的研究与实现》篇一一、引言永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种重要的电动传动系统部件,因其具有高效率、高功率密度和良好的调速性能等优点,被广泛应用于工业、汽车、航空航天等领域。

然而,传统的PMSM控制系统通常需要使用位置传感器来获取电机的位置信息,这不仅增加了系统的复杂性和成本,还可能降低系统的可靠性和稳定性。

因此,无位置传感器控制技术成为了近年来研究的热点。

本文旨在研究并实现永磁同步电机全速度范围无位置传感器控制技术,以提高电机控制系统的性能和可靠性。

二、永磁同步电机基本原理永磁同步电机的基本原理是利用永磁体产生的磁场与定子电流产生的磁场相互作用,产生转矩,使电机转动。

PMSM的转子不需要外部供电,具有结构简单、运行可靠等优点。

然而,要实现电机的精确控制,必须准确获取电机的位置和速度信息。

传统的PMSM控制系统通过位置传感器来获取这些信息,但无位置传感器控制技术则通过电机内部的电气信号来估算电机的位置和速度。

三、无位置传感器控制技术无位置传感器控制技术主要通过电机内部的电气信号来估算电机的位置和速度。

常见的无位置传感器控制技术包括基于反电动势法、模型参考自适应法、滑模观测器法等。

本文采用基于反电动势法的无位置传感器控制技术,通过检测电机的反电动势来估算电机的位置和速度。

四、全速度范围无位置传感器控制策略为了实现永磁同步电机全速度范围的无位置传感器控制,需要采用合适的控制策略。

本文采用基于矢量控制的策略,通过实时调整电机的电压和电流来控制电机的位置和速度。

在低速阶段,采用初始位置估算和误差补偿技术来提高位置的估算精度;在高速阶段,则采用反电动势法来准确估算电机的位置和速度。

此外,还采用了自适应控制技术来应对电机参数变化和外部干扰的影响。

五、实验与结果分析为了验证本文所提出的无位置传感器控制技术的有效性,进行了实验验证。

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述【摘要】永磁同步电机无位置传感器控制技术是当前研究领域的热点之一。

本文通过对该技术进行综述,首先介绍了永磁同步电机控制技术的概况,然后详细分析了无位置传感器控制策略、基于模型的控制方法、基于适应性方法的控制技术以及基于滑模控制的应用。

在展示了这些控制技术的优势和特点的也指出了在实际应用中面临的挑战和需改进的地方。

我们对研究进行了总结,展望了未来的发展趋势,并提出了应对挑战的策略。

通过本文的研究,希望能够为永磁同步电机无位置传感器控制技术的进一步发展提供参考和指导。

【关键词】永磁同步电机,无位置传感器,控制技术,模型控制,适应性方法,滑模控制,研究总结,发展趋势,挑战与应对策略1. 引言1.1 研究背景永磁同步电机是一种具有高效率、高性能和广泛应用的电机类型,其在许多领域中得到了广泛的应用。

传统的永磁同步电机控制方法需要利用位置传感器来获取电机转子的位置信息,这增加了系统的成本和复杂性。

为了克服这一问题,无位置传感器控制技术应运而生。

无位置传感器控制技术通过利用电流和电压的反馈信息,结合适当的控制策略,实现对永磁同步电机的精准控制。

这种技术不仅可以降低系统成本,还可以提高系统的鲁棒性和稳定性。

研究永磁同步电机无位置传感器控制技术具有重要的理论和实际意义。

本文旨在对永磁同步电机无位置传感器控制技术进行综述和总结,系统地介绍这一领域的研究现状和发展趋势,为相关领域的研究人员提供参考和借鉴。

通过对相关文献和案例的分析和总结,为进一步推动永磁同步电机无位置传感器控制技术的发展提供理论支持和实践指导。

1.2 研究目的永磁同步电机无位置传感器控制技术的研究目的是为了探索在没有位置传感器的情况下,如何实现对永磁同步电机的精准控制。

通过研究不依赖位置传感器的控制策略和技术,可以降低系统的成本和复杂度,提高系统的稳定性和可靠性。

研究无位置传感器控制技术还可以拓展永磁同步电机在各种应用中的适用范围,推动新能源车辆、工业制造等领域的发展。

具有参数辨识的永磁同步电机无位置传感器控制

具有参数辨识的永磁同步电机无位置传感器控制
式中为参数辨识算法执行周期。
由此,选取为状态变量,为输出变量为输入变量,利用式(18)~式(22)进行迭代,即得到参数辨识算法为
2.3具有参数辨识的无位置传感器控制方案
在将辨识参数反馈用于控制时,需要使用低通滤波器(Low Pass Filter,LPF)先对辨识参数进行滤波,一方面滤除稳态、动态切换时可能引起的辨识量干扰,另一方面为各参数的反馈设置合适的延时保证实用性,因为EKF参数辨识算法的实际代码执行时空开销较大,不能保证在一个控制周期执行完毕。不同参数LPF的截止频率需要分别配置,以实际应用效果为准。在前述方案基础上,具有参数辨识的内埋式PMSM(Interior PMSM,IPMSM)无位置传感器矢量控制系统如图3所示。
实际上,通过多组转速下的相同仿真可以发现,额定转速以下全速度范围内转子磁链和交轴电感的误差对MRAS算法位置估计性能的影响远大于另外两个参数。图2c呈现了不同转速稳态下ψr和Lq参数的变化对MRAS位置估计性能的影响。从图2中可以看到,随着转速的升高,转子磁链的不准确对MRAS算法位置估计性能的影响相对变小了很多,而交轴电感的不准确对MRAS算法位置估计性能的影响则相对变大了一些。在3 000r/min工况下,两个参数的不准确引起的位置估计误差均在相对较小的范围内,而在转速较低时,参数的不准确,尤其是转子磁链的不准确性,对MRAS算法的位置估计性能会有较大的影响。
从图5中可以看到,辨识出的很好地收敛到其真实值0.14V·s和53mH,稳态特性良好,动态性能满足无位置传感器控制的稳定性要求。将辨识参数反馈用于控制后,无位置传感器矢量控制算法具有良好的转速控制性能。
图6为在恒转速1 500r/min指令下,负载突然变化时整套方案的转速控制和参数辨识性能的仿真结果。仿真中不考虑负载转矩脉动情况,其余条件与图5相同。从图中可以看到,在负载突然变化的情况下,转速控制和参数辨识结果均具有良好的动态响应,过渡过程时间短、超调小以及振荡次数少。据此,整套方案的可行性和有效性通过仿真得到初步证明。

永磁同步电机无速度传感器控制综述

永磁同步电机无速度传感器控制综述

永磁同步电机无速度传感器控制综述李永东,朱昊(清华大学电机工程与应用电子技术系,北京100084)摘要:永磁同步电机无速度传感器控制系统,通过测量电机定子侧电流和端电压算出转子位置,替代了传统的机械位置传感器,系统成本低、可靠性较高。

转子位置可由开环算法或通过闭环观测器观测得到。

利用电机的非理想特性来提取转子位置信息,进一步将无速度传感器控制的范围扩展到低速甚至零速。

对永磁同步电机无速度传感器控制策略进行分类,详细介绍了各种速度观测方法,并比较了它们的优缺点。

关键词:永磁同步电机;无速度传感器控制;综述中图分类号:T M 351 文献标识码:AOverview of Sensorless C ontrol of Permanent Magnet Syncoronous MotorsL I Yo ng -do ng ,Z HU H ao(D ep ar tment of Electr ical Engineer ing,Ts inghua University ,Beij ing 100084,China)Abstract:T o achieve senso rless co ntro l o f permanent magnet sy nchro no us moto rs (PM SM ),infor matio n on the r oto r speed is ex tr acted fr om measur ed stato r cur rents and fro m v oltages at moto r terminals.T raditional mechanical po sitio n sensor is replaced,and this results in a low co st and high reliable system.O pen -lo op est-i mator s o r clo sed -lo op obser ver s ar e used for moto r po sitio n estimation.By explo iting the non -ideal pro pert y of moto r to acquire po sition infor mation,senso rless co ntro l is ex tended to low speed range even including zero.A r ev iew of the literature addr essing PM SM senso rless contr ol was pro vided.T he adv antag es and disadvantag es of differ ent senso rless methods wer e discussed in details.Key words:permanent mag net synchr onous mo tor (P M SM );sensor less contro l;o ver view作者简介:李永东(1962-),男,博士,教授,Email:liyd@m ail.ts 1 引言近年来,永磁同步电机调速系统已经成为交流调速传动领域的研究热点。

基于参数在线辨识的高速永磁电机无差拍电流预测控制

基于参数在线辨识的高速永磁电机无差拍电流预测控制

第27卷㊀第9期2023年9月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.9Sep.2023㊀㊀㊀㊀㊀㊀基于参数在线辨识的高速永磁电机无差拍电流预测控制刘刚1,㊀张婧1,2,㊀郑世强1,2,㊀毛琨1,2(1.北京航空航天大学惯性技术重点实验室,北京100191;2.北京航空航天大学宁波创新研究院,浙江宁波315800)摘㊀要:针对无传感器表贴式永磁同步电机高速运行过程中电气参数摄动影响电流环性能和转子位置估计精度的问题,提出一种基于参数辨识的无传感器高速永磁电机无差拍电流预测控制方法㊂首先,为了提升电流环控制器的动态性能,结合永磁电机控制系统的特点,采用无差拍电流预测控制并进行模型参数敏感性分析㊂其次,针对多参数在线辨识存在的欠秩问题,提出在3种不同时间尺度下,采用基于神经元迭代求解的总体最小二乘法在线分步辨识电机定子电感㊁电阻和永磁体磁链㊂最后将辨识结果用于更新无差拍电流预测控制器及滑模观测器参数㊂实验结果表明,基于参数辨识的无传感器高速永磁电机无差拍电流预测控制方法能有效提高电流环控制器稳态性能及转子位置估计精度㊂关键词:高速永磁同步电机;无差拍电流预测控制;无传感器控制;多参数在线辨识;总体最小二乘算法;神经元DOI :10.15938/j.emc.2023.09.011中图分类号:TM341文献标志码:A文章编号:1007-449X(2023)09-0098-11㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-02-13基金项目:国家自然科学基金(61822302)作者简介:刘㊀刚(1970 ),男,博士,教授,博士生导师,研究方向为航天器惯性执行机构技术㊁磁悬浮高速永磁电机技术;张㊀婧(1997 ),女,博士研究生,研究方向为高速永磁同步电机控制㊁原子磁强计控制;郑世强(1981 ),男,博士,教授,博士生导师,研究方向为航天器惯性执行机构技术㊁磁悬浮高速永磁电机技术;毛㊀琨(1988 ),男,博士,助理研究员,研究方向为电机控制㊂通信作者:毛㊀琨Deadbeat predictive current control of high speed permanent magnet motor based on online parameter identificationLIU Gang 1,㊀ZHANG Jing 1,2,㊀ZHENG Shiqiang 1,2,㊀MAO Kun 1,2(1.Science and Technology on Inertial Laboratory,Beihang University,Beijing 100191,China;2.Ningbo Innovation Research Institute,Beihang University,Ningbo 315800,China)Abstract :During the high-speed operation of sensorless surface-mounted permanent magnet synchronous motor (SPMSM),the perturbation of electrical parameters affects the performance of current loop and the accuracy of rotor position estimation.Therefore,a deadbeat predictive current control (DPCC)method for sensorless high speed permanent magnet motor based on parameter identification was proposed.First-ly,combined with the characteristics of permanent magnet motor control system,DPCC was adopted to improve the dynamic performance of the current loop controller.Besides,the parameter sensitivity of DPCC was analyzed.Secondly,in order to solve the rank deficient problem,a total least square (TLS)method based on neuron iterative solution was used to identify the inductance,resistance and permanent magnet flux linkage on-line and step by step.Finally,the identification results were used to update theparameters of deadbeat predictive current controller and sliding mode observer.The experimental resultsshow that DPCC method of sensorless high-speed permanent magnet motor based on parameter identifica-tion can effectively improve the steady state performance of current loop controller and the accuracy of ro-tor position estimation.Keywords:high speed permanent magnet synchronous motor;deadbeat predictive current control;sen-sorless control;multi parameter online identification;total least squares algorithm;neuron0㊀引㊀言随着稀土永磁材料的开发,基于矢量控制技术的永磁同步电机(permanent magnet synchronous mo-tor,PMSM)以其优良的性能广泛应用于工业伺服驱动㊁电动汽车㊁新能源发电等领域[1]㊂永磁同步电机的高精度控制需要准确的转子位置信息和速度信息,但机械式传感器的使用具有安装维护困难㊁成本高㊁极高转速下响应速度有限等问题,因此,基于观测器的无传感器控制在高速永磁同步电机中得到了极大的发展[2],其中,滑模观测器(sliding mode ob-server,SMO)以计算简单㊁对外部扰动鲁棒性强等优势备受关注[3]㊂永磁同步电机矢量控制一般为电流速度双闭环结构,电流环的动态和稳态特性是影响系统整体性能的关键因素,目前常见的电流环控制策略有滞环控制㊁比例积分(proportional integral,PI)控制和预测控制[4]㊂滞环控制具有电流响应速度快㊁鲁棒性强㊁易于计算等优点,但开关频率易受负载影响且电流纹波大[5]㊂相比之下,PI控制电流纹波小,可以有效降低稳态误差且开关频率固定,但数字控制的固有滞后特性会限制系统响应速度的提升,难以获取最优电流环带宽响应[6]㊂而基于离散模型的预测控制显示出良好的动态性能,能够在当前控制周期预测出下一周期的控制指令,提升系统带宽[7]㊂预测控制通过系统模型来预测状态变量的未来行为,直接预测控制和无差拍预测控制是研究较为广泛的两种预测控制方法[8]㊂其中,直接电流预测控制通过最小化表示系统期望行为的成本函数来定义控制动作,电流动态响应最快,但开关频率可变,产生的电流纹波也最大[9]㊂无差拍预测控制具有固定的开关频率和良好的动态性能,无需开关状态评估和成本函数计算,计算负担大大降低[10-11]㊂但无差拍预测控制是基于离散模型的控制方法,需要准确电机模型参数和电机运行状态,而实际电机高速运行时,受温度升高㊁磁饱和等因素影响不可避免地会造成定子电阻㊁定子电感㊁永磁体磁链发生变化[12]㊂一方面,电机参数失配会导致电流谐波㊁电流跟踪偏差等问题,影响系统电流环的控制性能[13],另一方面,转子磁极位置估计的准确性决定PMSM无传感器控制系统的性能,电机参数失配会降低转子位置估计精度[14]㊂目前解决无差拍电流预测控制电流跟踪误差问题的常见方法有扰动观测器和参数辨识,为同时解决由于电机参数失配造成的电流跟踪误差和转子位置观测误差,对永磁同步电机进行多参数在线辨识并依次更新滑模观测器与无差拍电流预测控制器参数,是提高电流环控制性能和转子位置估计精度的重要策略[15]㊂参数辨识是解决电机模型参数偏离原始设计值问题的一个重要手段,目前较为成熟的在线辨识方法有递推最小二乘法(recursive least squares,RLS)㊁模型参考自适应法㊁扩展卡尔曼滤波法等[16]㊂针对上述表贴式永磁同步电机无差拍电流预测控制器的参数不匹配问题,文献[17]提出一种基于模型参考自适应系统参数辨识的无差拍电流预测控制方法,解决磁链和电感参数不匹配的问题,然而未考虑定子电阻的识别,且寻找使辨识参数收敛的自适应律较为困难㊂文献[18]提出了一种改进的具有参数识别的PMSM无差拍电流预测控制方法,通过电流注入扰动观测器重构特征向量辨识定子电阻和定子电感,减小了计算负担却未考虑磁链参数的影响㊂上述方法只辨识了部分电气参数,不满足多参数在线辨识的要求㊂针对基于反电势法进行转子位置估计易受参数摄动影响的问题,文献[19]运用扩展卡尔曼滤波器在线辨识内置式永磁电机的转子磁链和交轴电感,但未辨识电阻参数㊂文献[20]将电阻㊁电感辨识策略集成到位置观测器中,在αβ轴上施加高频正弦电压以识别d㊁q轴电感,在α轴上注入直流电压以识别电阻㊂对于表贴式永磁同步电机,文献[21]通过向d轴注入电流脉冲获取参数辨识所需数据,可以估计逆变器非线性引起的电阻误差㊁电感误差及99第9期刘㊀刚等:基于参数在线辨识的高速永磁电机无差拍电流预测控制永磁体磁链,但需要求解一个多元非线性回归问题㊂上述方法采用分时分步手段解决多参数在线辨识欠秩问题,但只考虑观测误差而未考虑到系数矩阵误差,忽略了参数之间的耦合影响㊂在实际应用中系数矩阵误差普遍存在,采用总体最小二乘法(total least squares,TLS)进行参数辨识可以同时考虑系数矩阵误差和观测误差,得到更精确的参数估计值,但直接求解TLS问题计算复杂,目前可以通过兴奋和抑制性神经元学习方法(excitatory and inhibitory learning,EXIN)进行在线迭代求取[22]㊂在TLS EX-IN辨识电机本体参数的基础上,利用辨识结果更新电流环预测控制器和转子位置观测器参数,降低电机参数失配的影响㊂针对表贴式永磁同步电机参数不匹配导致的电流跟踪偏差及转子位置观测误差,本文提出一种基于多参数在线辨识的无传感器高速永磁电机无差拍电流预测控制方法㊂首先推导出永磁同步电机的无差拍电流预测方程和基于反电势法的滑模观测器转子位置估计方程,分析电机模型参数误差引起的电流跟踪静差和转子位置估计偏差问题㊂为提高系统鲁棒性和稳态精度,采用基于TLS EXIN神经元求解的总体最小二乘法对电感㊁电阻及磁链参数分步辨识,在解决多参数在线辨识秩亏问题的同时,考虑观测误差和系数矩阵误差㊂根据辨识结果实时更新无差拍电流预测控制器和转子位置观测器参数㊂最后基于高速电机系统进行实验验证,结果表明本文所述方法能有效增强系统的鲁棒性,优化系统动态特性并提升系统控制精度㊂1㊀无差拍电流预测控制1.1㊀电流预测模型本文以表贴式永磁同步电机为研究对象,为简化分析,假设三相PMSM为理想电机,在忽略电机的铁心饱和,不计电机涡流和磁滞损耗,转子上无阻尼绕组且相绕组中感应电动势波形为正弦波的前提下,PMSM在同步旋转坐标系下的电压方程为:u d=Ri d+L d d i dd t-ωe L q i q;u q=Ri q+L q d i qd t+ωe L d i d+ωeψf㊂üþýïïïï(1)式中:u d㊁u q分别是定子电压的d㊁q轴分量;i d㊁i q分别是定子电流的d㊁q轴分量;L d㊁L q分别是d㊁q轴电感分量;R是定子电阻;ψf是转子永磁体磁链;ωe是转子电角速度㊂选定子电流为状态变量,对表贴式永磁同步电机有L d=L q=L,由式(1)可得PMSM的状态方程为:d i dd t=-R L i d+1L u d+ωe i q;d i qd t=-R L i q+1L u q-ωe i d-1Lωeψf㊂üþýïïïï(2)使用前向差分对电流状态方程离散化,采样周期为T,得到永磁同步电机电流预测模型为:i d(k+1)=(1-TR L)i d(k)+T L u d(k)+Tωe(k)i q(k);i q(k+1)=(1-TR L)i q(k)+T L u q(k)-Tωe(k)i d(k)-T Lψfωe(k)㊂üþýïïïïïïïï(3)1.2㊀无差拍电流预测控制原理无差拍电流预测控制的结构框图如图1所示,将电流指令值i∗(k+1)作为下一周期的电流预测值,与电机当前运行状态下的电流采样值i(k)一起代入式(3),计算使电机实际电流精确跟随指令值所需的电压矢量u(k),通过空间矢量脉冲宽度调制,生成所需要的开关信号作用于逆变器㊂速度外环仍采用经典的PI控制,所以无差拍预测控制系统依旧是双闭环系统,且与传统矢量控制结构接近,易在原有控制基础上实现㊂图1㊀PMSM无差拍电流预测控制结构框图Fig.1㊀Structure block diagram of PMSM deadbeat predictive current control根据式(3),无差拍电流预测控制的输出电压矢量方程表示如下:001电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀u d (k )=L i ∗d (k +1)-i d (k )T +Ri d (k )-Lωe (k )i q (k );u q (k )=L i ∗q (k +1)-i q(k )T+Ri q (k )+Lωe (k )i d (k )+ωe (k )ψf ㊂üþýïïïïïïïï(4)其中:R ㊁L ㊁ψf 分别代表电机电阻㊁电感和磁链参数;ωe (k )为k 时刻电角速度;i d (k )㊁i q (k )分别为k 时刻定子电流采样值的d㊁q 轴分量;i ∗d (k +1)和i ∗q (k +1)分别为k +1时刻d㊁q 轴的参考电流值,由于采样周期足够小,使用k 时刻参考电流值i ∗d(k )㊁i ∗q (k )代替㊂在2个连续的控制周期中,控制器在第1个控制周期根据当前电机的运行状态,使用控制器电机模型参数,计算出下一控制周期需要作用的电压矢量,其过程可以用式(4)表示㊂在第2个控制周期中,上一时刻计算得到的电压矢量作用于实际的电机模型,产生新的d㊁q 轴电流,其过程如下:i d (k +1)=(1-TR 0L 0)i d (k )+TL 0u d (k )+Tωe (k )i q (k );i q (k +1)=(1-TR 0L 0)i q (k )+TL 0u q (k )-Tωe (k )i d (k )-TL 0ψf0ωe (k )㊂üþýïïïïïïïïï(5)其中R 0㊁L 0㊁ψf0分别代表电机实际电阻㊁电感和磁链参数㊂将式(4)代入式(5),得到控制器电机模型参数偏离原始设计值时电流响应与给定的关系为:i d (k +1)=L L 0i ∗d (k +1)+-ΔLL 0i d(k )+ΔR L 0Ti d (k )+-ΔLL 0Tωe (k )i q (k );i q (k +1)=L L 0i ∗q (k +1)+-ΔLL 0i q (k )+ΔR L 0Ti q (k )+ΔL L 0Tωe (k )i d (k )+T L 0ωe(k )ψf ㊂üþýïïïïïïïïïïïï(6)式中ΔL ㊁ΔR ㊁Δψf 分别为控制器电机模型参数与实际参数的差值,ΔL =L -L 0,ΔR =R -R 0,ψf =ψf -ψf0㊂1.3㊀无差拍电流预测控制参数敏感性分析无差拍预测控制是一种基于电机模型的预测控制方法,这意味着无差拍预测控制器具有参数敏感性,预测模型的精度将直接影响控制性能㊂1.3.1㊀稳定性分析为讨论模型电感参数对控制器稳定性的影响,将式(6)转换到z 域㊂采用i d =0控制方式,考虑采样周期T 足够小,可得电流响应i dq 与电流给定i ∗dq 的离散域闭环传递函数为i dq(z )i ∗dq(z )=(L /L 0)zz +(L /L 0-1)㊂(7)由闭环系统稳定性条件,其闭环极点必须位于单位圆内,由此得系统稳定性条件:0<L <2L 0,即控制器模型电感小于两倍电机实际电感,若模型电感大于两倍电机实际电感,闭环极点不再位于单位圆内,导致控制电流出现振荡㊂1.3.2㊀稳态精度分析当预测模型参数与电机实际参数存在偏差时,实际电流值不能跟踪给定电流值,导致电流控制出现静差㊂为分析电气参数不准确对电机电流控制性能的影响,在电机稳定运行时,认为采样周期足够小,有i d (k +1)等于i d (k ),i q (k +1)等于i q (k ),整理式(6)得电机稳定运行时d㊁q 轴给定电流值和实际电流值受参数偏差影响的关系式为:Δi d =-ΔRT L i d (k )+ΔLL Tωe (k )i q (k );Δi q =-ΔRT L i q (k )-ΔLL Tωe (k )i d (k )-ΔψfLTωe (k )㊂üþýïïïïïï(8)其中:d 轴电流偏差Δi d =i ∗d (k +1)-i d (k +1);q 轴电流偏差Δi q =i ∗q (k +1)-i q (k +1)㊂由于采用i d =0控制策略,因此与i q 相比,i d 的作用基本可以忽略,式(8)中起主要作用的是含有电流i q 的项,因此简化为:㊀Δi d =ΔLLTωe (k )i q (k );(9)㊀Δi q =-ΔRTL i q (k )-Δψf LTωe (k )㊂(10)当电机模型参数R 不匹配时,由式(10)可以看出,若电机模型电阻大于实际电阻参数,有Δi q <0,系统稳定后q 轴电流响应i q 大于给定电流i ∗q ;反之,系统稳定后q 轴电流响应小于给定电流㊂101第9期刘㊀刚等:基于参数在线辨识的高速永磁电机无差拍电流预测控制当电机模型参数L 不匹配时,由式(9)可知,若模型电感大于电机实际电感参数,有Δi d >0,系统稳定后会出现d 轴电流响应i d 要小于给定值i ∗d的静态误差;反之,系统稳定后d 轴电流响应要大于给定值㊂当电机模型参数ψf 不匹配时,由式(10)可得,若模型磁链大于实际磁链参数,有Δi q <0,系统稳定后q 轴电流响应i q 大于给定电流i ∗q ;反之,系统稳定后q 轴电流响应小于给定电流㊂2㊀基于滑模观测器转子位置估计表贴式永磁同步电机在两相静止坐标系下的电压方程为u αu βéëêêùûúú=R +p L 0R +p L []i αi βéëêêùûúú+E αE βéëêêùûúú㊂(11)其中:p =d /d t ,为微分算子;u α㊁u β与i α㊁i β分别是定子电压和定子电流;E α㊁E β为扩展反电动势,且满足E αE βéëêêùûúú=ωe ψf -sin θe cos θe éëêêùûúú㊂(12)式中θ为转子角位置㊂由式(12)可以看出,扩展反电动势包含电机转子位置和转速的全部信息,为便于应用滑模观测器估计反电动势,基于PMSM 定子电流方程的滑模观测器设计如下:d d t i ^αi ^βéëêêùûúú=-R L i ^αi ^βéëêêùûúú+1Lu αu βéëêêùûúú-v αv βéëêêùûúú()㊂(13)采用反向差分变换法可得:i ^α(k +1)=Ai ^α(k )+B (u α(k )-v α(k ));i ^β(k +1)=Ai ^β(k )+B (u β(k )-v β(k ))㊂}(14)式中:A =exp(-R /LT );B =(1-A )/R ;i ^α㊁i ^β为定子电流观测值㊂设计滑模控制律为v αv βéëêêùûúú=k sgn(I α)k sgn(I β)éëêêùûúú㊂(15)其中:I α=i ^α-i α㊁I β=i ^β-i β为电流观测误差;sgn()为符号函数;k 为滑模增益,且满足要求:k >max{a ,b },且:a =-R |I α|+E αsgn(I α);b =-R |I β|+E βsgn(I β)㊂}(16)当观测器的状态变量达到滑模面I α=0㊁I β=0后,观测器状态将一直保持在滑模面上,由滑模控制的等效原理,估计的反电势表示为E αE βéëêêùûúú=νανβéëêêùûúúeq =k sgn (I α)eq k sgn (I β)eq éëêêùûúú㊂(17)获取反电动势之后,通过反正切函数或者锁相环即可提取转子位置信息㊂在电机高速运行时,采用滑模观测器实现转子位置估计,此时,式(16)中含有反电动势的项远大于另一项,因此含反电动势的项占据主导地位,由式(12)可知,该项与永磁体磁链有关,若将磁链辨识结果反馈至滑模系数中,可以减小位置估计误差㊂此外,式(14)含有与电阻㊁电感有关的项,若参数存在偏差在一定程度上也会降低位置估计精度,因此实现多参数在线辨识是解决参数不匹配问题㊁提高转子位置估计精度的重要手段㊂3㊀PMSM 多参数在线辨识永磁同步电机参数辨识的本质是利用输入㊁输出数据辨识电机参数㊂目前常用的参数辨识方法是递推最小二乘法,但是这种方法只考虑观测量误差,未考虑系数矩阵误差㊂另外,PMSM 数学模型的状态空间秩为2,要辨识电阻㊁电感和磁链3个参数存在方程欠秩问题,因此提出在3种时间尺度下采用TLS 方法在线分步辨识电气参数㊂3.1㊀TLS 辨识算法在实际应用中,系数矩阵误差普遍存在,通常采用最小二乘法或者RLS 辨识方法只考虑观测量误差,但是忽略了系数矩阵误差,因此得到的参数估计值不再是最优无偏估计,降低了辨识精度和响应速度㊂而TLS 算法不仅考虑到观测量误差,同时考虑了其余算法容易忽略的系数矩阵误差,因此,TLS 在辨识结果的精度方面具有更加优秀的性能,其超调量相对RLS 有所减小,且具有较快的响应速度和收敛速度㊂为提高参数辨识的准确性,选用TLS 辨识算法进行研究㊂对于TLS 回归参数的估计,常用的直接求解方法是奇异值分解,但求解计算复杂度较高,因此采用一种递归的TLS EXIN 神经元算法求解TLS 问题㊂3.2㊀TLS 多参数辨识架构如图2所示为PMSM 多参数辨识整体架构,其中,首先对变化较快的电感参数进行估计,然后估计定子电阻,最后估计变化较慢的磁链,辨识出的电感参数可以用于更新电阻和磁链,而辨识所得电阻参数可以用于更新电感和磁链,基于上述方法的多参201电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀数在线辨识同时考虑了观测量和系数矩阵的误差,在保证辨识精度的同时解决了多参数在线辨识的欠秩问题㊂图2㊀PMSM 多参数辨识整体架构Fig.2㊀Overall architecture of multi parameteridentification of PMSM3.3㊀基于TLS 的多参数在线辨识算法当系数矩阵和观测向量都包含误差时,基于总体最小二乘算法的平差模型要优于普通的最小二乘算法,表示输入输出关系的回归方程可描述为b +E b =(A +E A )x ㊂(18)其中:b 为系统观测值向量;E b 为系统观测误差向量;A 为系数矩阵;E A 为系数误差矩阵;x 为待估计参数向量㊂TLS 问题归结为解决以下优化问题:x ^=argmin A ^,b^[A ;b ]-[A ^;b ^] F ㊂(19)其中 ㊃ F 表示矩阵的Frobenius 范数㊂TLS EXIN 神经元通过递归方式解决TLS 问题,根据文献[23],通过最小化下式所示成本函数,可以得到TLS 的解,即:E TLS (x )=(Ax -b )T (Ax -b )1+x T x=[A ;b ][x T;-1]T22[x T ;-1]T 22=ðmi =1E (i )(x );(20)ðmi =1E i(x )=(a T i x -b i )21+x T x =ðnj =1(a ij x j-b i )21+x T x=δ21+x T x㊂(21)TLS EXIN 神经元是一个线性单元,具有n 个输入(向量a i ),n 个权重(向量x ),一个输出(标量y i =a T i x -b i )和一个训练误差(标量δ(k )),该方法对应的最速下降离散时间学习律为x (k +1)=x (k )-α(k )γ(k )a i +[α(k )γ2(k )]x (k )㊂(22)其中α(k )为学习率,是一个正常数函数,γ(k )定义为γ(k )=δ(k )1+x T (k )x (k )㊂(23)式中δ(k )是一个时变函数,它依赖于每个采样时间计算的残差,定义为δ(k )=a T (k )x (k )-b (k )1+x T (k )x (k )㊂(24)对式(1)中d 轴电压方程采用后向差分离散化,首先辨识电感参数,整理电感辨识模型为a L (k )x 1=b L (k )㊂(25)其中a L ㊁x 1㊁b L 分别为系数矩阵㊁待辨识参数以及观测值向量,有:b L (k )=i d (k )-i d (k -1)-Tωe (k -1)i q (k -1);a L (k )=u d (k -1)-Ri d (k -1);x 1=T /L ㊂üþýïïïïï(26)其次辨识电阻参数,根据离散化的d 轴电压方程整理辨识模型为a R (k )x 2=b R (k )㊂(27)其中a R ㊁x 2㊁b R 分别为:b R (k )=u d (k -1)+ωe (k -1)i q (k -1)L -[i d (k )-i d (k -1)]L /T ;a R (k )=i d (k -1);x 2=R ㊂üþýïïïïï(28)最后辨识磁链参数,根据离散化的q 轴电压方程整理辨识模型为a ψf (k )x 3=b ψf (k )㊂(29)其中:b ψf (k )=u q (k -1)-[i q (k )-i q (k -1)]L /T -Ri q (k -1)-ωe (k -1)i d (k -1)L ;a ψf (k )=ωe (k -1);x 3=ψf T ㊂üþýïïïïï(30)为保证解的收敛性,应使辨识参数初值x (0)=301第9期刘㊀刚等:基于参数在线辨识的高速永磁电机无差拍电流预测控制0,在辨识电感参数时先假设式(26)所需电阻参数为常数,利用TLS 辨识出电感稳态值后,再依次辨识电阻和磁链,式(28)中所需电感参数采用式(26)辨识结果,式(30)中所需电阻和电感参数采用式(26)和式(28)辨识结果,当本次电机参数辨识结果与上一次参数辨识结果之间的相对误差小于1ɢ,即可认为所辨识参数已经达到精度要求,此时可以停止迭代更新㊂在中高转速阶段,采用基于反电动势的SMO 实现转子位置估计,在启动阶段,电机的初始定位通过给定d 轴电压实现强制定位,并且利用q 轴电压开环拖动转子㊂如图3所示为基于参数辨识的无位置传感器高速永磁电机电流预测控制系统框图,在启动阶段通过电压开环拖动转子,当转速达到600r /min 时,切换到SMO 进行转子位置估计㊂采用三层TLS 算法分别对表贴式永磁同步电机的电感㊁电阻和磁链参数进行在线辨识,并将辨识结果分别反馈到电流环无差拍预测控制器及滑模观测器中,实现电流控制稳态性能和转子位置估计准确性的提高㊂图3㊀基于参数辨识的无传感器PMSM 无差拍电流预测控制系统框图Fig.3㊀Block diagram of PMSM deadbeat predictivecurrent control system without sensor based on parameter identification4㊀实验结果及分析实验平台如图4所示,使用一台600W,1对磁极的表贴式永磁同步电机,控制芯片选用TI 公司的TMS320F28069,实验所用负载类型为叶轮负载,并且在转子轴上加装一个自研的增强型磁编码器以在实验中进行转子位置估计的准确性对比㊂图4㊀实验平台Fig.4㊀Experimental platform实验使用的永磁同步电机参数如表1所示㊂表1所示电机定子电阻初始值和d㊁q 轴电感初始值采用IM3536LCR 测试仪离线测量得到,将LCR 测试仪的探头分别接到电机三相线和中线上,即可获得电机的相电阻和相电感㊂而永磁体磁链初始值则通过反拖电机并根据下式计算获得,反拖转速为100r /min,计算得到磁链值为0.0029Wb:ψf =E p ωe =2E lv 3ωe=106πp K E ㊂(31)其中:E p 是空载相反电势幅值;E lv 是线反电动势有效值;K E 是线反电动势常数;p 是极对数㊂表1㊀永磁同步电机参数Table 1㊀Parameters of permanent magnet synchronousmotor㊀㊀㊀参数数值额定功率P /W 600额定转速ω/(r /min)10000额定转矩T /(N㊃m)0.573直流母线电压U dc /V 28转动惯量J /(kg㊃m 2)0.003定子电阻R /Ω0.022d㊁q 轴定子电感L /mH 0.023永磁体磁链ψf /Wb 0.0029极对数p14.1㊀TLS 与RLS 参数辨识比较实验结果为对比TLS 和RLS 两种算法的参数辨识效果,在电机稳定运行至10000r /min 之后的0.05s 加入辨识算法,如图5所示为采用两种算法的参数辨识结果,表2为采用两种算法的辨识结果及与标称值之间的误差㊂401电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图5㊀TLS与RLS辨识结果对比Fig.5㊀Comparison of TLS and RLS identification results表2㊀电气参数辨识结果对比Table2㊀Comparison of electrical parameter identification results参数标称值TLS辨识值TLS辨识误差RLS辨识值RLS辨识误差电感/mH0.0230.02280.87%0.02267 1.435%电阻/Ω0.0220.021840.727%0.0217 1.364%磁链/Wb0.00290.002890.345%0.00293 1.034%由图5以及表2可以看到,对于电感参数的辨识,RLS算法在辨识开始阶段波动较大,TLS辨识算法的收敛速度明显优于RLS,其辨识误差为0.87%,约为RLS辨识误差的二分之一;对于电阻参数的辨识,基于TLS的辨识算法在响应速度和辨识精度方面要优于RLS,其辨识误差为0.727%,而RLS辨识误差为1.364%;对于磁链参数的辨识,相比RLS算法,基于TLS算法的辨识误差更小,为0.345%㊂通过上述图表分析可以看出,TLS算法在表贴式永磁同步电机参数辨识过程中具有更快的收敛速度和更小的辨识误差㊂4.2㊀加入TLS参数辨识对电流控制性能的影响为验证1.3节中DPCC的参数敏感性,同时对比验证TLS辨识算法的有效性,速度环采用传统的PI控制,电机负载转矩在额定负载0.573N㊃m,转速为额定转速10000r/min㊂在10000r/min工况运行时,设置电机模型参数与本体参数不匹配,并在1.5s分别加入2种辨识算法,将辨识结果反馈至电流预测控制器㊂由于电机本体的参数不能任意修改设置,因此需要改变控制程序中的电阻㊁电感和磁链参数,以实现相应的参数不匹配,从而完成参数敏感性验证,同时通过RLS和TLS两种辨识算法的加入,对比验证TLS算法对提高电流稳态控制性能的有效性㊂图6为TLS与RLS两种算法的控制器电流响应对比,表3为TLS与RLS的dq轴电流响应误差对比㊂表3㊀两种辨识算法dq轴电流响应误差对比Table3㊀Comparison of dq axis current response errors be-tween two identification algorithms参数偏差轴原电流偏差/ATLS电流偏差/ARLS电流偏差/A R0=2R q轴0.9870.3050.607L0=2L d轴0.40780.1230.210ψf0=2ψf q轴 1.420.1420.433由图6结合表3可知,1.5s之前预测控制器参数与电机实际参数之间存在偏差,导致dq轴电流响应存在静差,电流静差情况与1.3节理论分析一致,且磁链偏差对控制电流影响最大,在1.5s时,分别采用TLS和RLS进行参数辨识,并将辨识结果注入无差拍电流预测控制器中,图6(a)㊁(c)㊁(e)为采用TLS的电流响应波形,图6(b)㊁(d)㊁(f)为采用RLS的电流响应波形㊂当实际磁链为给定值两倍时,q轴电流偏差可达1.42A,1.5s加入TLS辨识501第9期刘㊀刚等:基于参数在线辨识的高速永磁电机无差拍电流预测控制。

基于EKF的PMSM无传感器控制研究

基于EKF的PMSM无传感器控制研究

基于EKF的PMSM无传感器控制研究季传坤;钱俊兵【摘要】针对永磁同步电机(PMSM)位置与速度传感器易受外部条件和自身精度的影响,以及PMSM无传感器控制等问题,提出了一种基于扩展卡尔曼滤波(EKF)的PMSM非线性预测无传感器控制方法.该方法具有预测性、自适应能力、抗干扰性、易于软件实现等优点.首先,详细分析了PMSM的矢量控制系统数学模型和EKF原理.其次,将EKF算法应用于PMSM的无传感器矢量控制中,即将电机αβ轴电流和电压作为输入变量,经过EKF算法运算,估算出转子转速和转子位置来代替电机的位置与速度传感器.最后,搭建基于MATLAB/Simulink的PMSM无传感器矢量控制系统仿真模型.仿真结果表明,EKF控制方法能准确估算出电机在空载和负载(随机)时的位置和转速,且具有较好的可预测性和系统响应性.在电机突加负载的情况下,也可以快速恢复到稳定状态,具有较强的抗负载性.【期刊名称】《自动化仪表》【年(卷),期】2019(040)001【总页数】4页(P11-14)【关键词】永磁同步电机;卡尔曼滤波;电机仿真模型;矢量控制;无传感器控制;系统响应性;抗负载性【作者】季传坤;钱俊兵【作者单位】昆明理工大学机电工程学院,云南昆明650500;昆明理工大学机电工程学院,云南昆明650500【正文语种】中文【中图分类】TH-390 引言永磁同步电机(permanent magnet synchronous motor,PMSM)具有结构简单、体积小、效率高、响应快、调速范围宽等优点[1],被广泛应用于国防、航空航天、工业控制、农业生产等领域。

但PMSM的永磁体所用材料价格昂贵,大大限制了PMSM的发展。

随着永磁体材料汝铁硼的出现,PMSM进入一个全新的发展时期。

PMSM通常采用磁场定向矢量控制,控制系统需要安装机械传感器来测量转子的位置和电机转速。

然而,安装高精度的机械传感器不仅会增加电机的成本,且不能保证在复杂状态下的测量精度和准确度[2]。

永磁同步电机低速区无位置传感器控制技术研究

永磁同步电机低速区无位置传感器控制技术研究

永磁同步电机低速区无位置传感器控制技术研究张磊;高春侠【摘要】针对传统无位置控制技术在低速区所存在的收敛性差、观测精度低等问题,进行了方案对比研究:采用高频注入式的无位置控制技术具有不依赖电机参数、可以结合矢量控制技术实现高性能调速的优点,但存在需要实现较为复杂的滤波器来进行信号辨识,同时所注入的高频信号会引起一定振动和噪声等问题。

与此相比,提出一种新型的开环式无位置控制技术,其原理简单、不需要复杂的控制算法、不依赖电机参数以及凸极效应,并实现负载转矩的自适应调节。

缺点是负载突变时存在转速振荡问题。

因此,低速区方案的合理选择,需要依据控制系统的低速性能要求以及系统成本。

%The comparative research on the problems of bad performance of convergence and low accuracy of sensorless control in standstill and near-zero speed region was carried on.Although,sensorless control with high fre-quency signal injection (HFSI) can be independent of parameters of motors and achieve high performance speed con-trol with vector control scheme,it depends on some complicated digital filters to achieve signal identification and also the high frequency signals injected in motors can arouse boring vibration and acoustic noise. In contrast,a novel open-loop sensorless control scheme was proposed with the advantagesof simple structure,without complicated filters,inde-pendent of parameters and salient effect and can also achieve self-regulation according to the load conditions. The disadvantage of open-loop control is the problem of speed oscillation with large transient load. For this reason,the selection ofcontrol scheme in near-zero speed region needs to be based on the consideration of performance require-ment and cost of control system.【期刊名称】《电气传动》【年(卷),期】2013(000)001【总页数】5页(P12-16)【关键词】无位置传感器控制;低速区;高频注入;数字滤波器;开环【作者】张磊;高春侠【作者单位】中国石油大学华东信息与控制工程学院,山东青岛 266580;中国石油大学华东信息与控制工程学院,山东青岛 266580【正文语种】中文【中图分类】TM3411 引言永磁同步电机,特别是内置式结构,具有很高的功率、转矩密度以及功率因数,在电动汽车、航空、航海等体积受限的工业领域获得较大的应用。

永磁同步电机参数辨识方法

永磁同步电机参数辨识方法
图形操作。这是MATLAB的图形系统。它包含有系列高级命令,其内容包括二维及三维数据可视化,图形处理,动画制作,表现图形。同时它也提供低级命令便于用户完全定制图形界面并在你的MATLAB软件中建立完整的用户图形界面。
MATLAB数据功能库。它拥有庞大的数学运算法则的集合,包含有基本的加,正弦,余弦功能到复杂的求逆矩阵及求矩阵的特征值,Bessel功能和快速傅立叶变换。
Simulink提供一个图形化用户界面用于建模,用鼠标拖拉块状图表即可完成建模。它为用户提供了方框图进行建模的图形接口,采用这种结构化模型就像你用手和纸来画一样容易。它与传统的仿真软件包微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。Simulink包含有Sinks(输入方式)、Source(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connections(连接与接口)和Extras(其他环节)子模型库,而且每个子模型库中包含有相应的功能模块。用户也可以定制和创建自己的模块。模块有等级之分,因此可以由顶层往下的步骤也可以选择从底层往上建模。可以在高层上统观系统,然后双击模块来观看下一层的模型细节。这种途径可以深入了解模型的组织和模块之间的相互作用。
永磁同步电机控制系统的性能受电机参数精度的影响较大较高性能的永磁同步电机矢量控制系统需要实时更新电机参数为提高系统性能本文研究了永磁同步电机的参数辨识问题文章中采用一种在线辨识永磁同步电机参数的方法这种基于最小二乘法参数辨识方法是在转子同步旋转坐标系下进行的通过matlabsimulink对基于最小二乘法的永磁同步电机参数辨识进行了仿真仿真结果表明这种电机参数辨识方法能够实时准确地更新电机控制参数
KEY WORDS:PMSM; Parameter Identifica意义

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述

永磁同步电机无位置传感器控制技术研究综述【摘要】永磁同步电机无位置传感器控制技术是近年来的研究热点之一,本文对该技术进行了综述。

在介绍了研究动机、研究目的和研究意义。

在详细阐述了永磁同步电机的基本原理、无位置传感器控制技术的发展历程、研究现状、关键技术以及应用领域。

在展望了该技术的发展前景,提出了研究的不足之处和未来研究方向。

通过本文的综述,读者可以全面了解永磁同步电机无位置传感器控制技术的最新进展和未来发展趋势。

【关键词】永磁同步电机、无位置传感器、控制技术、研究动机、研究目的、研究意义、基本原理、发展历程、研究现状、关键技术、应用领域、发展前景、不足之处、未来研究方向1. 引言1.1 研究动机无位置传感器控制技术能够实现永磁同步电机的高性能运行,减少系统成本和提高可靠性。

深入研究永磁同步电机无位置传感器控制技术,对于推动永磁同步电机技术的发展,提高系统的性能表现具有重要的意义。

在实际应用中,永磁同步电机无位置传感器控制技术的发展也将对工业自动化、电动汽车、风力发电等领域产生深远的影响。

本文旨在系统总结永磁同步电机无位置传感器控制技术的研究现状和关键技术,为这一领域的进一步研究和应用提供参考和指导。

1.2 研究目的本研究的目的在于系统地总结永磁同步电机无位置传感器控制技术的发展历程、研究现状和关键技术,探讨该技术在不同应用领域中的实际应用情况,并展望未来的发展趋势。

通过深入研究和分析,我们旨在为永磁同步电机无位置传感器控制技术的进一步发展提供参考和指导,为工业应用和科研领域提供有力支撑。

通过本研究,我们希望能够为提高永磁同步电机的控制性能和降低系统成本做出贡献,促进我国永磁同步电机无位置传感器控制技术的创新与发展。

1.3 研究意义永磁同步电机无位置传感器控制技术的研究意义在于推动电机控制技术的发展和应用。

随着科技的不断进步,对电机系统的性能要求越来越高,传统的位置传感器在一些特殊环境下会受到限制,而无位置传感器控制技术可以有效地解决这一问题。

lms算法永磁同步电机无感控制

lms算法永磁同步电机无感控制

lms算法永磁同步电机无感控制下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!LMS算法在永磁同步电机无感控制中的应用1. 引言永磁同步电机(PMSM)是一种性能优越的电机类型,其高效率和高功率密度使其在工业和汽车领域得到广泛应用。

永磁同步电机无位置传感器矢量控制课件

永磁同步电机无位置传感器矢量控制课件
实验验证和实际应用案例。
通过本课件的学习,学生可以掌 握永磁同步电机无位置传感器矢 量控制的基本知识和技能,为进
一步研究和应用打下基础。
展望
随着技术的不断发展,永磁同步电机 无位置传感器矢量控制技术将不断优 化和完善,进一步提高电机的性能和 可靠性。
希望本课件能够为广大学生和研究者 提供有益的参考和帮助,共同推动永 磁同步电机无位置传感器矢量控制技 术的发展和应用。
永磁同步电机无位置 传感器矢量控制课件
contents
目录
• 永磁同步电机简介 • 无位置传感器矢量控制技术 • 永磁同步电机无位置传感器矢量控制策
略 • 永磁同步电机无位置传感器矢量控制的
实现
contents
目录
• 永磁同步电机无位置传感器矢量控制的 应用案例
• 总结与展望
CHAPTER 01运行。来自软件实现方案01
坐标变换
将三相静止坐标系转换为两相旋 转坐标系,实现电机电流的解耦 控制。
02
矢量控制算法
03
无位置传感器技术
采用基于PI调节器的矢量控制算 法,实现电机的转矩和磁通控制 。
利用电机参数、电流检测值和转 速观测器等,估算电机的位置和 转速。
实验验证与结果分析
实验平台搭建
根据硬件实现方案搭建实验平台,包 括电机、逆变器、传感器等。
未来,该技术将在更多领域得到应用 ,如电动汽车、机器人、航空航天等 ,为人类的生产和生活带来更多便利 和效益。
THANKS FOR WATCHING
感谢您的观看
永磁同步电机简介
永磁同步电机的定义与特点
总结词
永磁同步电机是一种基于永磁体励磁产生磁场的高效电机,具有高效率、高功率密度、低维护成本等特点。

基于磁链观测的永磁同步电机无位置传感器控制

基于磁链观测的永磁同步电机无位置传感器控制

基于磁链观测的永磁同步电机无位置传感器控制摘要:本文从同步旋转坐标系的电机模型出发,推导了永磁同步电机定子磁链计算方法,应用一种速度自适应积分器,从理论上消除了积分器的直流偏置和初始相位问题。

搭建了基于磁链观测器的无位置传感器控制系统模型,分别对磁链观测器的磁链观测、速度和转子位置估算、动态和负载突变过程进行仿真分析,验证了该磁链观测器算法的可行性。

搭建了基于RT-LAB的控制系统实验平台,分别对启动过程、磁链观测以及速度和位置估算进行了实验验证,验证了磁链观测算法的正确性。

仿真和实验结果表明:该磁链观测器能够快速、准确地跟随电机转子的位置和速度,系统响应快、鲁棒性强。

关键字:永磁同步电机;磁链观测器;无位置传感器;RT-LAB引言永磁同步电机因其具备高效率、高精度、结构简单、转动惯量低等特点,近年来在电动汽车、航空航天、工业自动控制领域获得了广泛应用。

但是,电机机械传感器限制了永磁同步电机在高性能场合的应用,因此永磁同步电机无位置传感器控制技术成为研究重点。

电机无位置传感器控制系统是指利用电机绕组中的相关电信号,结合永磁同步电机数学模型,应用合适算法来估算转子的位置和转速,从而代替机械传感器来实现电机的控制。

本文应用磁链观测器来估算PMSM速度和转子位置,同时采用速度自适应环节来补偿纯积分环节的直流漂移和相位延迟,给出了基于磁链观测器的PMSM无位置传感器矢量控制系统,分别对磁链观测器的磁链观测、速度和转子位置估算、动态和负载突变过程进行仿真分析,验证了该磁链观测器的可行性;搭建基于RT-LAB的PMSM无位置传感器控制系统的平台,分别对启动、磁链观测、位置和转子速度估算进行了实验研究,验证了该磁链观测器的正确性。

1永磁同步电机磁链观测器1.1磁链观测器在同步旋转dq0坐标系下,PMSM数学模型的电压表达式为:1.2转子位置估算误差的补偿为了解决纯积分环节引入的问题,常用的方法是用一阶低通滤波器来替换纯积分环节。

永磁同步电机的参数辨识及控制策略研究

永磁同步电机的参数辨识及控制策略研究

永磁同步电机的参数辨识及控制策略研究一、本文概述随着能源危机和环境污染问题的日益严重,高效、环保的永磁同步电机(PMSM)在工业生产、交通运输、航空航天等领域的应用越来越广泛。

然而,永磁同步电机的控制精度和稳定性受到参数摄动、非线性特性和外部扰动等多重因素的影响,使得电机控制成为一个具有挑战性的问题。

因此,研究永磁同步电机的参数辨识和控制策略具有重要的理论和现实意义。

本文旨在探讨永磁同步电机的参数辨识方法以及控制策略的研究。

我们将对永磁同步电机的基本结构和运行原理进行介绍,阐述电机参数对电机性能的影响。

然后,我们将重点研究永磁同步电机的参数辨识方法,包括离线辨识和在线辨识技术,以及参数辨识的准确性和鲁棒性等问题。

接着,我们将深入探讨永磁同步电机的控制策略,包括传统的控制策略和现代控制策略,以及这些策略在电机控制中的应用和效果。

我们将通过仿真和实验验证所研究的参数辨识方法和控制策略的有效性和可行性,为永磁同步电机的实际应用提供理论支持和技术指导。

希望通过本文的研究,能够为永磁同步电机的参数辨识和控制策略的发展提供一些新的思路和方法。

二、永磁同步电机的基本原理和特性永磁同步电机(PMSM)是一种高性能的电机,其运行原理基于电磁感应和磁场相互作用。

PMSM的主要组成部分包括定子、转子和永磁体。

定子通常由三相绕组构成,负责产生旋转磁场;转子则装有永磁体,产生恒定的磁场。

当定子绕组通电后,产生的旋转磁场与转子永磁体磁场相互作用,使转子产生转矩并旋转。

PMSM的主要特性包括高效率、高功率密度、良好的动态性能和调速范围宽等。

由于永磁体的存在,电机在无需励磁电流的情况下即可产生磁场,从而降低了铜耗和铁耗,提高了电机的效率。

PMSM的转矩-惯量比高,动态响应速度快,使其适用于需要快速响应和精确控制的应用场合。

PMSM的调速范围宽,可以在宽广的转速范围内实现恒转矩和恒功率运行。

然而,PMSM也存在一些挑战,如参数辨识和控制策略设计。

永磁同步电动机无传感器控制技术现状与发展探讨

永磁同步电动机无传感器控制技术现状与发展探讨

永磁同步电动机无传感器控制技术现状与发展探讨摘要:永磁同步电机无位移传感器系统,其利用检测电机的定子侧电压和端电压算出转子位移,取代了传统的机械位移传感器系统,不但减少了成本,同时增加了控制精度和可靠性。

本文基于永磁同步电动机发展现状,分析无传感器永磁同步电机工作存在的问题,总结不同转速下的无位置传感器控制技术。

关键词:永磁同步电机;无传感器;控制技术无传感器的永磁同步电机,是在电动机转子与机座之间不配备电磁或光电传感器的情形下,运用电动机绕组中的有关电讯号,采用直接计量、参数识别、状态评估、间接检测等技术手段,在定子边比较简单检测的物理性质量如定子压力、定子电流等中抽取出与转速、位移速度相关的物理性质量,再运用这些检测到的物理性质量和电动机的数学模型测算出电动机转子的位移与速度,从而代替了机械传感器,实现电动机的闭环控制。

1.永磁同步电动机无传感器控制技术存在的问题高性能的交流调速传动系统通常要求在定子轴上装设机械式传感器,以检测相应的定子转速与位移。

这种机械式传感器,通常包括了解码器(Encoder)、解算器(Resolver)和测速发动机(Tacho-meter)。

机械式传感器可以满足发电机所需要的转动信息,但同时也对传动系统设计造成了一些困难。

机械式传感器加大了在发电机定子上的转动惯量,从而增大了发电机的空间大小和重量,而使用机械式传感器为测量转子的速度和位移,需要另外增设了发电机和控制器相互之间的连线和端口电路,使系统更易受影响,从而大大地降低了准确性。

受设备式传感器使用环境(如温度、湿度和振动)的影响,驱动控制系统并无法普遍应用于所有场所。

机械式传感器以及配套电路大大提高了传动系统的生产成本,而一些高精度传感器的售价甚至能够和马达本身售价比较高。

为解决大量采用机械式传感器给传动系统所造成的问题,不少专家都进行了无机械式传感器交流传动控制系统的研发。

无机械式信号交流变速控制系统是指根据使用电器绕组的所有电讯号,并采用适当方式估计出转动的速率和方位,以替代机械式信号,进行交流传动控制系统的循环调节。

【CN109995293A】永磁同步电机无速度传感器控制下IF启动与闭环控制的切换方法【专利】

【CN109995293A】永磁同步电机无速度传感器控制下IF启动与闭环控制的切换方法【专利】

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910321602.X(22)申请日 2019.04.22(71)申请人 宁波工程学院地址 315000 浙江省宁波市海曙区翠柏路89号(72)发明人 胡庆波 (74)专利代理机构 宁波市海曙钧泰专利代理事务所(普通合伙) 33281代理人 沈锡倍(51)Int.Cl.H02P 21/14(2016.01)H02P 21/24(2016.01)(54)发明名称永磁同步电机无速度传感器控制下I/F启动与闭环控制的切换方法(57)摘要本发明公开了一种永磁同步电机无速度传感器控制下I/F启动与闭环控制的切换方法,其优点在于在进入永磁同步电机的无速度传感器控制算法中断主循环后,系统采用给定励磁电流i sd *=0的单电流闭环控制,然后在条件和要求的设定下,通过电压矢量角度的调整后,找到合适的切换点,保证u sq 值接近真实的反电动势e,即完成对电压矢量和电流矢量双旋转角度控制,以保证在I/F启动切换到闭环控制的过程中电流波动最小,动态响应最快,永磁同步电机运行平稳,转速没有异常波动。

权利要求书2页 说明书6页 附图1页CN 109995293 A 2019.07.09C N 109995293A权 利 要 求 书1/2页CN 109995293 A1.一种永磁同步电机无速度传感器控制下I/F启动与闭环控制的切换方法,其特征在于,具体包含如下步骤:步骤1)进入永磁同步电机的无速度传感器控制算法中断主循环,先判断flagC是否为1,如果是则进入步骤2),否则进入步骤9);其中,flagC是指I/F的控制标志位C;步骤2)永磁同步电机的无速度传感器控制系统采用给定i sq*=i sq1、i sd*=0的单电流闭环控制,HRF的速度估算环不运行;其中,i sq1为力矩电流;步骤3)比较给定速度ω*和启动频率ωb的大小;当满足条件ω*≥ωb且flagA=0时,设置给定速度ω*=ωb,并且计算两项误差值Δe1和Δe2,Δe1=E b-ke(u sq-i sq×R),Δe2=i sq×L q×ω*-u sd+i sd×R;如条件不满足则跳到步骤7);其中,flagA表示启动标志位A,E b表示启动频率ωb对应的反电动势值,ke是电机反电动势常数,u sd、u sq分别是dq轴的电压矢量,i sd、i sq分别是dq轴的电流矢量,L q表示电机q轴电感量,R表示电机相电阻;步骤4)判断Δe1、Δe2是否满足范围;当满足要求0<Δe1<k1且Δe2>k2或flagB=1时,进入步骤5);不满足要求则进入步骤6);其中,k1取值为0.03ωb对应的反电动势电压值,k2取值为0.02e r,e r表示额定反电动势值,flagB表示角度标志位B;步骤5)进入I/F的参数与HRF的内容参数的切换:将给定i sq*赋给HRF系统的速度环积分累计值,将给定速度ω*值赋给HRF系统的速度估计值,并设置flagA=1,跳到步骤8);步骤6)Δθv=Δθv+Δθadd;如果Δθv≥Δθmax时,设置Δθv=Δθmax,并且flagB=1;跳到步骤8);其中,Δθv为假定旋转坐标的电压矢量角度增量,Δθadd为电压矢量角增加步进量,Δθadd=C2,C2取值为0.0045°,Δθmax为最大电压矢量角增量,Δθmax=C4,C4取值为60°;步骤7)判断flagA是否为1;flagA为0跳到步骤8),flagA为1则Δθv=Δθv-Δθsub,如果Δθv<0则Δθv=0,flagC=0,跳到步骤9);Δθsub为电压矢量角减少步进量,Δθsub=C3,C3取值为0.004°;步骤8)θv=θi+Δθv,并查表获得θv对应的正余弦量用于电压反Park变换中,跳到步骤10);其中,θv是电压反Park变换中使用的电角度值,θi是电流Park变换中使用的电角度值;步骤9)θv=θi,电压反Park变换和电流Park变换采用统一电角度值;步骤10)执行假定旋转坐标法速度估算程序,速度电流双闭环控制程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்
电流 的预 测辨识 出转 子位 置和速度 , 出一种 基 于 系统辨识 理论 的无传感 器控 制 策略 , 提 解决 了控制
过程 中转子 速度 、 置的估 计 问题 。使 用该 策略 建 立 了 P M 无传 感 器 矢量控 制 系统 。仿 真 和 实 位 MS 验 结果表 明 了无传 感 器控制 策略 的有 效性 。
m o o sn d nt c t n m e h d tru ig ie i ai t o i f o
S N H iu G O Qn —ig , G O Sn—e , Y N ii U a- n , U igdn j A o gw i A G L-a jn
( .c ol f l tc yE g er g Se yn nvri f ehooy S eyn 10 3 C i ; 1S ho e r i ni ei , hna gU i s yo T cnlg , hnag10 2 , hn o E cit n n e t a
推 测 出 电机 转 子 的位 置 和 转 速 , 代 机 械 传 感 器 , 取
维普资讯
第1 2卷
第 3期
电 机 与 控 制 学 报
ELECTRIC M ACHI NES AND CONTR0L
V0 . 2 No 3 11 . Ma 2 0 v 08
20 0 8年 5月
系统 辨 识 法 永 磁 同步 电机 无 传 感 器 控 制
孙 海 军 郭 庆 鼎 , 高 松 巍 杨 理 践 , ,
( . 阳工业大学 电气工程学院 , 宁 沈 阳 10 2 ; . 1沈 辽 10 3 2 沈阳工业大学 信息科学与工程学院 ,辽宁 沈 阳 102 ) 10 3

要 :为 了实现 面贴 式永磁 同步 电机 (P M) s MS 无传 感 器控 制 , 过 灰 色方 法对 预估 旋 转 坐标 系 通
关键词 : 同步 电动 机 ; 面贴装 式永磁 同步 电机 ;无传 感 器控 制 ; 线参 数辨识 ;灰 色 系统 表 在
中 图分 类 号 : M 5 T 39 文献标识码 : A 文 章 编 号 : 0 — 4 X(0 8 0 一o4 一o 1 7 4 9 2 0 )3 24 4 0
S n o l s o t o f p r a e tm a n ts y c r n u e s r e s c n r lo e m n n g e im s n h o o s
2 c ol f nom t nS in ea d E g e r g S e y n nv r t o e h o g , h n a g1 0 2 , h a .S h o o fr ai c c n n i e n , h n a gU ies y f c n l y S e y n 1 0 3 C i ) I o e n i i T o n
Ab t a t I r e o r aie s n o l s o to f s ra e t p e ma e g eim s n h o o s mo o sr c :n o d rt e lz e s re s c nr l o u fc y e p r n ntma n ts y c r n u tr
(P M) oe snols cnrlsaeyw sp psd bsd o yt d nict n h ry sMS ,an vl esr s ot t t a r oe ae n ss m ieti i .T ege e o r g o e fao
meh d wa s d t ee tt e r trpo i o n o o pe d b h r ditd c re ti h wo — ph s t o s u e o d t c h o o st n a d r tr s e y t e p e c e u r n n t e t i ae r tr e tmai n fa . An he oo si t r me o d t n,t e s re sv c o o to y tm fs he s n o ls e trc n r ls se o PM S wa e p ba e n t i M ss tu s d o h s
po iin e tmai n a p o c st si t p r a h. T e e p rme tlo e a in a d smu a in s o h ai t ft r — o o h x e i na p r t n i l to h ws t e v l y o he p o o di p s d s ns re sc nto c e . o e e o l s o r ls h me Ke r s:y c r n u tr ;s ra e tp e a n g t m y c r n usmo o s e s re s c n y wo d s n h o o smo o s u f c y e p r ne tma nei s n h o o tr ;s n o ls o — m s
t l s se i e t ia in;g e y t m he r m ; y tm d n i c to f r y s se t o y
1 引 言
电机无 传 感 器 控 制 技 术 是 指 电机 转 子 和 机 座
不 安 装 电磁 或 光 电 等 机 械 传 感 器 的 情 况 下 , 用 利
相关文档
最新文档