结构力学课后解答:第7章__位移法

合集下载

结构力学I-第7章 位移法

结构力学I-第7章 位移法
4
Page
LOGO
§7-1位移法基本概念
位移法基本方程:

i 1 5
EAi sin 2 i FP li
FP EAi sin 2 i i 1 li
5

关键的一步!
将杆数由5减少为2,这时的结 构是静定的;如果杆数大于 (或等于)3时,结构是超静 定的。
以上两种情况都可以用上述 方法计算!
(2) 杆件转角以顺时针为正 , 反之为负。杆件两端在垂直 于杆轴方向上的相对线位移 ΔAB (侧移)以使杆件顺时针转 动为正,反之为负。 B A B A θB
θ
A
AB
2015-12-21
Page
14
浙江大学海洋学院 Tel : Email:
LOGO
§7-2 单跨超静定梁的形常数与载常数
ΔAB F M AB l
Page
23
LOGO
§7-2单跨超静定梁的形常数与载常数
3. 一端固定、一端定向的等截面直杆
MAB A A
A
β AB
F EI
B
B
AB
FQBA=0,ΔAB是θA 和θB的函 数,转角位移方程为
F M AB i AB A i AB B M AB F M BA i AB A i AB B M BA
2015-12-21
LOGO
§7-2单跨超静定梁的形常数与载常数
2. 一端固定、一端铰支的等截面直杆
MAB A A FS BA l FS BA
A
F EI
B
AB
MBA=0,θB 是θA 和ΔAB的函数,转角位移方程为
M AB 3i AB A 3i AB M BA 0

结构力学——矩阵位移法

结构力学——矩阵位移法
自由式单元的单元刚度矩阵不要求背记,但要领会其物 理意义,并会有它推出特殊单元的单元刚度矩阵。
整理版ppt
4
第一节 矩阵位移法概述
矩阵位移法以传统的结构力学作为理论基础; 以矩阵作为数学表达形式; 以电子计算机作为计算手段
三位一体的解决各种杆系结构受力、变形等计算的方法。
采用矩阵进行运算,不仅公式紧凑,而且形式统一,便 于使计算过程规格化和程序化。这些正是适应了电子计 算机进行自动化计算的要求。
结构力学
整理版ppt
学习内容
有限单元法的基本概念,结构离散化。 平面杆系结构的单元分析:局部坐标系下的单元刚度矩
阵和整体坐标系下的单元刚度矩阵。 平面杆系结构的整体分析:结构整体刚度矩阵和结构整
体刚度方程。 边界条件的处理,单元内力计算。 利用对称性简化位移法计算。 矩阵位移法的计算步骤和应用举例。
整理版ppt
16
第二节 单元分析(局部坐标系下的单元分析 )
3、局部坐标系中的单元刚度矩阵性质
与单元刚度方程相应的正、反两类问题
力学 模型
解的 性质
正问题 e
F e
将单元视为两端有人为 约束控制的杆件。
控e 制附加约束加以指
定。
e 为任何值时,F e都
有对应的唯一解,且总 是平衡力系。
整理版ppt
1、整体刚度矩阵的集成 将单元刚度矩阵按单元定位向量扩展为单元贡献矩阵
(换码扩阵)
1
1
3
K
1
k11
0
1
k21
1
0 0
0
k12
1
0
k22
1
2
2
3
0
K 2

结构力学 7.位移法

结构力学 7.位移法
也称“先拆后搭”
§7-1 位移法的基本概念
2 位移法计算刚架的基本思路
(1)基本未知量——A 和。
(2)建立位移法基本方程 ■刚架拆成杆件,得出杆件的刚度方程。 ■杆件合成刚架,利用刚架平衡条件,建立位移法基本方程。
§7 – 2 等截面直杆的刚度方程 正负号规定
结点转角 A 、 B 、弦转角( = / l ) 和杆端弯矩M AB
0
0
6
5ql
3ql
3l / 8
8
8
9ql2 / 128
(↑) (↑)
2ql
ql
7
5
10
(↑) (↑)
8
9ql
11ql
40
40
(↑) (↑)
§7-2 等截面杆件的刚度方程
表1:载常数表(续)
序号 计算图及挠度图
弯矩图及固端弯矩
9
10
5FPl / 32
11
12
固端剪力
FQAB
FQBA
FPb(3l 2 b2 ) 2l 3
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
(1)B端为固定支座 B 0
FQ AB FQ BA
6i l
A
6i l
B
12i l2
(2)B端为铰支座 MBA 0
M AB
4i A
6i
l
M BA
2i A
6i
l
M AB
3i A
3i
l
§7-2 等截面杆件的刚度方程
M AB
24
25
26
27
固端剪力

结构力学位移法

结构力学位移法

R2
R1=0 R2=0
ql
C D
Z1 R1
l
四.位移法典型方程
ql
q
l/2 B
ql
C D
ql B
A r22
q
R2 Z1
R1=0
ql C D
Z2=1
l/2 A
EI=常数
R2=0 R1 R1 r11 Z1 r12 Z 2 R1 P 0
l
C
r21
R2 r21 Z1 r22 Z 2 R2 P 0
r11
3i 3i
EI
r
11
=6i
R1P
ql 2 / 8
R1P
q
R1 P ql 2 / 8
Z1 ql / 48i ql 2 8 MM Z M 1 1 P
2
MP
ql2 / 16
r11
3i
Z1=1 3i
M1
Z1
M
位移法求解过程:
1)确定基本体系和基本未知量 2)建立位移法方程 3)作单位弯矩图和荷载弯矩图 4)求系数和自由项 5)解方程 6)作弯矩图
A
Z1
B
Z1
q
B
C
=
A
B
+
B
ቤተ መጻሕፍቲ ባይዱ
C
Z1
q
A
EI
B
Z1
EI
C
----刚臂,限制转动的约束 R1=0 R1=r11 Z1+ R1P =0
R1
q
A
EI
B
EI
C
r11
3i
B B
ql 8
2
3i
r

结构力学-7 位移法2

结构力学-7 位移法2

4iB 153iB 90
B

6 7i
16.72
11.57
M AB 2i7 6i1 51.7 6k2N m
M BA 4i7 6i1 51.5 1k7N m M BC 3i7 6i91.5 1k7N m
3.21
M图 kNm
梁 MBC4B2C41.741.1524.8941.746.9kNm
..............................................
柱 MBE443B3B31.153.45kNm
MCF412C2C2(4.89)9.8kNm
MBC
q
mBCq82l 9kNm
MBA
B EI
3、列杆பைடு நூலகம்转角位移方程
MBC3iB3limBC
设i
EI 6
4、位移法基本方程(平衡条件)
MAB2iB15 MBA4iB15
MBC3iB9
1
M超AB静EI定结P构分B 析M必B须C 满足q的三个条件:3、列杆端转角位移方程



2
C
D
1
C
D
A
B
7
线位移数也可以用几何构造分析方法确定。 将结构中所有刚结点和固定支座,代之以铰结点和铰支座,分析新体系的几 何构造性质,若为几何可变体系,则通过增加支座链杆使其变为无多余联系的 几何不变体系,所需增加的链杆数,即为原结构位移法计算时的线位移数。
1
4
0
8
BA EID
MEB
F
MCB
C
MCF
MCD
C
C MC 0
MFC
15
基本未知量为: C

结构力学第七章位移法

结构力学第七章位移法
几何不变体系
10
§7-3 位移法基本结构与未知量数目
二 位移法基本结构 1 附加刚臂 控制结点转动 2 附加链杆 控制结点线位移
ΔC C θC
ΔD θD
D
基本结构
将原结构结点位移锁住,所得单跨梁的组合体
11
三 位移法基本结构与未知量数目
ΔC
ΔD
Z1
θD
C θC
D
Z2 Z3
基本结构
结点角位移的数目=刚结点的数目=附加刚臂的数目 独立结点线位移的数目=附加链杆的数目
B
15i 16
6
0(2)
位移法方程实质上平衡方程 33
2i
3i/2Z2=1
A
D
2i
k 21
FQ BA
FQ CD
3i 2
B
C k22
FQBA
FQCD
3i
i2
3i/2
k 22
i
3i 4

3i 16
15i 16
B i
0
FQ BA
3i 4
C FQCD i
3i 2
M1
3i 4
A
FQ CD
3i 16
3i/2
D 3i/4 26
4
B
C F2P
3kN/m 3kN/m
16
皮肌炎图片——皮肌炎的症状表现
▪ 皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
▪ 1、早期皮肌炎患者,还往往伴 有全身不适症状,如-全身肌肉酸 痛,软弱无力,上楼梯时感觉两 腿费力;举手梳理头发时,举高 手臂很吃力;抬头转头缓慢而费 力。

结构力学习题集-矩阵位移法习题及答案

结构力学习题集-矩阵位移法习题及答案

第七章 矩阵位移法一、是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。

2、单元刚度矩阵均具有对称性和奇异性。

3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。

5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。

6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。

7、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。

8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。

9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。

10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。

11、矩阵位移法既能计算超静定结构,也能计算静定结构。

二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下的单元刚度矩阵[]k 66⨯,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。

3、单元i j 在图示两种坐标系中的刚度矩阵相比:A .完全相同;B .第2、3、5、6行(列)等值异号;C .第2、5行(列)等值异号;D .第3、6行(列)等值异号。

xi4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第七章【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第七章【圣才出品】
14 / 134
圣才电子书 十万种考研考证电子书、题库视频学习平台

(b)如图 7-2-3 所示。
图 7-2-2
图 7-2-3 ①当α≠0 时,结点 A、B、C、E、F、G 有转角,AB、FG 有水平位移,C、E 点有两个 水平位移,所以基本未知量有 10 个,分别是θA、θB、θC、θE、θF、θG、ΔA、ΔG、ΔC、ΔE。 ②当α=0 时,结点 A、B、C、E、F、G 有转角,AB、FG 有水平位移,CDE 有水平位 移,D 点有竖向位移,所以基本未知量有 10 个,分别是θA、θB、θC、θE、θF、θG、ΔA、Δ G、ΔC、ΔVD。 (c)如图 7-2-4 所示。 ①当不考虑轴向变形时,结点 A、B、C 有转角,整体有一个水平位移,所以基本未知 量有 4 个,分别是θA、θB、θC、Δ。
15 / 134
圣才电子书 十万种考研考证电子书、题库视频学习平台

②当考虑轴向变形时,A、B、C 三个结点都有独立的转角、竖向位移、水平位移,所 以基本未知量有 9 个,分别是θA、θB、θC、ΔA、ΔB、ΔC、ΔVA、ΔVB、ΔVC。
图 7-2-4 (d)如图 7-2-5 所示。 ①当α≠0 时,结点 B、C 有转角,D 结点有独立的竖向位移,所以基本未知量有θA、θ B、ΔV。 ②当α=0 时,结点 B、C 有转角,虽然 D 结点有位移,但不是独立的,所以基本未知 量有θA、θB。
图 7-1-8 反对称荷载作用下奇数跨对称结构的半结构选取方法 图 7-1-9 对称荷载作用下偶数跨对称结构的半结构选取方法
12 / 134
ቤተ መጻሕፍቲ ባይዱ
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 7-1-10 反对称荷载作用下偶数跨对称结构的半结构选取方法 7.2 课后习题详解

结构力学教学课后作业答疑 矩阵位移法 弹性稳定

结构力学教学课后作业答疑 矩阵位移法  弹性稳定
2 10 / 3i (i EI / l) 3 15 / 2i 4 1
0
(5)各跨杆端弯矩依次为:(单位kN.m)
MM12((11))
4i 2i
2i 35 / 6i 30 0
4i
10
/
3i
30
55 (i
EI
/
l,
j
1, 2,3)
MM12((22
) )
4i 2i
2i 4i
9.1(a)
EI=常数,不考 虑轴向变形
解:(1)按图示结点与杆元的整体编码,各杆的固端弯矩依次为: (单位kN.m)
M F ,(1)
a2bFp
b2aFp
22 6 20
62 2 20
30
1
l2
l2
82
82
M F ,(1) 2
a2bFp l2
b2aFp l2
22
6 82
20
62
2 82
20
30
M F ,(2) 1
ql 2 12
10 82
12
160 3
M F ,(2) 2
ql 2 12
10 82 12
160 3
M F ,(3) 1
M F ,(3) 2
0
结构的等效 结点荷载
✓杆端力方向 ✓节点力和杆 端力区别
(2)各杆的单元刚度矩阵
k
( j)
4i 2i
2i 4i
(i
EI
0.096 0 7.5
0.128
0.096
0.128
40
157.5
0
10 7.5 10
1/3 0
(3)
F

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(位移法)【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(位移法)【圣才出品】

第7章位移法7.1 复习笔记本章重点介绍了位移法的原理以及如何运用位移对超静定结构在各种荷载作用下的内力和位移进行求解。

位移法和力法像一幅对联,是超静定结构分析中的两个基本方法。

力法通过撤除多余约束达到简化计算的目的,而位移法通过添加约束达到此目的。

此外,二者对偶关系总结如下:力法:虚设单位力——求结构柔度——利用变形协调——求解未知约束力——算出结构内力。

位移法:虚设单位位移——求结构刚度——利用受力平衡——求解未知位移——算出结构内力。

两种方法殊途同归,在结构计算中应该综合考虑结构特点和求解目标选取合理的手法,使结构计算更加方便、快捷、准确。

一、位移法的基本概念(见表7-1-1)表7-1-1 位移法的基本概念二、杆件单元的形常数和载常数——位移法的前期工作采用位移法对刚架的等截面杆件进行分析时,杆件端部弯矩受两方面影响:①杆端位移产生的杆端弯矩——形常数;②外荷载产生的固端弯矩——载常数。

1.由杆端位移求杆端内力——形常数(见表7-1-2)表7-1-2 由杆端位移求杆端内力——形常数图7-1-12.由荷载求固端内力——载常数荷载作用下的杆端弯矩和杆端剪力,称为固端弯矩和固端剪力。

由于它们是只与荷载形式有关的常数,所以又称载常数,不同支座形式下杆件的固端弯矩和剪力值见表7-1-3。

表7-1-3 等截面杆件的固端弯矩和剪力三、位移法解无侧移刚架(见表7-1-4)表7-1-4 位移法解无侧移刚架四、位移法解有侧移刚架(表7-1-5)表7-1-5 位移法解有侧移刚架图7-1-2五、位移法的基本体系(见表7-1-6)表7-1-6 位移法的基本体系图7-1-3图7-1-4图7-1-5图7-1-6六、位移法解对称结构(见表7-1-7)表7-1-7 位移法解对称结构。

07★结构力学A上★第七章★位移法

07★结构力学A上★第七章★位移法
31
例:作图示刚架弯矩图。忽略横梁的 轴向变形。 解:(1)基本未知量:各柱顶水平 位移相等,只有一个独立线位移Δ。 (2)各柱的杆端弯矩和剪力为:
EI1 i1 h1 EI 2 i2 h2 EI 3 i3 h3
32
M BA 3i1 M DC 3i2 M FE 3i3


FP i1 i2 i3 3 2 2 2 h1 h2 h3 FP 3 i h2
列出水平投影方程:
X 0
33
(4)各柱最终杆端弯矩,画弯矩图:
i1 2 h1 FP i 2 h i3 2 h3 FP i 2 h i2 2 h2 i 2 h
转角位移方程。因此,不能利用刚性杆两端的刚结点力矩平
衡条件。应建立弹性杆端的剪力平衡方程。 刚性杆虽然没有变形,但是可存在内力。
30
2. 基本方程的建立
B= 0.737/ i (1) 基本未知量 B = 7.58/i
(2) 杆端弯矩
1 AB:M AB 2i B 6i 3 42 4 12 1 M BA 4iB 6i 3 42 4 12
M E 0, FQBE
M F 0, FQCF
1 (M EB M BE ) 4
1 M FC M CF 6
1 1 (M EB M BE ) M FC M CF 0 4 6
(4)解方程组
1.125 B 0.5C 0.728 0
得 B= 0.94 C= -4.94 = -1.94
10 B 2C 1.125 1.7 0 2 B 9C 0.5 41.7 0 1.125 B 0.5C 0.728 0

结构力学 第七章 位移法

结构力学 第七章 位移法

表示等截面直杆杆端力与杆端位移及杆上荷载间关系的表达式
B A
Δ
6i F M AB l 6i F M BA 2i A 4i B M BA l 6i 6i 12i F F QAB A B 2 FAB l l l M AB 4i A 2i B
B
4i
1
2i
6i l
12i
l
6i
3i
l
6i
0
l2
θ =1
B B
3i
3i l
l
2
1 θ =1
B
3i
i
l
0
A
-i
0
三 等截面直杆的载常数 由荷载作用所引起的杆端力(固端力)
单跨超静定梁简图
q A
↓↓↓↓↓↓ ↓↓↓↓↓↓ ↓↓
mAB
B
mBA
ql 2 12
Pl 8
ql 2 12
Pl 8
位移法方程实质上平衡方程
Z1
D i A 2i E
Z2
C 2i
i EI l
4m
EI
i B
A
B
4m
2m
2m
位移法基本体系
解:1 确定位移法基本体系 2 列位移法方程 k11Z1+ k12Z2+ F1P=0 k21Z1+ k22Z2+ F2P=0
3 计算系数和自由项 Z1=1
4i 4i D i8i A 2i 8i 2i E 2i i B C
M AB 2i B
M BC ql 2 4i B 12
ql 2 ql 2 ql 2 4i 96i 12 24

结构力学 位移法

结构力学 位移法
S in
分析方法:
该题有一个刚结点,因此有一个转角位移。水平线位移 的分析方法:假设B结点向左有一个水平位移△,BC杆平 移至B’C’,然后它绕B’转至D点。
D
B
E
C
A
注意:
(1)铰处的转角不作基本未知量。
Δ
(2)剪力静定杆的杆端侧移也可不作为基本未知量。
(3)结构带无限刚性梁时,即EI∞时,若柱子平行,
q4l02kN2.m0•42 84q1l 2.7kN82.m0•5
12 12
2
MBA
m 41.7kN.m CB
44mm
EE
300I..7755M图(kN.M300)I..55
1.7
55mm 4.9FF
MCB MCD
MCF 44mm
MBC M 4•0.75 3 =3.4
BE
B
B
M 3 40 =43.5 MBE
FP
B FQBA FQBC
MBC
M B 0M B A M B C 0
11iB
9i qL2 L 12
0
……①
Y 0
FQBA FQBC FP 0 ……②
求FQBA MAB A
q
FQAB
求FQBC
MBC B FQBC
MA 0
B
MBA
FQBA
M AB
M BC L
qL 2
FQBA
12i L
3 2 1
结点转角的数目:7个
独立结点线位移的数目:3个
D
E
刚架结构,有两个刚结点D、E,
故有两个角位移,结点线位移由铰
结体系来判断,W=3×4-2×6=0,
A
B

龙驭球《结构力学Ⅰ》(第3版)笔记和课后习题(含考研真题)详解(中册)-第7章【圣才出品】

龙驭球《结构力学Ⅰ》(第3版)笔记和课后习题(含考研真题)详解(中册)-第7章【圣才出品】
图 7-1-6
8 / 89
圣才电子书 十万种考研考证电子书、题库视频学习平台

在对称轴上的截面 C 没有转角和水平位移,但可有竖向位移。计算中所取半边结构如 图 7-1-6(b)所示,C 端取为滑动支承端。
(2)反对称荷载(图 7-1-6(c)) 在对称轴上的截面 C 没有竖向位移,但可有水平位移和转角。计算中所取的半边结构 如图 7-1-6(d)所示,C 端为辊轴支座。 2.偶数跨对称结构 (1)对称荷载(图 7-1-7(a))
下面举例说明位移法的基本方程的建立过程。
图 7-1-1(a)所示刚架,柱的线刚度为 i ,梁的线刚度为 2i 。基本未知量为刚结点 B
的转角B 和柱顶的水平位移 ,如图 7-1-1(b)所示。
(1)各杆的杆端弯矩如下
(2)力矩平衡方程 (3)水平投影方程
4 / 89
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、杆件单元的形常数和载常数——位移法的前期工作 1.由杆端位移求杆端内力——形常数
1 / 89
圣才电子书 十万种考研考证电子书、题库视频学习平台

(1)位移法中的正负号规则 结点转角 θA、θB,弦转角 φ ,杆端弯矩 MAB、MBA,一律以顺时针转向为正。 (2)刚度系数与刚度方程
(3)单位位移 2 1单独作用,在附加约束中产生的力(图 7-1-5)。
图 7、题库视频学习平台

同理,AB,CD 两柱顶有一个侧向位移,所以 4.位移法典型方程
六、位移法解对称结构 1.奇数跨对称结构 (1)对称荷载(图 7-1-6(a))
表 7-1-1 等截面杆件的固端弯矩和剪力
2 / 89
圣才电子书 十万种考研考证电子书、题库视频学习平台

结构力学第七章位移法

结构力学第七章位移法

结构力学第七章位移法1.引言结构力学是研究结构受力、变形和稳定性的力学分支。

在结构力学中,位移法是一种重要的分析方法,用于求解结构的变形和应力分布。

2.位移法的基本原理位移法是基于以下两个基本原理:(1)弹性体的受力状态可通过满足平衡条件来确定;(2)位移场的连续性条件,即位移场在结构内部要处处连续,边界上要满足给定的边界条件。

3.位移法的基本步骤位移法的基本步骤如下:(1)建立结构的受力模型,包括结构的材料性质、几何形状和边界条件等;(2)选取适当的位移函数形式,以确定位移场;(3)利用平衡方程和满足位移场连续性条件的边界条件,求解未知的位移和受力分布;(4)利用位移和受力分布计算结构的变形和应力分布。

4.位移法的应用位移法广泛应用于各种结构的力学分析,特别是对于复杂的非线性和不规则结构,位移法是一种常用的分析方法。

以下是一些常见的应用:(1)梁的挠曲分析:位移法可以用来求解梁的挠曲问题,通过选取合适的位移函数形式,可以得到梁的弯曲形状和弯矩分布。

(2)柱的稳定性分析:位移法可以用来求解柱的稳定性问题,通过选取合适的位移函数形式,可以得到柱的稳定性临界载荷和稳定形状。

(3)桁架结构的分析:位移法可以用来求解桁架结构的强度和刚度,通过选取合适的位移函数形式,可以得到桁架结构的内力和变形。

(4)地基基础的分析:位移法可以用来求解地基基础的变形和应力分布,通过选取合适的位移函数形式,可以得到地基基础的沉降和周边土体的应力分布。

5.位移法的优缺点位移法作为一种结构力学的分析方法,具有以下优点:(1)位移法适用于各种结构的力学分析,可以求解复杂的非线性和不规则结构问题;(2)位移法具有较强的适用性和灵活性,可以根据实际情况选取不同的位移函数形式;(3)位移法的计算步骤相对简单,易于实现。

然而,位移法也存在一些缺点:(1)位移法需要选取适当的位移函数形式,这对分析结果的准确性有较大影响;(2)位移法的计算过程较为繁琐,需要手动推导和求解方程组,耗费时间和精力。

结构力学位移法详解

结构力学位移法详解

基本系
FP 单独作用
1 单独作用
1 , FR1P , FR11 规定顺时针为正
基本系与原结构在附加约束处的受力状况, FR1 0 FR1P FR11 0
典型方程---表示结点B 处的力矩平衡. k111 FR1P 0
求系数和自由项
FR1P 1 FP l 8
k11 4i 4i 4i 12i
§8.1 位移法的基本概念
基本未知量 B
FR1 0
在结点B附加一刚臂------基本体系
FR1 FR1P FR11
基本系
FP 单独作用
1 单独作用
1 , FR1P , FR11 规定顺时针为正
基本系与原结构在附加约束处的受力状况, FR1 0 FR1P FR11 0
X1
X2
X3
X1
X2
1C [1 b ( l ) ]
l
X1 1
0
1
X2 1
0
1 1 1 0 X3 1
0 0
l b 2 C a 3C
1.两端固定受支座转角作用的力 法方程:
1.两端固定受支座转角作用:
位移法
(Displacement Method)
FP 单独作用
1 1 单独作用
解方程
1 12i1 FP l 0 8
FPl FPl 2 1 (顺时针) 96i 96 EI
作弯矩图
FPl 2 1 96 EI
FP 单独作用
1 1 单独作用
M M11 M P
Z1
EI
q
EI
Z1
Z1=1
=
Z1

结构力学-第7章 位移法

结构力学-第7章 位移法

第7章位移法一. 教学目的掌握位移法的基本概念;正确的判断位移法基本未知量的个数;熟悉等截面杆件的转角位移方程;熟练掌握用位移法计算荷载作用下的刚架的方法了解位移法基本体系与典型方程的物理概念和解法。

二. 主要章节§7-1 位移法的基本概念§7-2 杆件单元的形常数和载常数—位移法的前期工作§7-3 位移法解无侧移刚架§7-4 位移法解有侧移刚架§7-5 位移法的基本体系§7-6 对称结构的计算*§7-7支座位移和温度改变时的位移法分析(选学内容)§7-8小结§7-9思考与讨论三. 学习指导位移法解超静定结构的基础是确定结构的基本未知量以及各个杆件的转角位移方程,它不仅可以解超静定结构,同时还可以求解静定结构,另外,要注意杆端弯矩的正负号有新规定。

四. 参考资料《结构力学(Ⅰ)-基本教程第3版》P224~P257第六章我们学习了力法,力法和位移法是计算超静定结构的两个基本方法,力法发展较早,位移法稍晚一些。

力法把结构的多余力作为基本未知量,将超静定结构转变为将定结构,按照位移条件建立力法方程求解的;而我们今天开始学的这一章位移法则是以结构的某些位移作为未知量,先设法求出他们,在据以求出结构的内力和其他位移。

由位移法的基本原理可以衍生出其他几种在工程实际中应用十分普遍的计算方法,例如力矩分配法和迭代法等。

因此学习本章内容,不仅为了掌握位移法的基本原理,还未以后学习其他的计算方法打下良好的基础。

此外,应用微机计算所用的直接刚度法也是由位移法而来的,所以本章的内容也是学习电算应用的一个基础。

本章讨论位移法的原理和应用位移法计算刚架,取刚架的结点位移做为基本未知量,由结点的平衡条件建立位移法方程。

位移法方程有两种表现形式:①直接写平衡返程的形式(便于了解和计算)② 基本体系典型方程的形式(利于与力法及后面的计算机计算为基础的矩阵位移法相对比,加深理解)§7-1 位移法的基本概念1.关于位移法的简例为了具体的了解位移法的基本思路,我们先看一个简单的桁架的例子:课本P225。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

l7- 32Z 1M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)解:(1)确定基本未知量1个角位移未知量,各弯矩图如下4m 4m4m7- 341Z =1M 图3EIp M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KN mM ⋅图(c)解:(1)确定基本未知量一个线位移未知量,各种M 图如下6m 6m 9m1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1114,243p p r EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下a 2aa2aaF P7- 3611Z=1111r 252/25EA a 简化图1pR pp M(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程11126/,55p p r EA a R F ==- 126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)解:(1)确定基本未知量两个线位移未知量,各种M 图如下l图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程11122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=⎝⎭=-=代入,解得7- 3812p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

(a)解:(1)确定基本未知量两个角位移未知量,各种M 图如下23EI 23EI 112121 3r EI r EI⇒==图1M23EI 22116r EI ⇒=6m6m 6m1130 0p p R R ⇒==图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程111221221212,311630,0p p r EI r r EI r EI R R ======代入,解得1215.47, 2.81Z Z =-=(4)画最终弯矩图图M(b)解:(1)确定基本未知量两个位移未知量,各种M 图如下图1MCED 6m6m7- 40图2M图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程 111221221211,03430,30p p r i r r ir R KN R KN====-==-代入,解得123011,4011Z Z i i=-⋅=⋅ (4)画最终弯矩图图M 29.09(c)2m2m解:(1)确定基本未知量两个位移未知量,各种M 图如下图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程1112212212311,2640,30p p i r i r r i r R R KN===-===-代入,解得126.31646.316,Z Z EI EI==(4)求最终弯矩图7- 42图M(d)解:(1)确定基本未知量两个位移未知量,各种M 图如下1llpM(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程1112212222212133,181,16p p EI EI r r r l l EI r l R ql R ql======-代入,解得341266211,36003600ql ql Z Z EI EI=-⋅=⋅(4)求最终弯矩图图M(e)解:(1)确定基本未知量两个角位移未知量,各种M 图如下8m4m 4m 4m 4m7- 442EI 1M 图p M 图(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程111221221251,447845,0p p r EI r r EI r EIR KN m R =====⋅= 代入,解得1238.18,10.91Z Z =-=(4)求最终弯矩图M 图7-7 试分析以下结构内力的特点,并说明原因。

若考虑杆件的轴向变形,结构内力有何变化? (a) (b) (c)(d) (e)(f)F PF PqEI 1=∞EI对称轴F PF P7-8 试计算图示具有牵连位移关系的结构,并绘出M 图。

(a)解:(1)画出p M M M ,,21图81EI 3EI 由图可得: 1112211124,813r EI r r EI ===1由图可知: 22149r EI= 图20KNp M20kN8m8m 6m3mACD EBFG EI 1=∞EI 1=∞ 3EI3EI3EIEI7- 4612200p p R KN R ⇒=-= (2)列方程及解方程组12121124200813414039EIZ EIZ EIZ EIZ ⎧+-=⎪⎪⎨⎪+=⎪⎩ 解得:121183.38,71.47Z Z EI EI==-(3)最终弯矩图图M(b)解:C 点绕D 点转动,由Cy=1知,45,43==⊥CD x C C 知EIEI EI r r EI EI EI r EIEI EI r r EI r r EI r 16027403323,1098410412833231289,4,3223221331211211-=--===+=-=-=====KN R R m KN R p p p 25.6,0,10321-==⋅= 求33r0=∑DM知4m 6m8m4m 10kN10kN B C ADEI=常数EI EI EI EI EI EI r 055.081481289128912834031602733=⨯⨯+-++=⎪⎩⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=-+=+-+EIZ EI Z EI Z EIZ Z EIZ EIZ Z EI Z EI EIZ Z EI EIZ /6.285/5.58/9.17025.6055.0160271283016027109401012834321321321321(c) 解:(1)作出各M 图26EI a 1M 图()1133113918018EI EIMr a a a a EI r a =⇒⨯=+⨯∴=∑F P EI 1=∞EIEI D CB Aa 2a 2a a7- 48图p M110022p p aM P R a PR =⇒⋅+⋅==-∑(2)列出位移法方程11110p r Z R +=解得:31Z =(3)最终M 图M 图(d)解:基本结构选取如图所示。

作出1M 及p M 图如下。

l 2l 2 ll2p M 图3222211292/2910810l EI l l EI l EI l l EI l EI r =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+=ql l ql ql R p 127/1212121-=⎪⎭⎫⎝⎛+-=由位移法方程得出: EIql Z R Z r p 34870411111=⇒=+作出最终M 图285348ql M 图7-9 试不经计算迅速画出图示结构的弯矩图形。

(a)(b)题7-9图7-10 试计算图示有剪力静定杆的刚架,并绘出M图。

y Baaa a7- 50解:(1)画出p M M M ,,21图1M 图2M 图p M 图由图可知,得到各系数:222122211211813,858,,7qa R qa R i r i r r i r p p -=-==-=== 求解得:5512,4405321==Z Z (2)求解最终弯矩图7-11 试利用对称性计算图示刚架,并绘出M 图。

(a)解:(1)利用对称性得:6mp M 图(2)由图可知:m KN R EI r p ⋅-==300,34111 0300341=-∴EIZ可得:EIEI Z 225433001=⨯= (3)求最终弯矩图M 图(b)解:(1)利用对称性,可得:5EI1M 图图p M(2)由图可知,各系数分别为: 02020212020215441111=-⋅-==+=EIZ m KN R EI EI EI r p 4m 3m4m7- 52解得:EIZ 214001=(3)求最终弯矩图如下M 图(c)解:(1)在D 下面加一支座,向上作用1个单位位移,由于BD 杆会在压力作用下缩短,所以先分析上半部分,如下图。

1M 图p M 图D 点向上作用1个单位,设B 向上移动x 个单位,则()x l EI x l EI -=112333,得54=x 个单位。

(2)同理可求出Mp 图。

Pl R l EI l EI x l EI r p 54,5132512121332311==+=可得:3331Pl Z -=(3)求最终弯矩图l llC DE图11Pl M(d)(e)解:(1)利用对称性,取左半结构4m 4m4m4m′′3m3m3m 3m′7- 541M 图2M 图149图p M(2)由图可知: KNR R EIr EI r r EI r p p 25,02720,94,382122122111======解得:EIZ EI Z 375,42521-==(3)求得最终弯矩图M 图(f)解:由于Ⅱ不产生弯矩,故不予考虑。

相关文档
最新文档